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Introduction 

 Choi [1] introduced the term nanofluid. The term nanofluid refers to the suspensions of nanoscale particles in the base fluid. Due 

to their potential for high rate of heat exchange incurring either little or no penalty in the pressure drop, they have attracted enormous 

interests from researchers. The convective heat transfer characteristics of nanofluids depends on the thermo-physical properties of the 

base fluid and the ultra fine particles, the flow pattern and flow structure, the volume fraction of the suspended particles, the 

dimensions and the shape of these particles. Kumar et al. [2] established the utility of a particular nanofluid for a heat transfer 

application by suitably modeling the convective transport in the nanofluid. The particles are different from conventional particles 

(millimeter or micro-scale) in that they stay in suspension in the fluid and no sedimentation occurs.  

 On the “magic” power of nanoparticles, many exciting new phenomena and results have been reported since the dawn of 

nanotechnology in the early 1990s of last century. Similar excitement can be seen in the area of nanofluids. The abnormal thermal 

conduction of a fluid comprising nanoparticles, effective diffusion of nanoparticle have been reported through the cells of live bodies, 

super magnetism and quantum dots effect of nanoparticles. 

 During the last few decades, because of the wide range of applications of the double diffusive convection in porous media has 

attracted considerable interest from the solidification of binary mixtures to the migration of solutes in water-saturated soils. 

Geophysical systems, electro-chemistry, and the migration of moisture through air contained in fibrous insulation are some other 

important areas of applications.  

Instabilities can occur only if one of the components are destabilizing in a system where two diffusing properties are present. The 

relation between the fluxes and the driving potentials are of more intricate in nature, when the heat and mass transfers occur 

simultaneously in a moving fluid. It can be found that an energy flux is generated not only by temperature gradient but also by 

composition gradients. Dufour or diffusion-thermo effect may be referred to as the energy flux caused by a composition gradient, 

while the mass fluxes created by temperature gradients are termed as Soret or thermal-diffusion effect. However, the situation will be 

quite different if the cross-diffusion terms are included in the species transport equations. Each property gradient has a significant 

influence on the flux of the other property, owing to the cross-diffusion effects. 

 On the phenomena of double diffusive convection in porous media, the earlier studies were all mainly concerned with the 

problem of convective instability in a horizontal layer heated and salted from below. On the basis of linear stability theory for various 

thermal and solutal boundary conditions, Nield [3] was the first person who undertook the study of double diffusive convection in 

porous media. Nield’s analysis was by extended by Taunton et al. [4] and they considered the salt-fingering convection case in a 

porous layer. The linear and nonlinear stability analysis was applied by Rudraiah et al. [5] and they found that the subcritical 

instabilities would be possible in the case of a two-component fluid in a porous medium. Poulikakos [6] carried out the linear stability 

analysis of the thermosolutal convection using the Darcy-Brinkman model. The onset of double diffusive convection in a binary 

viscoelastic fluid layer was investigated by Malashetty and Swamy [7]. The onset of double diffusive convection in a binary Maxwell 

fluid saturated porous layer with cross-diffusion effects was studied by Malashetty and Biradar [8]. The double diffusive convection in 

a rotating anisotropic porous layer saturated with a viscoelastic fluid was studied by Malashetty et al. [9]. 

 For nanofluid, the double-diffusive convection in a horizontal porous medium was studied by Kuznetsov and Nield [10], Yadav et 

al. [11] and Agarwal et al. [12]. In all those studies, the thermo physical properties of nanofluids such as viscosity, thermal 
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conductivity and specific heat were taken as a constant, but the experimental results have shown that these quantities are not constant 

and strongly depend on the volume fraction of nanoparticles [13]. The effect of the variation of these quantities with volumetric 

fraction of nanoparticles on the onset of convection has been studied by only few researchers. Nield and Kuznetsov [14] and Yadav et 

al. [15] studied the onset of convection in a layer of a porous medium saturated by a nanofluid under the effect of conductivity and 

viscosity variations. The consequence of these factors is to increase the critical value of the Rayleigh number. The extension to the 

double diffusive case was made by Yadav et al [16]. 

 Quite recently non-Newtonian fluids housed in fluid-based systems, with and without porous matrix, have been extensively used 

in application situations and hence warranted the attention they have been duly attracted. It is well known now that viscoelastic 

behavior is an important rheological process in the asthenosphere and the deeper mantle. Flow through composites, timber wood, 

snow system and rheology of food transport are some other application areas of viscoelastic fluid saturated porous media. 

Although the problem of double diffusive convection has been extensively investigated for Newtonian nanofluids, but with growing 

importance of non-Newtonian fluids with suspended particles in modern technology and industries, the investigations of such fluids 

are desirable. The study of such fluids has applications in a number of processes that occur in industry, such as the extrusion of 

polymer fluids, solidification of liquid crystals, cooling of metallic plate in a bath, exotic lubrication, and colloidal and suspension 

solutions. Also, the flow of non-Newtonian fluids in a porous medium is of considerable importance in various areas of science, 

engineering, and technology, for example, in the material processing, petroleum, chemical engineering, nuclear industries, geophysics, 

polymer engineering, oil reservoirs engineering, and bio-rheology [17]. The above literature review reveals that double-diffusive 

convection in a porous medium layer saturated in a Maxwell nanofluid with variable viscosity and conductivity is unsolved. Therefore 

the main objective of the present work is to study the effect of thermal conductivity and viscosity on the onset of double-diffusive 

convection in a horizontal porous medium saturated with a Maxwell nanofluid. 

Analysis 

Conservation equations 

We select a coordinate frame in which the z-axis is aligned vertically upwards. We consider a horizontal layer of fluid confined 

between the planes z*= 0 and z* = H. Asterisks are used to denote dimensional variables. Each boundary wall is assumed to be 

perfectly thermally conducting. The temperatures and concentrations at the lower and upper boundaries are taken to be * *

0T T , 

* *

0C C , *

0T , and *

0C , respectively. The Oberbeck Boussinesq approximation is employed. In the linear stability theory being 

applied here, the temperature change in the fluid is assumed to be small in comparison with *

0T . The mass conservation equation takes 

the form 
* * 0D  v                                                                                   (1) 

Here  * * * *, ,D u v wv  is the nanofluid Darcy velocity.  

In the presence of thermophoresis, the conservation equation for the nanoparticles, in the absence of chemical reactions, takes the 

form 

1
D B T

T
D D

t T


 



  
    

 

  
      

  
v

,                                (2)  

where    is the nanoparticle volume fraction,   is the porosity, T  is the temperature, 
BD  is the Brownian diffusion coefficient, 

and 
TD  is the thermophoretic diffusion coefficient. 

If one introduces a buoyancy force, adopts the Boussinesq approximation, and uses the Darcy model for a porous medium, then the 

momentum equation can be written as 

 
*

*

1 1 D* * *
1 1 g

effD p
t t t K

      
         

      

v
v


  



.                               (3) 

Here   is the overall density of the nanofluid, which is given by 

     * * * * *

p 0 T 0 01 1 CT T C C              
 

,                   (4) 

where C  is the concentration, 
p

 is the particle density, 
0

 is a reference density for the fluid, 
T

 is the thermal volumetric 

expansion coefficient and 
C

 is the analogous solutal coefficient. The thermal energy equation for a nanofluid can be written as  

     
* * * *

* * *2 * * * *

D B T *p
0

*2

mm f
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T T T
c c T k T c D T D
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 
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

   
        

  

 

v
,            (5) 

where c is the fluid specific heat (at constant pressure), 
mk  is the overall thermal conductivity of the porous medium saturated by the 

nanofluid, 
pc is the nanoparticle specific heat of the material constituting the nanoparticles, 

TCD  is a diffusivity of Dufour type.  

To this we add a conservation equation for the solute of the form 
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*
* * * *2 * *2 *

*

1
D Sm CT

C
C D C D T

t 


     


v

,                   (6) 

where 
S mD is the solutal diffusivity for the porous medium and 

CTD  is a diffusivity of Soret type. It has been assumed that the 

nanoparticles do not affect the transport of the solute. 

Thus, 

(1 )m eff sk k k    ,                                                             (7) 

where   is the porosity, 
effk  is the effective conductivity of the nanofluid (fluid plus nanoparticles) and 

sk  is the conductivity of the 

solid material forming the matrix of the porous medium. 

Following Tiwari and Das [18], we adopt the formulas for the viscosity and the conductivity with dependence on nanoparticle 

fraction, based on the theory of mixtures, as: 

* 2.5

1

(1 )

eff

f



 




,                                                                  (8) 

*

*

( 2 ) 2 ( )

( 2 ) ( )

eff p f f p

f p f f p

k k k k k

k k k k k





  

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.                                                     (9) 

Here 
fk  and 

pk  are the thermal conductivities of the fluid and the nanoparticles, respectively. 

We note that Eq. (8) has been obtained by Brinkman [19] and Eq. (9) is the Maxwell-Garnett formula for a suspension of spherical 

particles that dates back to Maxwell [20]. In the case that *  is small compared with unity, we can approximate these formulas by: 

*1 2.5
eff

f





 

  and    *

*

*

( 2 ) 2 ( ) ( )
1 3

( 2 ) ( ) ( 2 )
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f p f f p p f

k k k k k k k

k k k k k k k






   
  
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.                 (10) 

We assume that the temperature and the volumetric fraction of the nanoparticles are constant on the boundaries. Thus the boundaries 

conditions are 
* * * * * * * * *

0 0 00,  ,  ,  w T T T C C C         at * 0z  ,                       (11a) 

* * * * * * *

0 0 10,  ,  ,  w T T C C       at *z H .                                         (11b) 

The dimensionless variables are introduced as follows:  

* * * * 2( , , ) ( , , ) / , /mx y z x y z H t t H   , * * * *( , , ) ( , , ) / , /m f mu v w u v w H p p K    ,  

* * * *

0 0

* * *

1 0

,  
T T

T
T

 


 

 
 

 

, * *

0

*

C C
C

C






,                                                                                     (12)  

where ( )
,

( ) ( )

p mm
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. We also define 
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f

k
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

.                                                                                  (13) 

From Eqs. (7), (10) and (13), we have: 
* * *

0 1 01 2.5[ ( )]        , 
* * *

0 1 0

1
1 3[ ( )] (1 )

2

p

s

p

k
k k

k
     
  

      
  

.               (14) 

Then Eqs. (1) and (3) together with Eqs. (2), (4), (5) and (11) take the form: 

0 v                                                                                      (15) 

 1 / 0a z T z z zp Rme Ra Te Rs Le Ce Rn e
t t

   
   

         
   

v
v

              (16) 

2 2B A B
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T k T T T T N C

t Ln Ln



           
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                      (17) 

2 21 1 1
CT
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C C N T

t Le 


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
v

             (18) 
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                                                  (19) 
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 0,  1, 1,  0 0w T C at z     , 0,  0,  0,  1 at 1w T C z                         (20) 

Here 
1

2
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
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m
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



. 

The parameter   is the relaxation parameter (which is also known as the Deborah number), 
a

 is the non-dimensional acceleration 

coefficient, Ln  is a thermo-nanofluid Lewis number, Va  is the Vadász number, 
TRa  is the familiar thermal Rayleigh-Darcy 

number, Pr is the Prandtl number, Da is the Darcy number, Rs is the thermo-solutal Rayleigh number. The new parameters Rm and Rn 

may be regarded as a basic-density Rayleigh number and a concentration Rayleigh number, respectively. The parameter 
AN  is a 

modified diffusivity ratio, 
BN  is a modified particle-density increment and Le is the familiar thermo-solutal Lewis number. The 

Deborah number is a dimensionless number used in rheology to characterize how fluid and material will be. The smaller the Deborah 

number, the more fluid the material appears. The parameter   that relates to the relaxation time to the thermal diffusion time is of 

order one for most viscoelastic fluids. The value for Deborah number for dilute polymeric solution falls most likely in the range [0.1, 

2]. At present, there are no experimental data available for comparison and, therefore, we have considered a wide range of values for 

the parameters. The Prandtl number affects the stability of the porous system through the combined dimensionless group known as 

Vadász number. The Vadász number is also known as Darcy-Prandtl number in the literature. 

In the spirit of the Oberbeck–Boussinesq approximation, Eq. (16) has been linearized by the neglect of a term proportional to the 

product of   and T. This assumption is likely to be valid in the case of small temperature gradients in a dilute suspension of 

nanoparticles. 

Basic solution 

We seek a time-independent quiescent solution of Eqs. (15)-(20) with temperature, concentration and nanoparticle volume fraction 

varying in the z-direction only, that is a solution of the form: 

0, ( ), ( ), ( ), ( )b b b bp p z T T z C C z z     v                                                        (21) 

Eqs. (16)-(19) reduce to: 

 0 /b
T b b b

dp
Rm Ra T Rs Le C Rn

dz
     

,                                       (22) 

22 2

2 2
0b b b b bB A B

T C

d T d dT dT d CN N N
k N

dz Ln dz dz Ln dz dz

  
    

 

,                               (23) 

2 2

2 2

1
0b b

CT

d C d T
N

Le dz dz
 

,                                                (24) 

2 2

2 2
0b b

A

d d T
N

dz dz


 

.                                                                      (25) 

According to Buongiorno [21], for most nanofluids investigated so far  1 0Ln     is large, of order 510 - 610 , and since the 

nanoparticle fraction decrement is typically no smaller than 310 , this means that Ln is large, of order 210 – 310 , while 
AN  is no 

greater than about 10. Using this approximation, the basic solution is found to be: 

zTb 1 , 1bC z   and so 
b z                                                                           (26) 

 

Perturbation solution 

We now superimpose perturbations on the basic solution as: 

'v v , 'bp p p  , 'bT T T  , 'bC C C  , 'b    .                                               (27) 

On substituting Eq. (27) into Eqs. (13)-(19), and linearized by neglecting products of primed quantities. The following equations are 

obtained when Eq. (26) is used. 

' 0 v                                                                                        (28) 

 1 ' ' / ' ' ' 0a T z z zp Ra T e Rs Le C e Rn e
t t

   
   

         
   

v
v

                      (29) 
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2 22' ' ' '
' ' 'B A B

T C

N N NT T T
w k T N C

t Ln z z Ln z

    
        

    

                           (30)  

2 21 ' 1 1
' CT

C
w C N T

t Le 


     



                                                        (31)  

2 21 ' 1 1
' 'AN

w T
t Ln Ln




 


    



                                                          (32)  

' 0w  , ' 0T  , ' 0C  , ' 0   at 0z  and 1z  .                                                             (33) 

Now we can approximate the viscosity and conductivity distributions by substituting the basic solution expression for  , namely that 

given by Eq. (26) into Eq. (14), and obtain 

* * *

0 1 0( ) 1 2.5 ( )z z        
,  

 * * *

0 1 0

1
( ) 1 3 (1 )

2

p

s

p

k
k z z k

k
    
             

.       (34) 

It will be noted that the parameter Rm  is just a measure of the basic static pressure gradient and is not involved in the present and 

subsequent equations. 

We now recognize that we have a situation where properties are heterogeneous. These are now the viscosity and conductivity (rather 

that the more usual ones, namely permeability and conductivity) and we can now proceed as in a number of papers surveyed by Nield 

[22]. We assume that the heterogeneity is weak in the sense that the maximum variation of a property over the domain considered is 

small compared with the mean value of that property.  

The seven unknowns u , v , w , p , T , 'C      and  can be reduced to four by operating dot product of curl curl of Eq. (29) with 
ze  

and using the identity 2( ) ( ) ( )    together with Eq. (28) and the weak heterogeneity approximation. The result is 

       2 ' 2 2 21 ( ) 1 / 'a T H H Hs s z w s Ra Rs Le C Rn              ,                      (35) 

where 2 2 2 2/H z     is the horizontal Laplacian operator and s will be given later.  

The thermal convection system composed of Eqs. (35), (29)-(32) and boundary conditions (33) constitutes a boundary-value problem 

that can be solved using the method of normal modes. 

We write 

     ',  ',  ',  ' ( ), ( ), ( ), ( ) expw T C W z z z z st ilx imy                                         (36) 

and substitute above into the thermal convection system to obtain 

         

 

2 2 2 2

2

( ) 1 1 1 /

        1 0,

a Tz s s D W s Ra s Rs Le

s Rn

       

 

       

   

            (37) 

   2 2 2 22
( ) 0B A B B

TC

N N N N
W k z D D D s D N D

Ln Ln Ln
 

 
          
 

,            (38) 

 2 2 2 21 1 1
0CTW D s N D

Le
 

 

 
       

 

,                                        (39) 

   2 2 2 21 1 1
0AN

W D D s
Ln Ln

 
 

 
       

 

,                             (40) 

0,  0,  0,  0W        at 0z   and 1z  ,                                                                 (41) 

where s is perturbation growth rate which is in general complex,  

dz

d
D 

 and 2 2 1/ 2( )l m    is the single horizontal wave number.                                  (42) 

We now employ a Galerkin-type weighted residuals method to obtain an approximate solution to the system of Eqs. (37)-(41). We 

choose the trial functions (satisfying the boundary conditions) ,  ,  ,  ; 1,2,3p p p pW p     and write 

1

N

p p

p

W A W



, 

1

N

p P

p

B


  
, 

1

N

p p

p

C


 
, 

1

N

p P

p

D


  
                                         (43) 

Substituting Eq. (43) into Eqs. (37)-(41) and making the expressions on the left-hand sides of those equations (the residuals) 

orthogonal to the trial functions, thereby we obtain a system of 4N linear algebraic equations in the 4N unknowns ,  ,  p p pA B C and 
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pD , p =1, 2, . . . N. The vanishing of the determinant of coefficients produces the eigenvalue equation for the system. One can regard 

TRa  as the eigenvalue. This enables us to find 
TRa  in terms of the other parameters. 

Trial functions satisfying the boundary condition (41) can be chosen as 

sinp p p pW p z       ; p = 1, 2, 3, … N.           (44) 

The eigenvalue equation is 

det M = 0                                                                                          (45) 

where 

  
11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

M M M M

M M M M
M

M M M M

M M M M

 
 
 
 
 
  

                                                                        (46) 

and for i, j = 1, 2, …, N 

           

   

    

   

 

     

 

2 2

11

2

12

2

13

2

14

21

2 2

22

2 2

23

1 1 ,

1 ,

1 / ,

1 ,

,

2
,

a j i a j iij

T j iij

j iij

j iij

j iij

A B B
j i j i j i j iij

TC j i TC jij

M z s s W D W z s s W W

M s Ra W

M s Rs Le W

M s Rn W

M W

N N N
M k z D k z s D

Ln Ln

M N D N

      

 

 

 





      

   

   

  

  

 
              

 

      

 24

,

,

i

B
j iij

N
M D

Ln
  

 

 

 

 

31

2 2

32

2 2

33

1
,

,

1
,

j iij

CT i j CT i jij

j i j i j iij

M W

M N D N

s
M D

Le








  

      

 
          

 

 

 

 

   

 

   

34

41

2 2

42

43

2 2

44

0,

1
,

,

0,

1
,

ij

j iij

A
j i j iij

ij

j i j i j iij

M

M W

N
M D

Ln

M

s
M D

Ln










  

     



        

       

   2 2

32 CT j i CT i jij
M N D N       .  Here 

   
1

0

.f z f z dz 
                                    (47) 

               

In the present case, where viscosity and conductivity variations are incorporated, the critical wave number is unchanged and the 

stability boundary becomes 
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 

    

 

 

1

2

3

2

1 1

1

1

1

1

TC
T

TC CT a

CT

JN J s s J s
Ra J

s Ln Le Ln

J s J s s J s
J J J N N s s

Le Ln Ln

Rs J s J s J s
s JN

Le Ln Ln

s

     


  

  

 


  





     
         

      

      
              

      

     
          

     

 2 CTA A
TC

JNN J N Js J s s
Rn J J JN ,

Le Ln Le Ln




    

       
            

        

         (48) 

where 
2 2( )J    ,  * *

1 01 1.25       * *

1 03 1
(1 )

2 2

p

s

p

k
k

k

  
  

  
     

  

                  (49) 

We observe that when there is no conductivity variation (that is 1,  as when 1sk  and 1)pk   the effect of viscosity variation 

is to increase the critical Rayleigh number by a factor  . The additional effect of conductivity variation   is expressed by Eq. (49). 

When 1sk  , the maximum value of   is (2.5  * *

1 0  ) attained when 1  and 
pk  . It is worth noting that the factor 

 comes from the mean value of  z  over the range [0,1] and the factor   is the mean value of  k z  over the same range. When 

evaluating the critical Rayleigh number, it is a good approximation to base that number on the mean values of the viscosity and 

conductivity based in turn on the basic solution for the nanofluid fraction.  

Linear Stability Analysis 

Stationary Mode 

 For the validity of principle of exchange of stabilities (i.e., steady case), we have s = 0  . ., 0r i r ii e s s is s s      at the 

margin of stability. The most unstable mode corresponds to 1N   (the fundamental mode). Then the Rayleigh number for 1N   at 

which marginally stable steady mode exists becomes, 

     

   

1

3

2

2
2

1 1

           

           

St TC
T TC CT

A
CT

A
TC

JN J J J J J
Ra J J J J N N

Ln Le Ln Le Ln Ln

N JRs J J J J
JN Rn J J

Le Ln Ln Le Ln Le

N J
JN




 

  


 


           

              
           

       
           

        

 CTJN
.

Ln 

 
  

 

         (50) 

In the case of double diffusion in a regular fluid, when 1  , ,TC CTN N and 
AN  are all zero, Eq. (50) reduces to 

0

St

TRa Rs R ,   

where ( 2

0 4 39 48R .   with 3 14c .   ) which is the same as obtained by Nield [3]. The stationary boundary does not 

depend on the value of Pr. 

Oscillatory Mode 

We now set 
is i , where 

i
 is real, in Eq. (48) and clear the complex quantities from the denominator to obtain 

1 2TRa i                                                                                          (51) 

For oscillatory onset 
2 0    0i  and this gives a dispersion relation of the form (on dropping the subscript i) 

   
2

2 2

1 2 3 0b b b   
                           (52) 

Now Eq. (48) with 
2 0   gives 

 2

0 1 2

Osc

TRa a a a                            (53) 

where 
1 2,  ,b b  

3b  and 
0 1,  ,a a  

2a , and 
1  and 

2 are not presented here for brevity. 

We find the oscillatory neutral solutions from Eq. (53). It proceeds as follows: First determine the number of positive solutions of Eq. 

(52). If there are none, then no oscillatory instability is possible. If there are two, then the minimum (over 2a ) of Eq. (53) with 
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2 given by Eq. (52) gives the oscillatory neutral Rayleigh number. Since Eq. (52) is quadratic in 2 , it can give rise to more than 

one positive value of 2  for fixed values of the parameters Rn, Ln, , , , , ,A aN      and  . However, our numerical solution of 

Eq. (52) for the range of parameters considered here gives only one positive value of 2  indicating that there exists only one 

oscillatory neutral solution. The analytical expression for oscillatory Rayleigh number given by Eq. (53) is minimized with respect to 

the wave number numerically, after substituting for 2 (> 0) from Eq. (52), for various values of physical parameters in order to 

know their effects on the onset of oscillatory convection. 

 

4. Non-Linear Stability Analysis: 

For simplicity, we consider the case of two dimensional rolls, assuming all physical quantities to be independent of y. On eliminating 

the pressure and introducing the stream function, we obtain: 

        21 1 1 1 0a T

T Rs C S
s s s Ra s s Rn

x Le x x
     

   
          

   

            (54) 

 

 
2 2

,

,
TC

TT
T N C

t x x z


  
     

  

                                                      (55) 

2 21 1 1 1 ( , )

( , )

ANS S
S T

T x Ln Ln x z  

   
     

  

                                           (56) 

2 21 1 1 1 ( , )

( , )
CT

C C
C N T

T x Le x z  

   
     

  

                                           (57) 

We solve Eqs. (54)–(57) subjecting them to stress-free, isothermal, iso-volume fraction iso-concentration boundary conditions: 
2

2
0T S C

z





    


 at z = 0, 1.                                                                                  

To perform a local non-linear stability analysis, we take the following Fourier expressions: 

     
1 1

m n

n m

A t sin m x sin n z  
 

 


,                                                                               

   
1 1

( )cos
m n

n m

T B t m x sin n z 
 

 


,                                                                                 

1 1

( )cos ( ) ( )
m n

n m

S C t m x sin n z 
 

 


,                                                                               

1 1

( )cos ( ) ( )
m n

n m

C D t m x sin n z 
 

 


,                                                                                        (58) 

Further, we take the modes (1, 1) for stream function, and (0, 2) and (1, 1) for temperature,  nanoparticle volume fraction and 

concentration, to get 

11( ) ( ) ( )A t sin x sin z   ,                                                                                                        

11 02( )cos( ) ( ) ( ) (2 )T B t x sin z B t sin z    ,                                                                              

11 02( )cos( ) ( ) ( ) (2 )S C t x sin z C t sin z    ,    

11 02( )cos( ) ( ) ( ) (2 )C D t x sin z D t sin z    ,                                                                             (59) 

where the amplitudes
11( )A t , 

11( )B t , 
02 ( )B t , 

11( )C t , 
02 ( )C t , 

11( )D t and 
02 ( )D t  are functions of time and are to be determined. 

Taking the orthogonality condition with the eigenfunctions associated with the considered minimal model, we get 

2 211
11 11 11 02

11

2

02 02 02

( )
( ) ( ) ( ) ( )

( ) 1

( ) ( ) ( )

T a

a

Rs D t
RnC t Ra B t A t B t

dA t Le

Rsdt
Ra B t RnC t C t

Le


      

 
  

 
    

  
   
  

,         

2 211
11 11 11 02 11( ) ( ) ( ) ( ) ( )TC

dB
A t B t A t B t N D t

dt
         

,   

2 202
02 11 11 024 ( ) ( ) ( ) 4 ( )

2
TC

dB
B t A t B t N D t

dt


     

,                                                      
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211 11
11 11 11 02

( )1 1
( ) ( ) ( ) ( )AdC C t N

A t B t A t C t
dt Ln Ln

   
 

  
     

  

,                                 

2 202
02 02 11 11

1
4 ( ) 4 ( ) ( ) ( )

2

A
dC N a

C t B t A t C t
dt Ln Ln


  



 
    

 

,        

211 11
11 11 11 02

( )1 1
( ) ( ) ( ) ( )CT

dD D t
A t N B t A t D t

dt Le
   

 

  
     

  

,                   

2 202
02 02 1 11

1
4 ( ) 4 ( ) ( ) ( )

2
CT

dD a
D t B t N A t D t

dt Le


  



 
    

 

,                                                      (60) 

In case of steady motion  
0i

d
D

dt
 

, (i = 1, 2, .., 7), we may write all 'iD s  in terms of 
11A . 

Retaining the original form, we get: 

2 211
11 11 11 02

1 2

02 02 02

( )
( ) ( ) ( ) ( )

1

( ) ( ) ( )

T a

a

Rs D t
RnC t Ra B t A t B t

Le
D

Rs
Ra B t RnC t C t

Le


      

 
  

 
    

  
   
  

,        

2 2

2 11 11 11 02 11( ) ( ) ( ) ( ) ( )TCD A t B t A t B t N D t         
,                              

2 2

3 02 11 11 024 ( ) ( ) ( ) 4 ( )
2

TCD B t A t B t N D t


     
,                                                  

2 11
4 11 11 11 02

( )1 1
( ) ( ) ( ) ( )AC t N

D A t B t A t C t
Ln Ln

   
 

  
     

  

,                         

2 2

5 02 02 11 11

1
4 ( ) 4 ( ) ( ) ( )

2

AN a
D C t B t A t C t

Ln Ln


  



 
    

 

,         

2 11
6 11 11 11 02

( )1 1
( ) ( ) ( ) ( )CT

D t
D A t N B t A t D t

Le
   

 

  
      

  

,             

2 2

7 02 02 1 11

1
4 ( ) 4 ( ) ( ) ( )

2
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D D t B t N A t D t

Le


  



 
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 

,                                 

and for steady nonlinear mode we have:  

1D = 
2D  =  

3D  =  
4D  =  

5D  = 
6D  = 

7D  = 0.                                                                 (61) 

The above system of simultaneous autonomous ordinary differential equations is solved numerically using Runge–Kutta–Gill method. 

One may also conclude that the trajectories of the above equations will be confined to the finiteness of the ellipsoid. Thus, the effect 

of the parameters Rn, Ln, 
AN on the trajectories is to attract them to a set of measure zero, or to a fixed point to say. 

Heat and Nanoparticle Concentration Transport 

The thermal Nusselt number NuT is defined as 

2 /

0

2 /

B

0 z 0

Heat transport by (conduction convection)
NuT

Heat transport byconduction

T
dx

z
       1 .

T
dx

z

 

 






 
 

  
 
 

 





                                                     (62) 

Substituting dimensional form of Eq. (26) and (59) in above equation we get 

021 2 ( )NuT B t   

The nanoparticle concentration Nusselt number NuF is defined similar to the thermal Nusselt number. Following the procedure 

adopted for arriving at NuT, one can obtain the expression for NuF in the form: 

 02 021 2 ( )) (1 2 ( )ANuF C t N B t                                                                            (63) 
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The solute concentration Nusselt number NuC is defined similar to the thermal Nusselt number. Likewise one can obtain the 

expression for NuC in the form: 

 02 021 2 ( )) (1 2 ( )CTNuC D t N B t                                                                         (64) 

Results and discussions 

 Figure 1(a)-(e) shows the effect of various parameters on the neutral stability curves for stationary convection for Rn = -0.1, Ln = 

50, 
AN  = 4,   = 0.9,   = 1,   = 1, 

TCN  = 0.001, Rs = 5, Le = 0.75, 
CTN  = 1 with variation in one of these parameters. We draw 

the effect of Soret parameter 
CTN  and Dufour parameter 

TCN  on the thermal Rayleigh number in Figs. 1(a) and 1(b) respectively. It 

can be seen that as 
CTN  and 

TCN  increase, 
TRa  increases and hence 

CTN  and 
TCN  have a stabilizing effect on the stationary 

convection system. From Fig. 1(c), one can observe that as solutal Rayleigh number Rs increases, thermal Rayleigh number decreases 

which means that the solutal Rayleigh number Rs advances the onset of convection. The effect of viscosity ratio   and conductivity 

ratio   on the thermal Rayleigh number is depicted in Figs. 1(d) and 1(e) respectively, these figures show that as   and   increases, 

TRa  increases which indicates that   and   will stabilize the system. The effect of Soret parameter
CTN , Dufour parameter 

TCN  

and solutal Rayleigh number Rs on thermal Rayleigh number 
TRa  for stationary convection show the similar results obtained by 

Agarwal et al. [12]. 
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Fig. 1. Neutral curves on stationary convection for different values of (a) Soret parameter 
CTN , (b) Dufour parameter 

TCN , 

(c) solutal Rayleigh number Rs, (d) viscosity ratio  , and (e) conductivity ratio  . 
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Fig. 2. Neutral curves on oscillatory convection for different values of (a) Soret parameter 
CTN , (b) Dufour parameter 

TCN , 

(c) solutal Rayleigh number Rs, (d) viscosity ratio  , (e) conductivity ratio  , (f) Vadász number Va, and (g) relaxation 

parameter  . 



J.C. Umavathi
 
et al./ Elixir Mech. Engg. 79 (2015) 30407-30425 

 
30418 

Figure 2(a)-(g) displays the variation of thermal Rayleigh number for oscillatory convection with respect to various parameters. The 

effect of Soret parameter 
CTN  and Dufour parameter 

TCN  on the thermal Rayleigh number is shown in Figs. 2(a) and 2(b) 

respectively, and we find that as 
CTN  and 

TCN  increase 
TRa  increases, and hence 

CTN  and 
TCN  have a stabilizing effect on the 

oscillatory convection system. From Fig. 2(c), one can observe that as solutal Rayleigh number Rs increases, thermal Rayleigh 

number decreases which implies that the solutal Rayleigh number Rs advances the onset of convection in oscillatory form. From the 

pictures 2(d) and 2(f), one can reveal that both the viscosity ratio  and Vadász number Va stabilize the system for oscillatory 

convection; that is, an increase in   and Va increases the thermal Rayleigh number thus delaying the onset of convection. In Fig. 2(e), 

we see that the thermal Rayleigh number decreases as conductivity ratio    increases which will advance the onset of convection. The 

effect of relaxation parameter   on the thermal Rayleigh number is shown in Fig. 2(g). As   increases 
TRa  decreases and hence 

  has a destabilizing effect on the system. 
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Fig. 3. Variation of thermal Nusselt number NuT with critical Rayleigh Number for different values of (a) Soret 

parameter
CTN , (b) Dufour parameter

TCN , (c) solutal Rayleigh number Rs, (d) viscosity ratio , and (e) conductivity ratio 

 . 
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Fig. 4. Variation of nanoparticle concentration Nusselt number NuF with critical Rayleigh Number for different values of (a) 

Soret parameter 
CTN , (b) Dufour parameter 

TCN , (c) solutal Rayleigh number Rs, (d) viscosity ratio  , and (e) conductivity 

ratio  . 

The nonlinear analysis provides not only the onset threshold of finite amplitude motion but also the information of heat and mass 

transports which are given in terms of thermal Nusselt number NuT, nanoparticle concentration Nusselt number NuF and solute 

concentration Nusselt number NuC. The Nusselt numbers are computed as the functions of
TRa , and the variations of these non-

dimensional numbers with 
TRa  for different parameter values are depicted in Figs. 3(a)-(e), 4(a)-(e) and 5(a)-(e) respectively. In the 

three figures, it is observed that in each case, nanoparticle concentration Nusselt number NuF is always greater than both thermal 

Nusselt number NuT and solute concentration Nusselt number NuC. Before the value /T TcRa Ra  reaching unity (not shown), the all 

three Nusselt numbers remain the value of 1; that is, all Nusselt numbers start with the conduction state value at the point of onset of 

steady finite amplitude convection. When 
TRa  is increased beyond

T cRa , there is a sharp increase in the values of Nusselt numbers. 

However further increase in 
TRa  will not change NuF and NuC significantly. It is to be noted that the upper bound of NuT is 3 
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(similar results were obtained by Malashetty et al. [9]). It should also be noted that the upper bounds of NuF and NuC are not 3 

(similar results were obtained by Bhadauria and Agarwal [23]). The upper bound of NuT remains 3 only for both clear and nanofluid. 

However the upper bound for NuF and NuC for clear fluid is 3, whereas for nanofluid it is not fixed. 
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Fig. 5. Variation of solute concentration Nusselt number NuC with critical Rayleigh Number for different values of (a) Soret 

parameter 
CTN , (b) Dufour parameter 

TCN , (c) solutal Rayleigh number Rs, (d) viscosity ratio  , and (e) conductivity ratio 

 . 

 From Figs. 3(a) and 4(a) we observe that as the Soret parameter 
CTN  increases, the value of NuT and NuF decreases, thus showing a 

decrease in the rate of heat and mass transport, while the solute concentration Nusselt number NuC (Fig. 5(a)) increases with increase 

in Soret parameter 
CTN  implying that Soret parameter 

CTN  enhances the solute concentration Nusselt number. We also find that as 

the Dufour parameter 
TCN  (Figs. 3(b), 4(b) and 5(b)) and solutal Rayleigh number Rs (Figs. 3(c), 4(c) and 5(c)) increases, the values 

of NuT, NuF and NuC decrease, thus showing a decrease in the rate of heat and mass transport. As the viscosity ratio   (Figs. 3(d), 

4(d) and 5(d)) and conductivity ratio   (Figs. 3(e), 4(e) and 5(e)) increase all the Nusselt numbers increases implying that   and   

enhances the heat and mass transports.  
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Fig. 6. Transient thermal Nusselt number NuT with time for different values of (a) nanoparticle concentration Rayleigh 

number Rn, (b) thermo-nanofluid Lewis number Ln, (c) modified diffusivity ratio 
AN , (d) solutal Rayleigh number Rs, (e) 

viscosity ratio  , (f) conductivity ratio  , (g) Vadász number Va, and (h) relaxation parameter  . 
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Fig. 7. Transient nanoparticle concentration Nusselt number NuF with time for different values of (a) nanoparticle 

concentration Rayleigh number Rn, (b) thermo-nanofluid Lewis number Ln, (c) modified diffusivity ratio 
AN , (d) solutal 

Rayleigh number Rs, (e) viscosity ratio  , (f) conductivity ratio  , (g) Vadász number Va, and (h) relaxation parameter  . 
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Fig. 8. Transient solute concentration Nusselt number NuC with time for different values of (a) nanoparticle concentration 

Rayleigh number Rn, (b) thermo-nanofluid Lewis number Ln, (c) modified diffusivity ratio 
AN , (d) solutal Rayleigh number 

Rs, (e) viscosity ratio  , (f) conductivity ratio  , (g) Vadász number Va, and (h) relaxation parameter  . 
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The linear solution exhibits a considerable variety of behavior of the thermal convection system, and the transition from linear to non-

linear convection can be quite complicated, but interesting to deal with. It is needed to study a time dependent results to analyze the 

same. The transition can be well understood by the analysis of Eq. (60) whose solution gives a detailed description of the two 

dimensional non-linear evolution problems. The autonomous system of unsteady finite amplitude equations is solved numerically 

using the Runge-Kutta method. The Nusselt numbers are evaluated as the functions of time t, the unsteady transient behavior of NuT, 

NuF and NuC is shown graphically in Figs. 6(a)-(h), 7(a)-(h) and 8(a)-(h), respectively. 

 These figures indicate that initially when time is small, there occur large scale oscillations in the values of Nusselt numbers 

indicating an unsteady rate of heat and mass transport in the thermal convection system. As time passes by, these values approach to 

steady state corresponding to a near convection stage. 

 Figures (6a, 7a, 8a), (6b, 7b, 8b), (6c, 7c, 8c) and (6d, 7d, 8d) depict the transient nature of thermal Nusselt number NuT, 

concentration Nusselt number NuF number and solute Nusselt number NuC for varying values of nanoparticle concentration Rayleigh 

number Rn, nanofluid Lewis number Ln, modified diffusivity ratio 
AN  and solutal Rayleigh number Rs. It is observed that as Rn, Ln, 

AN and Rs increase, the values of NuT, NuF and NuC show slightly incremented, but the difference can be observed with further 

increase in Rn, Ln, 
AN and Rs, especially for NuF, thus showing an increase in the heat and mass transport, which are the similar 

results observed by Agarwal et al. [12]. From Figs. (6e, 7e, 8e) we observe that viscosity ratio   increases the heat and mass 

transports and in Figs. (6f, 7f, 8f) we observe that as conductivity ratio  increases the NuT, NuF and NuC decrease, indicating that 

there is retardation on heat and mass transports. Figures (6g, 7g, 8g) depict the transient nature of Vadász number Va on Nusselt 

numbers. It is observed that as Va increases, the evolution of NuF presents a significant variation in comparison with those for NuT 

and NuC. Figures (6h, 7h and 8h) depict the transient nature of Nusselt number for two values of relaxation parameter  . It is 

observed that as   increases the evolution of NuT, NuF and NuC, respectively, shows nearly unchanged variation except for medium 

time; say during 0.2<t<1.0 for NuF. 

From these figures with the parameters specified, we can observe that the value of thermal Nusselt number NuT starts from 1, the 

value of nanoparticle concentration Nusselt number NuF starts from 6 and the value of solute concentration Nusselt number NuC 

starts form 1.75. 

Conclusions 

 We performed a linear and weakly nonlinear stability analysis in a horizontal porous medium saturated by a nanofluid, heated 

from below and cooled from above, using Darcy model which incorporates the effect of Brownian motion along with thermophoresis. 

Further the viscosity- and conductivity-dependence on nanoparticle volume fraction model was also adopted following Tiwari and 

Das [18]. Linear analysis has been made using normal mode technique, whereas for weakly nonlinear analysis a truncated Fourier 

series representation having only two terms is considered. We draw the following conclusions: 

1. For stationary mode Soret parameter
CTN , Dufour parameter

TCN , viscosity ratio   and conductivity ratio   have a stabilizing 

effect while solutal Rayleigh number Rs destabilizes the system. 

2. For oscillatory mode Soret parameter
CTN , Dufour parameter

TCN , viscosity ratio   and Vadász number Va have a stabilizing 

effect while solutal Rayleigh number Rs , conductivity ratio   and relaxation parameter   destabilize the system. 

3. With the assigned parameters the value of transient Nusselt numbers NuT starts from 1, NuF starts from 6, and NuC starts form 

1.75. 
4. The time evolution of thermal Nusselt number, nanoparticle concentration Nusselt number and solute concentration Nusselt number 

is found to be oscillatory when t is small. However, when t becomes very large all Nusselt numbers approach to their steady values. 
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