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1. Introduction 

The problem of fracture of materials in developed countries 

leads to annual losses close to 4% of the gross domestic 

product, as shown by statistics in the United States and the 

European community. Statistics on economic losses due to 

material fractures are difficult to compile in detail, but it is 

known that fractures, whether of materials or bones, have a 

significant cost. Corrosion, for example, is estimated to cost 

globally around $2.5 trillion, 3.4% of global GDP. [44]. 

The pioneers in the field of the strength of isotropic 

materials were Leonardo Da Vinci, Galileo Galilei and Robert 

Hooke, who proposed the hypothesis related to ultimate stress. 

He would later demonstrate, generalizing Galileo's concepts, 

that before breaking, a material goes through a series of states 

known as elasticity and plasticity. Cauchy and Navier formed 

the final theoretical formulation by proposing the constitutive 

equation, which was incorporated into Newton's second law 

previously developed by Euler, including two Lamé constants, 

related to Young's modulus and Poisson's modulus [34]. The 

study of anisotropy in materials dates back to the late 

nineteenth and early twentieth centuries with the study of the 

elastoplastic phenomenon [17]. 

Under this circumstance, and understanding that we have 

become more accurate in our operations by the computer finite 

element methodology based on Hooke's laws, but not more 

assertive to the knowledge of the elastoplastic phenomenon, 

the present work, proposes mathematical equations that model 

the deformation phenomenon in the elastoplastic transition of 

the solid. 

1.1 Background 

There was a break in the study of the anisotropy of 

materials from the mid 50's to the end of the 70's of the 20th 

centuries, which was subsequently resumed in the 90's. Thus, 

it could be stated that the strongest contribution is based on the 

work carried out by R. Hill (1948) [34], with his study of 

anisotropic plasticity [33]. However, Edelman R., Drucker 

D.C. (1951) present a detailed investigation of creep or loading 

criteria for strain hardening anisotropy materials[16]. The 

work of Atkinson, C., Clements D. L., (1977), relates to the 

analysis of constitutive equations in crack problems in 

anisotropic thermoelasticity [11]. Likewise, Harvery, S. J. 

(1985) uses an anisotropic plasticity approach to determine the 

plastic strains developed in two mechanical ratchet processes 

with tubes [31]. On the other hand, Kumar A., Samanta S.K., 

Mallick K. (1991) studied the change of orthotropy axes with 

consequent deformation to understand and interpret the 

subsequent creep behavior of metals. Based on Hill's 

hypothesis [40]. Likewise, Sadegh A.M., Cowin S.C. (1991) 

show, the six proportional invariants of an orthotropic elastic 

material using the elastic constants of spruce as a numerical 

example [51]. Ching S. Chang (1995), proposed an analysis of 

the Green's function for an elastic medium with general 

anisotropy [14]. For his part, G.A. Kardomateas (1995) 

proposed that, the equilibrium bifurcation of an orthotropic 

thick cylindrical sheet subjected to axial compression can be 

studied by an appropriate formulation based on the three-

dimensional theory of anisotropic elasticity [24]. On the other 

hand, G. de Botton (1996) studied large magnitude plane-strain 

deformation involving a compressible orthotropic solid 

subjected to a uniaxial compressive load along one of the 

principal directions [14]. For his part, H. Murakami. (1996), 

investigated the effect of anisotropy and constitutive coupling 

of stretch, bending and transverse shear deformation on the 

deflection of a beam [30]. Related to the effective stress and in 

the description of anisotropic damage deformation within 

the framework of continuum mechanics, G.Z. Voyiadjis 

(1997) defines a fourth order effective damage tensor [26]. On 

the other hand, Siguang Xu (1998) investigated the sheet 

forming limits using an anisotropic creep criterion, proposed 

by Hill (1993) [52]. Likewise, F. J. Montáns (2000) 
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formulated an anisotropic surface plasticity model with a 

deviatoric limit that preserves Masing's rule and an algorithm 

that considers the absence (or existence) of elastic range 

[20].On the other hand, Q. H. K. Truong and H. Lippmann 

(2001) analyzed isotropic and anisotropic hardening combined 

with plastic spin to describe the microstructural behavior of a 

polycrystalline metal in terms of continuum mechanics [49]. 

Likewise Bolke, A.Bertram, and E.Krempl (2003), developed 

a phenomenological model that accounts for the evolution of 

the elastic and plastic properties of fcc polycrystals. The 

anisotropic portion of the effective elastic tensor was modeled 

by a growth law, considering the dependence of the flow rule 

on the anisotropic part of the elastic tensor [55]. W. Tong, H. 

Tao, and X. Jiang (2004) present a simplified version of an 

anisotropic plasticity theory developed to describe the 

anisotropic flow behavior of orthotropic polycrystalline 

metallic films under uniaxial tension [58]. Similarly, C. 

Sansour, Kasaj and Soric (2007) developed a model and 

numerical algorithms that simulate the behavior of a material 

and the processes of forming and plastic deformation in 

general. [13]. Again, F. J. Montáns and M. A. Caminero (2007) 

briefly address the consistency of formulations for nested 

surface plasticity and their kinematic hardening translation 

rules, influenced by material anisotropy [19].  

The work of M. A. Caminero Torija, (2010) The aim was 

to develop several tasks to improve the predictions of 

anisotropic kinematic hardening and the description of the 

initial elastoplastic anisotropy for anisotropic plasticity at large 

deformations [43]. On the other hand, Neupane, S., Adeeb, S., 

Cheng, R., Ferguson, J. and Martens, M. (2012) in their work 

related to pipe design, emphasize that high strength steel (HSS) 

pipes present plastic anisotropy, which cannot be incorporated 

in the traditional isotropic hardening plasticity model [47]. 

Likewise, Gao, E., Jia, X., Shui, L. and Liu, Z. (2021), made 

an interesting contribution based on the anisotropic approach 

of the material [27]. Finally, Tiantian Li, Yaning Li (2022) 

explore the anisotropic elastic mechanical properties of a 

family of single-material chiral mechanical metamaterials. An 

integrated monoclinic-micropolar constitutive model is 

developed to quantify the anisotropic mechanical properties of 

chiral designs with different geometries [42]. 

Previous works are very useful to understand the 

phenomenon of anisotropic deformation, however, not so 

many studies were found to demonstrate it in pure materials 

such as copper and particularly the material chosen for this 

research, copper C18400. 

2. Mathematical Formulation 

Starting from the considerations of the change of the 

quantity of movement according to Newton. The equilibrium 

equation is obtained, which relates surface and body forces, 

without considering temperature [17]: 

 

                        
(1) 

The surface forces are determined from the constitutive 

equation . On the other hand, stress is not an isolated 

property, but is intrinsically related to the deformation of the 

material structure, and it has been shown that it can be 

represented as a second-order tensor from Hooke's law [20].     

 where   it is a transformation 

tensor that relates stress and unit strain. For an isotropic 

medium it is concluded that      

                      (2)  

where  y  are Lamé's constants [28]. The procedure for 

obtaining the Lamé constants is based on the fact that the 

material is anisotropic. By means of symmetry and orthotropy 

considerations, the transformation tensor which 

simplifies from eighty-one components to only two constants 

 and [15]. 

 

3. Experimentation. 

3.1 Selection of test material 

The selected experimental material is high copper alloy 

type C18400. This is a commercial alloy, in demand in the 

industry.  

3.2 Mechanical tests  

In order to carry out a study of resistance to deformation 

in materials from the point of view of anisotropy, it is 

necessary to make a stress-strain analysis in tension, 

compression and torsion. The machinery used in the 

experimentation are: Universal machine MTS 810.; Instron 

8500R.; Mitutoyo HR-350 hardness tester. The experimental 

procedure were standardized by ASTM standards [6], [3], [7], 

[8], [5], [9], [2], [1], [4], [29]. 

3.3 Characteristics of the mechanical tests. 

Boundary conditions of Mechanical tests. (See Table 1 

“Mechanical test conditions”) 

 

4. Mathematical Analysis of Results 

4.1 Obtaining the constants of Hooke's law 

The elastic properties do not remain invariant to the 

orientation of the coordinate axes, therefore, it is necessary to 

find the values of the constants of the generalized Hooke's law, 

at least up to the orthotropic matrix.It is necessary to start from 

the values of Lamé's constants as a function of the engineering 

constants of the analyzed material.  

 

Table 2. Orthotropy constants of Hooke's law 

No Constant  

(Hooke) 

Constant, according 

to research  

Value in Pa.  

1 C11 A 6.419 x 1010 

2 C22 B 6.419 x 1010 

3 C33 C 6.419 x 1010 

4 C44 D 1.706 x 1010 

5 C55 E 1.706 x 1010 

6 C66 F 1.706 x 1010 

7 C12 G 3.007 x 1010 

8 C21 H 3.007 x 1010 

9 C13 I 3.007 x 1010 

10 C31 J 3.007 x 1010 

11 C23 K 3.007 x 1010 

12 C32 L 3.007 x 1010 

 

The engineering constants obtained from the 

experimentation are: Poisson's Coefficient: = 0.319; Young's 

modulus: E = 4.501x 1010 Pa.; Shear modulus: G = 1.706 x 
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1010 Pa. Substituting the values of Young's modulus and 

Poisson's modulus gives the Lamé constants: =3.007x1010 

Pa  & =1.706x1010 Pa. The corresponding the Lamé 

constants for these values are shown in Table 2 of orthotropy 

constants of Hooke's law.  

With these values, the possibilities for predicting the behavior 

of copper increase considerably, since from the Lamé 

constants initially evaluated, it is translated into twelve 

constants. However, the anisotropic behavior cannot be 

predicted up to this point, since the transformation tensor is 

orthotropic. Nevertheless, it is a good approximation. 

4.2 Characterization of stress-strain curves. 

It was decided to characterize the curves of the elastic zone 

and the plastic zone separately in both tests and the 

approximations are the following:  

For the elastic zone in compression,  Figure 1.        

                         (3) 
And for plastic zone in compression,  Figure 2.     

               (4) 

 
Figure 1. linear approximation in the elastic zone 

compression test. 

 

 

Figure 2. Quadratic approximation for plastic zone 

compression test. 

For the elastic zone in tension, figure 3. we have  

                           (5) 

For the plastic zone in tension, figure 4. we have     

                                          (6) 

 

 
Figure 3.  Elastic zone tension test. Linear approximation. 

 

 
 

Figure 4.  Plastic zone tension test. Linear approximation. 

 4.3 yield stress.    

The yield stress for the tension and compression cases was 

obtained from the union of the two characteristic functions 

found corresponding to elasticity and plasticity. The criterion 

for joining both functions (elasticity and plasticity) in both 

deformation processes (tension and compression) was derived 

from the functions and their corresponding approximation 

equations, with a correlation coefficient closer to unity. The 

elastic limit corresponding to compression, by experimentation 

is the one with a unit strain equal to 2.2379x10-2 and a 

corresponding stress equal to 20,072.57 Pa. The 

theoretical limit of elasticity in compression is                    

             (7)        

The explained error of both limits for compression is 11.9 % 

for  and 6.45 % for, ,  Figure 5. The tensile yield strength 

of the copper studied in the experiment is defined by a value of 

5.91 x 10-3 as unit strain and a stress of 2.66 x 108 Pa. 

The values where the two functions meet at tension are:             

              (8)

               

The explained error for this case was 3.38 % for   and 12.9 

% for , Figure 6. 
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Figure 5. The figure shows the elastic, theoretical and real 

limits found for pure copper in the compression test. 

 

 

Figure. 6. The figure shows the elastic, theoretical and real 

limits found for pure copper in the tensile test.   

 

5. Mathematical Modeling 

This model is developed from the expression of change of 

quantity of motion expressed by Newton, in which the stress 

tensor is found . This tensor is related to the unit strain 

produced by the stress. The relationship found is the model that 

explains the behavior of the displacement as a function of the 

stress-preferential axis, which relates the unit strain of the 

deformation process in the elastic and plastic zones of the 

tension and compression phenomena by means of a single 

expression.   

Based on the theory for continuous media [17], the 

following relation is the force balance equation in relation to 

the studied phenomenon. 
 

𝝈𝒊𝒋,𝒊 = 𝝆(
𝝏𝟐𝒖𝒋

𝝏𝒕𝟐 +
𝝏𝒖𝒊

𝝏𝒕

𝝏

𝝏𝑿𝒊
(

𝝏𝒖𝒋

𝝏𝒕
))𝝈𝒊𝒋.𝒊 = 𝝆 (

𝝏𝟐𝒖𝒋

𝝏𝒕𝟐 +
𝝏𝒖𝒊

𝝏𝒕

𝝏𝟐𝒖𝒋

𝝏𝑿𝒊𝝏𝒕
)

                          

                                                                                                       (9) 
 

On the other hand, the approximation equations found in 

point 4 have a similar form to: 

                            (10) 

It is established as an important hypothesis that the 

deformation is corresponding to the elongation of the 

specimens in the experimental process: 

                                                              

(11) 

Since, the displacement is intrinsically related to the unit 

strain of the material in each of the tests performed. By taking 

the partial of equation (9) as a function of the Z-axis, we obtain: 

                                              

(12) 

As “u” is assumed continuous, it is possible to use Shwarz's 

equality: 

   
𝝏𝟐𝒖

𝝏𝒛𝝏𝒕
=
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Similarly, and from (10): 
𝝏𝝈
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𝝏𝒛
;    𝒔í      𝜺 =

𝝏𝒖

𝝏𝒛
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(15) 

Equating (14) and (15), neglecting the higher order terms, 

the final equation (which is a wave equation) remains:  

                                      

(16) 

The boundary conditions are as follows: 

                  

(17)

 
   

being the initial conditions: 

                   
(18)  

Based on the boundary conditions, the initial conditions, 

the corresponding variable changes and the five-step method; 

integrating the phenomenon in the interval from “0 to L” 

equation (16) is solved as follows: 
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                                                                                           (19) 

 

therefore, from equations 11 and 19, we have: 

 

                      

                                                                                           (20) 

 

  This last relation is the model that explains the behavior 

of the displacement as a function of the preferential z-axis. In 

addition, it relates the unit strain of the deformation process in 

the elastic and plastic zones of the two phenomena of tension 

and compression respectively. 

 

6. Analysis and calculations of the mathematical model.  

The mathematical model suggested in the research was 

tested with the following boundary conditions: a) Length of the 

specimen: 0.175m; b) Density of pure copper: 8931.66 

kgm/m3; c) Test time: up to 600-900 seconds. Also, to 
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determine the value of the constant of the equation to be used 

in each analysis, it was necessary to consider that the 

deformations are small and therefore, the quadratic or cubic 

terms are disregarded and only the values of the constant that 

is related to the linear terms of each approximation equation 

are taken (3,4,5,6). 

6.1 Values of the mathematical model for the compression 

process. 

In this analysis, the test was taken up to a time of 1080 

seconds. The time variation was taken as a function of the 

experimental test, since the amount of data obtained in the 

actual deformation of the specimen is directly proportional to 

the time in which the test is carried out. In the case of the 

compression phenomenon, the elastic part has a considerable 

deformation time, so small time intervals from 0 to 60 seconds 

were left. After this time, the intervals were taken in periods of 

60 seconds. The frequency of model testing was equal to the 

number of times required, because it depends on the intervals 

where the model acquires data or intervals characteristic of the 

elastoplastic phenomenon function. In this case the frequency 

is equal to 24 runs. 

The iteration is the value of n stated in equation (20), this 

being the value of the number of summations performed and 

denotes the increase of the function in the deformation process. 

This value gives valuable information since the function is a 

wave equation where many values obtained are cyclic.  The 

maximum value of n in this calculation was 109 and the 

minimum was 0. 

The experimentation shows how the material deforms 

before the imminent effort that supports the material product 

of a surface force. With the model suggested in the research, it 

is intended to find the way in which the material would behave 

without the need to physically perform the corresponding test. 

This is the reason why it is necessary to compare the data 

obtained in the model and those obtained through 

experimentation. For this purpose, the model data were plotted 

against the experimental data and the standard deviation of the 

values obtained was calculated.  

It is notoriously observed that the data obtained in the 

suggested model are close to the real ones obtained by 

experimentation, Figure 7, where the suggested equation (20) 

perfectly models the elastoplastic phenomenon in the 

compression deformation process. 

 
Figure 7. Comparative graph of the real values obtained in the 

experimentation, against the values calculated by the 

mathematical model. Compression test. 

 

 

6.2 Values of the mathematical model for the tension 

process. 

In this analysis, 22 frequencies with strain values of the 

order between 5.65x10-4 and 2.44x10-1 were performed, these 

values correspond to the interval found in the average stress-

strain curve in compression. The stress was calculated by the 

approximation curves obtained previously.The comparison of 

the data obtained in the model and by experimentation is 

shown in the graphs in Figures 8 and 9. Both curves represent 

the elastoplastic phenomenon in tension, the difference lies in 

the fact that one is the average curve of 23 specimens broken 

in the experiment (Fig. 8) and the other is the curve of 

specimen 17, which recorded the maximum stress performed 

(Fig. 9).  

The mathematical model suggested in the investigation 

accurately calculates the elastic behavior, crosses the yield 

point and models with good approximation the change of 

direction of the curve in the elastoplastic transition zone. 

However, when the plasticity of the material is more evident, 

the graph of equation (20) projects linearly and increases 

progressively away from the real stress-strain curve obtained 

experimentally (Fig. 8 and Fig. 9). 

 
Figure8. Comparative graph of the real values obtained in the 

experimentation, against the values calculated by the 

mathematical model in the tensile deformation process. The 

graph shows the average experimental stress-strain curve.                              

 
Figure 9. Comparative graph of the real values obtained in the 

experimentation, against the values calculated by the 

mathematical model in the tensile deformation process. The 

graph shows the experimental stress-strain curve for 

specimen 17, which records the maximum stress 

 

This sudden variation of the model, with respect to the real 

curve, generates doubts about its application in tensile 

deformation processes. However, even with these differences 

in the model, it behaves in a stable manner in the elastic zone, 

and also describes the characteristic curve and therefore the 

transition process from the elastic to the plastic zone. 
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Conclusions.  

Modeling the elastoplastic phenomenon from the point of 

view of anisotropy is possible. Since equation (20) obtained is 

the model that explains the behavior of the displacement as a 

function of the preferential z-axis. In addition, it relates the unit 

strain of the deformation process in the elastic and plastic 

zones of the two phenomena of tension and compression 

respectively. This expression, when modeled and compared 

with experimental data, shows excellent performance in 

compression and medium performance in tension. The 

fundamental reason for this is that in the compression 

deformation process the granular structure is compacted. That 

is, compressed in such a way that the propagation of the 

perturbation resulting from the deformation is not altered and 

the propagation velocity remains constant. On the other hand, 

in the tension process, the granular structure is totally 

deformed, thus generating that the propagation of the 

perturbation, product of the deformation, is altered and as a 

consequence the propagation velocity of the same is altered.  

Future work will be aimed at testing the model with other 

materials, after improving it in the tension process, in order to 

better model the elastoplastic phenomenon in the deformation 

phenomenon of the material. 

 

Table 1. Mechanical test conditions. 
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