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1. Introduction 

The electronic properties and electronic transport in graphene have been extensively examined in theoretical studies [1-24].  

Nevertheless, the electrodynamic properties of graphene warrant further study, as they underpin the development of carbon-based 

devices. As in other reports [20, 21, 24, 25], the kinetic transport equation was utilised to investigate the current-voltage (𝑰 − 𝑽) 

characteristics and the high-frequency conductivity of graphene under hot-electron injection in an electric field, where the kinetic 

equation is valid [24]. The Stark frequency smaller than the conduction-band gap was assumed [24]. In such a quasi-classical 

scenario, both inter-band transitions and quantum mechanical corrections to the intra-band motion can be neglected. This ensures 

the use of the semiclassical approach as in [24]. Additionally, the classical regime [26] is considered, in which the photon energy 

ℏ𝝎 is much smaller than the Fermi energy 𝑬𝑭 , 𝒊. 𝒆. , ℏ𝝎 ≪ 𝑬𝑭 , ensuring the validity of the Boltzmann kinetic equation for electron 

dynamics. Where 𝝎 is the frequency of the photon and ℏ is the reduced Planck’s constant. In this approach, scattering mechanisms 

(Coulomb, short-range processes) and the screening effects in graphene are neglected, and a constant relaxation time (𝝉) is assumed.   

Despite extensive theoretical research on the electronic properties and transport phenomena of graphene [1-24], studies 

addressing nonlinear electrical conductivity induced by high-frequency fields and hot-electron injection have received 

comparatively little attention. The novelty of the present work lies in a semiclassical analysis of nonlinear transport in graphene 

subjected to combined DC and high-frequency AC fields, incorporating hot-electron injection for advanced nanoelectronic device 

applications. 

 

2. Theory 

Following the approach in [22-29], the motion of an electron is considered in the presence of a high-frequency electric field 

𝑬(𝒕) with hot electron injection. The electric field 𝑬(𝒕)  is directed along the graphene growth axis (i.e., along the 𝒙 axis), and the 

conductivity is derived using the Boltzmann kinetic equation. Electron transport in graphene is described using distribution functions 

within the simplest momentum-independent relaxation-time approximation, where 𝜏 is assumed constant, equal to the electron 

mean-free-path time [22-29].  In this case, the Boltzmann kinetic equations for the symmetric 𝒇𝒔 and antisymmetric 𝒇𝒂 distribution 

functions are expressed as [24, 27-29]: 
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Where 𝒆 is the electron charge, 𝒑 is the electron dynamical momentum, 𝑭 is the equilibrium distribution function and, 𝒇𝒔  and 

𝒇𝒂  are the symmetric and antisymmetric distribution functions, respectively. 
𝑸

𝒏𝒐

 is the hot electron pumping frequency;
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ABSTRACT 

A theoretical model describing hot-electron injection effects on the high-frequency 

electrical conductivity of graphene under DC-AC fields is presented. The quasiclassical 

Boltzmann kinetic equation, within the constant relaxation-time approximation, is 

employed to obtain the nonequilibrium electron distribution function. An explicit 

analytical expression for the electrical conductivity at arbitrary injection rates is 

subsequently derived. A systematic analysis of frequency-dependent electrical 

conductivity is performed across a range of hot-electron injection rates at a constant DC 

field. At sufficiently high injection rates, a pronounced peak is observed that is well suited 

to terahertz radiation generation, with negative differential conductivity (NDC) arising 

from the DC field and domain formation associated with NDC being suppressed by the AC 

field. These findings indicate that graphene subjected to hot-electron injection may be 

utilised in high-frequency nanoelectronic device applications.                                                                                                   
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𝑸 is the rate of injection of hot electrons; 𝒏𝒐 is the particle density;  and 𝒑′ is the hot electron injection momentum. 𝒇𝑬 is the 

stationary homogeneous distribution function in the absence of a hot electron source.  In the case of a constant electric field 𝑬𝒐 and 

denoting the stationary distribution function as  𝒇𝒂
𝒐 = 𝒇𝒂

𝑬, solving Eq. (1)  without the hot source yields, 

𝝏𝟐𝒇𝒂
𝒐

𝝏𝝃𝟐 − 𝝌𝟎
𝟐𝒇𝒂

𝒐 =
𝝏𝑭

(𝒆𝑬𝒂𝝉)𝝏𝝃

                                                                                                                                           (2) 

where 
𝝌𝟎

𝟐 =
𝝅𝟐

(𝒆𝒂𝑬𝝉)𝟐

 and 𝝃 = 𝒂

𝝅
𝒑  [24].  

The solution of the boundary value problem 2 is 
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𝒐 =

𝟏

(𝝎𝑬𝝉)
∫ 𝑮(𝝃𝒙, 𝝃′

𝒙
)

𝝏𝑭

𝝏𝝃
𝒅𝝃′

𝒙
 

𝟏

−𝟏
                                                                                                                               (3) 

where 
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We shall consider the cases where 𝝃𝒙 = 𝝃′
𝒙
 and 𝝃𝒙 ≠ 𝝃′

𝒙
 . The second case is vanished, and we obtain for 𝝃𝒙 = 𝝃′

𝒙
 , the 

expression 
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Here 𝝎𝑬 = 𝒆𝒂𝑬 is the Bloch frequency 

As in [29], in the presence of the hot source, the stationary homogeneous distribution function 𝒇𝒂
𝒄
 is given by                              𝒇𝒂

𝒄 =

𝒇𝒂
𝑬 + 𝒇𝒂

′,
 and solving Eq. (1) for the constant electric field, we obtain, 

𝒇𝒂
′ = 𝒗

𝝏𝑭

𝝏𝜺

𝜼𝝎𝑬𝝉

(𝟏+𝜼)𝟐+𝝎𝑬
𝟐𝝉𝟐 [𝟏 −

𝝎𝑬𝝉
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𝟐𝝉𝟐+𝟏

]                                                                                                                              (6) 

Where 𝜼 =
𝑸𝝉

𝒏𝒐
 is the dimensionless hot electron pumping or injection rate parameter. 

The electron spectrum in graphene is given by [22]. 

|𝜺(𝒑)| = ±
𝟑𝜸𝒐𝒃

𝟐ℏ
|𝒑 − 𝒑𝑭|                                                                                                                                                     (7) 

Where the tight-binding nearest-neighbour hopping parameter 𝜸𝒐 ≈ 𝟐. 𝟕 𝐞𝐕, 𝒃 = 𝟎. 𝟏𝟒𝟐 𝐧𝐦 is the distance between the 

neighbouring carbon atoms in the graphene. + and − signs are related to the conduction and valence bands, respectively. With 𝒑𝑭 

as the constant quasimomentum corresponding to the particular Fermi point. 

The current density of the mobile electron in the first Brillouin zone for graphene is given by the expression [22]; 

 

𝒋𝒙 =
𝟐𝒆

(𝟐𝝅ℏ)𝟐 ∬ 𝒗𝒙𝒇𝒂
𝟏𝒅𝟐 𝒑                                                                                                                                                  (8) 

and the quasiclassical velocity 𝒗𝒙(𝒑) of an electron moving along the graphene growth axis (i.e., along the 𝒙 axis) can be expressed 

as   

𝒗𝒙(𝒑) =
𝝏𝜺

𝝏𝒑
= 𝒂

𝝅

𝝏𝜺
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𝝅
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and writing 
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𝒂
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𝒂

𝒅𝒔
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𝒅𝒔 is the element of the length of the curve. 

The effects of combined direct current (DC) causing NDC and alternating current (AC) electric fields are now considered, 

where the AC field has frequency 𝝎  and wave–vector 𝜿. It is assumed that the AC field amplitude is much lower than the DC field 

strength (𝑬 ≫ 𝑬𝝎,𝜿). Under this assumption, Eqs. (1) are linearised using the perturbations  

𝑬(𝒕) = (𝑬 + 𝑬𝝎,𝜿𝒆−𝒊(𝝎𝒕+𝒌𝒙)),  𝒇𝒔 = 𝒇𝒔
𝒄 + 𝒇𝒔

𝟏𝒆−𝒊(𝝎𝒕+𝒌𝒙), 𝐚𝐧𝐝  𝒇𝒂 = 𝒇𝒂
𝒄 + 𝒇𝒂

𝟏𝒆−𝒊(𝝎𝒕+𝒌𝒙). 
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𝑬
                                                                                                                   (11) 

 

where 

 

𝝌𝝎
𝟐 =

{𝟏−𝟐𝒊𝝎𝝉−𝝎𝑬
𝟐𝝉𝟐}

(𝝎𝑬𝝉)𝟐   

 

     Using the solution of Eq. (11) together with (10) and (9) into (8) and using (7), we obtain the conductivity 𝝈(𝝎𝝉 )expression as 

𝝈(𝝎𝝉) = 𝝈𝟎(𝛚𝛕) + 𝝈′(𝛚𝛕). 
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Below, expressions are given for the electron conductivity 𝝈𝟎(𝛚𝛕), the hot-electron conductivity  𝝈′(𝛚𝛕), and the total 

conductivity 𝝈(𝝎𝝉). 

𝝈𝟎(𝛚𝛕) = 𝝈𝒐
𝟏−(𝝎𝑬𝝉)𝟐 

−𝒊𝝎𝝉

[(𝝎𝑬𝝉)𝟐 
−(𝝎𝝉)𝟐 

−𝟏+𝟐𝒊𝝎𝝉]((𝝎𝑬𝝉)𝟐 
+𝟏)

                                                                                          (12) 

 

𝝈′(𝛚𝛕) = {
𝜼𝝈𝒐[(𝟏+𝜼)−𝒊𝝎𝝉(𝟏+𝜼)−(𝝎𝑬𝝉)𝟐 

]

[(𝟏+𝜼)𝟐+(𝝎𝑬𝝉)𝟐 
][(𝝎𝑬𝝉)𝟐−(𝝎𝝉)𝟐 

−𝟏+𝟐𝒊𝝎𝝉]
} × [𝟏 −

𝝎𝑬𝝉

(𝝎𝑬𝝉)𝟐
 
  

+𝟏
]                                                                                (13) 

          

𝝈(𝝎𝝉) = 𝝈𝒐 (
𝟏−(𝝎𝑬𝝉)𝟐 

−𝒊𝝎𝝉

[(𝝎𝑬𝝉)𝟐 
−(𝝎𝝉)𝟐 

−𝟏+𝟐𝒊𝝎𝝉]((𝝎𝑬𝝉)𝟐 
+𝟏)

+ {
𝜼[(𝟏+𝜼)−𝒊𝝎𝝉(𝟏+𝜼)−(𝝎𝑬𝝉)𝟐 

]

[(𝟏+𝜼)𝟐+(𝝎𝑬𝝉)𝟐 
][(𝝎𝑬𝝉)𝟐−(𝝎𝝉)𝟐 

−𝟏+𝟐𝒊𝝎𝝉]
} × [𝟏 −

𝝎𝑬𝝉

(𝝎𝑬𝝉)𝟐
 
  

+𝟏
])         (14) 

 

Where 𝝎𝑬𝝉  = 𝒆𝒂𝑬𝝉 is dimensionless Bloch frequency (𝝎𝑬) and 𝝈𝒐 =
𝟖𝑰𝒏𝟐𝒆𝟐

ℏ

𝒌𝑻𝝉

ℏ
  

 

3. Results and Discussion  

 

 
Figure 1: Normalised real (a) and imaginary (b) components of the conductivity, 𝐑𝐞 (𝝈 𝝈𝟎⁄ )  and 𝐈𝐦  (𝝈 𝝈𝟎⁄ ), plotted as 

functions of the dimensionless frequency 𝛚𝛕 for graphene at injection rates 𝜼 = 𝟎, 𝟎. 𝟒, 𝟎. 𝟖, and  𝟑. 𝟏. 
 

The resulting plots of normalised real (Re) and imaginary (Im) components of the conductivity (𝝈 𝝈𝟎⁄ ) as a functions of the 

normalised frequency of the AC field (𝝎𝝉) reveal a pronounced frequency – dependent behaviour of the conductivity at different 

dimensionless hot electron injection rates (i.e., 𝜼 = 0 (without hot electrons), 0.4, 0.6, 3.1), as illustrated Fig. 1 (a) and Fig. 1 (b ).  

At sufficiently high injection rate (𝐢. 𝐞. , 𝜼 = 𝟑. 𝟏), an enhanced conductivity is observed, signifying an optimal regime for terahertz 

radiation generation. The results indicate that graphene with hot-electron injection constitutes an active medium for Bloch 

oscillations while remaining free from domain instabilities associated with negative differential conductivity arising from combined 

DC and High-frequency AC fields [30-31]. The corresponding three-dimensional representations are provided in Fig. 2 (a) and Fig. 

2 (b). 

 

 
Figure 2: Three-dimensional plots of (a) the normalised real conductivity,  𝐑𝐞(𝝈 (𝛚) 𝝈𝒐⁄ (𝛚))   and (b) normalised 

imaginary conductivity, (𝝈 (𝛚) 𝝈𝒐⁄ (𝛚)) , as functions of the dimensionless frequency 𝛚𝛕 and the hot electron injection 

rate 𝜼 in graphene. 
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4. Conclusion 

An explicit analytical expression for high-frequency conductivity has been derived for arbitrary hot–electron injection rates 

using a simplified tight-binding model coupled with the quasiclassical Boltzmann kinetic equation within the constant relaxation-

time approximation. It has been established that high-frequency conductivity exhibits strong sensitivity to the hot electron injection 

rate in graphene under DC- AC fields, reflecting the significant influence of non-equilibrium carrier dynamics on its transport 

behaviour.  These results suggest that controlled hot-electron injection provides an effective mechanism for modulating the high-

frequency response of graphene.  As a result, graphene-based systems incorporating hot electron injection are identified as promising 

candidates for advanced high-frequency and terahertz electronic applications. 
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