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1. Introduction

The electronic properties and electronic transport in graphene have been extensively examined in theoretical studies [1-24].
Nevertheless, the electrodynamic properties of graphene warrant further study, as they underpin the development of carbon-based
devices. As in other reports [20, 21, 24, 25], the kinetic transport equation was utilised to investigate the current-voltage (I — V)
characteristics and the high-frequency conductivity of graphene under hot-electron injection in an electric field, where the kinetic
equation is valid [24]. The Stark frequency smaller than the conduction-band gap was assumed [24]. In such a quasi-classical
scenario, both inter-band transitions and quantum mechanical corrections to the intra-band motion can be neglected. This ensures
the use of the semiclassical approach as in [24]. Additionally, the classical regime [26] is considered, in which the photon energy
A is much smaller than the Fermi energy Ey ,i.e., hw < Eg , ensuring the validity of the Boltzmann kinetic equation for electron
dynamics. Where  is the frequency of the photon and # is the reduced Planck’s constant. In this approach, scattering mechanisms
(Coulomb, short-range processes) and the screening effects in graphene are neglected, and a constant relaxation time () is assumed.

Despite extensive theoretical research on the electronic properties and transport phenomena of graphene [1-24], studies
addressing nonlinear electrical conductivity induced by high-frequency fields and hot-electron injection have received
comparatively little attention. The novelty of the present work lies in a semiclassical analysis of nonlinear transport in graphene
subjected to combined DC and high-frequency AC fields, incorporating hot-electron injection for advanced nanoelectronic device
applications.

2. Theory

Following the approach in [22-29], the motion of an electron is considered in the presence of a high-frequency electric field
E(t) with hot electron injection. The electric field E(t) is directed along the graphene growth axis (i.e., along the x axis), and the
conductivity is derived using the Boltzmann kinetic equation. Electron transport in graphene is described using distribution functions
within the simplest momentum-independent relaxation-time approximation, where 7 is assumed constant, equal to the electron
mean-free-path time [22-29]. In this case, the Boltzmann kinetic equations for the symmetric £ and antisymmetric f,, distribution
functions are expressed as [24, 27-29]:
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Where e is the electron charge, p is the electron dynamical momentum, F is the equilibrium distribution function and, f, and
f. are the symmetric and antisymmetric distribution functions, respectively. € is the hot electron pumping frequency;
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Q is the rate of injection of hot electrons; n, is the particle density; and p’ is the hot electron injection momentum. f is the
stationary homogeneous distribution function in the absence of a hot electron source. In the case of a constant electric field E, and
denoting the stationary distribution functionas g ° = g E, solving Eqg. (1) without the hot source yields,
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We shall consider the cases where &, = &', and §, # §' . The second case is vanished, and we obtain for §, = §'_, the
expression
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Here wg = eakF is the Bloch frequency
As in [29], in the presence of the hot source, the stationary homogeneous distribution function £, is given by foaf =
f.E + f4" and solving Eq. (1) for the constant electric field, we obtain,
r_ B_F NWET __ WET
fa =v de (1+n)2+wg?t? [1 w5212+1] (6)

Where n = % is the dimensionless hot electron pumping or injection rate parameter.

The electron spectrum in graphene is given by [22].

()| = £ 222 |p — py| @)

Where the tlght binding nearest-neighbour hopping parameter y, = 2.7 eV, b = 0.142 nm is the distance between the
neighbouring carbon atoms in the graphene. + and — signs are related to the conduction and valence bands, respectively. With pg
as the constant quasimomentum corresponding to the particular Fermi point.

The current density of the mobile electron in the first Brillouin zone for graphene is given by the expression [22];

. 2

Jx = Gz N vxfad® p ®)
and the quasiclassical velocity v, (p) of an electron moving along the graphene growth axis (i.e., along the x axis) can be expressed
as

a a
v.(p) = 5 = 25 = “grade ©
and writing
_ w2 ds
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ds is the element of the length of the curve.

The effects of combined direct current (DC) causing NDC and alternating current (AC) electric fields are now considered,
where the AC field has frequency w and wave—vector k. It is assumed that the AC field amplitude is much lower than the DC field
strength (E > E, ). Under this assumption, Egs. (1) are linearised using the perturbations

E(t) — (E + Ewyne—i(a)t+kx))’ fs — fg +f}e—i(a)t+kx)’and fa — ffl + ftlle—i(wt+kx)_

We have
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Using the solution of Eq. (11) together with (10) and (9) into (8) and using (7), we obtain the conductivity a(wT )expression as
o(wt) = 0°(w1) + 0’ (w1).
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Below, expressions are given for the electron conductivity ¢®(wT), the hot-electron conductivity ¢’ (wT), and the total
conductivity o(wT).
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2
Where wgt = eaEt is dimensionless Bloch frequency (wg) and a, = —SlnhZe %

3. Results and Discussion
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Figure 1: Normalised real (a) and imaginary (b) components of the conductivity, Re (a/0,) and Im (a/a,), plotted as
functions of the dimensionless frequency wt for graphene at injection ratesp = 0, 0.4,0.8,and 3.1.

The resulting plots of normalised real (Re) and imaginary (Im) components of the conductivity (o/a,) as a functions of the
normalised frequency of the AC field (wt) reveal a pronounced frequency — dependent behaviour of the conductivity at different
dimensionless hot electron injection rates (i.e., n = 0 (without hot electrons), 0.4, 0.6, 3.1), as illustrated Fig. 1 (a) and Fig. 1 (b).
At sufficiently high injection rate (i.e.,n = 3. 1), an enhanced conductivity is observed, signifying an optimal regime for terahertz
radiation generation. The results indicate that graphene with hot-electron injection constitutes an active medium for Bloch
oscillations while remaining free from domain instabilities associated with negative differential conductivity arising from combined
DC and High-frequency AC fields [30-31]. The corresponding three-dimensional representations are provided in Fig. 2 (a) and Fig.

2 (b).

Figure 2: Three-dimensional plots of (a) the normalised real conductivity, Re(o (w)/0, (w)) and (b) normalised
imaginary conductivity, (g (w)/a, (w)) , as functions of the dimensionless frequency wt and the hot electron injection
rate n in graphene.
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4, Conclusion

An explicit analytical expression for high-frequency conductivity has been derived for arbitrary hot—electron injection rates
using a simplified tight-binding model coupled with the quasiclassical Boltzmann kinetic equation within the constant relaxation-
time approximation. It has been established that high-frequency conductivity exhibits strong sensitivity to the hot electron injection
rate in graphene under DC- AC fields, reflecting the significant influence of non-equilibrium carrier dynamics on its transport
behaviour. These results suggest that controlled hot-electron injection provides an effective mechanism for modulating the high-
frequency response of graphene. As aresult, graphene-based systems incorporating hot electron injection are identified as promising
candidates for advanced high-frequency and terahertz electronic applications.
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