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1. Introduction 

The stability of electrically conducting shear flows with thermal stratification is of importance to geophysicists and 

astrophysicists. Magnetic field sometimes exerts constraints which prevent or inhibit certain types of motion and can be 

stabilizing. As a result, flow in the presence of magnetic field may remain laminar even at high Reynolds number. In addition to 

magnetic field if destabilizing agent such as shear is present then the result may be amplification of wavelike motions and thermal 

stratification also act as destabilizing agent.  

Many researchers have considered the effect of shear on the stability of conducting fluid. Lerner and. Knobloch [3] using the 

method of separation of variables studied the stability of dissipative magnetohydrodynamic shear flow in a parallel magnetic field 

for unbounded plane Couette flow and found that the finite conductivity and molecular viscosity were stabilising. Vijayalakshmi 

and Balagondar [6] studied the evolution of general three-dimensional perturbations in a thermally stratified couette flow and 

found graphically that the behaviour of the total energy and the sum of first five components of energy are qualitatively similar for 

different values of Brunt Vaisala frequency. Vijayalakshmi and Balagondar [7] studied the evolution of general three-dimensional 

perturbations in a magnetohydrodynamiccouette flow as an initial value problem and found that the behaviour of the total energy 

and the sum of first five components of energy which are qualitatively similar for different values of Alfven velocity. 

Venkatachalappa and Soward [5] have shown that the addition of small diffusivity, dissipation is strongly stabilising and 

causes eventual collapse of all the modes. Damien Biau and France Alessandro Bottaro [2] studied the effect of buoyancy on shear 

flow stability with a positive thermal gradient. A linear stability analysis was carried out, using Normal mode analysis focusing on 

both exponential and transient growth. In both cases, positive thermal stratification was found to stabilize the disturbances. Martin 

Withalm and Hoffmann [4]studied the influence of thermal stratification on the stability of Ekman-Couette-flow and found  stable 

stratification is suppressing the emergence of stationary as well as shear-instabilities, while unstable stratification is supporting 

them.  

In the present paper, we have extended the work of Criminale andDrazin[1] for the case of thermally 

stratifiedmagnetohydrodynamic bounded couette flow with unit pulse of velocity, magnetic field and temperature as initial 

conditions. The complete general solution to the linearized equations of motion are obtained as function of all space variables and 

time. The disturbances are resolved into rotational and irrotational components. The rotational solution is the solution for the 

hypothetical initial-value problem for which the mean flow is unbounded but coincides with the actual flow in the layer. The 

irrotational solution in each layer is specified uniquely by satisfying the interfacial and boundary conditions. 

2. Mathematical formulation 

We consider an electrically conducting fluid of density , moving with velocity q


 in the presence of a magnetic field H


under the influence of gravity g


. Small density changes are caused by variations in the temperature T. We assume that the fluid is 

Boussinesq, for which motion is governed by the equations 

 

.  0 q , 
  

(2.1)
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ABSTRACT 

Using Fourier transforms, the evolution of linearized perturbations in a thermally 

stratified magnetohydrodynamic shear flow is solved as an initial value problem. The 

resulting equation in terms of the Fourier amplitudes is solved for the case of bounded 

couette flow with a point source of the field of transverse velocity, density and 

temperature. Solutions are obtained for small values of neAlfv   velocity and Brunt  

Vaisala frequency.  The velocity plots are drawn for different values of neAlfv   

velocity and Brunt  frequency. 
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.  0 H ,                                                                                 (2.2) 

   ρ .  - P ρ μ .   
mt

 
       

 

q
q q g H H ,                                                                                                           (2.3)      

                                           

   .  .  
t


   



H
q H H q ,                                                                                                                                                   (2.4)                           

 
T

. T 0
t


  


q ,                                                                                                                                                                 (2.5)                                                           

  
e

TT
1

α1eρρ  ,                                                                                                                                                         (2.6)  

where
2

2H
m

μ
pP   is the total pressure, 𝛂𝟏 is the coefficient of expansion, 𝝁𝒎 is the magnetic permeability. The 

constant density eρ  corresponds to some reference temperature eT . 

In the linear stability theory we superimpose a small wave like perturbation upon the mean flow i,e.,  

 

 
0

 q q q ,  
0
  H H H ,  P

0
PP  ,  T

0
TT 

                                                                                                
(2.7) 

 

Where 

 (U y   σy, 0, 0)
0
 q , (H ,0,0)

00
H , (y)

0
P P  , y 

1
β -

0
T 

                                                                      
(2.8) 

are the ambient velocity, magnetic field, pressure and temperature respectively. The shear , magnetic field 
0

H  and temperature 

gradient  β
1

are all constants. q ,  H , P , θ
1

β -T   are the perturbed quantities of velocity, By (i) employing moving                            

co-ordinates transformation,  

 

zζ  y,η  y t, σ -x   ξ   t, T 
                                                                                                                                      

(2.9) 

 

(ii) Using three – dimensional Fourier transformation given by   

   û α;β;γ;T u ξ ;η;ζ ;T
  

   


i αξ βη γζ
e dξ dη dζ

 
 
 

 

                                                                  
(2.10) 

with similar expressions for v̂ , ŵ , xĤ , yĤ , zĤ  and P̂ and (iii) changing the quantities in the  plane (i,e., plane in real 

space) to polar variables ( α , φ ) using Squire transformation by  defining   

ˆ ˆ ˆ ˆα H γ H γ H α Hx z x zH ,Hx z
α α

  
 

ˆ ˆ ˆ ˆαu γw γu αw
u , w ,

α α

  
                                                                (2.11) 

andby eliminating P̂ the linearized equations of motion with Boussinesq approximation and omitting the primes reduces to 

  0 yĤ2K2
A

V iαθ̂2α2Nv̂2K
dT

d
 ,                                                                                                                     (2.12) 

 

ˆdH  y
ˆ- iαv

dT
 ,                                                                                                                                                                        (2.13) 

 

v̂
1

β
Td

θ̂d
   .                                                                                                                                                                             (2.14) 

where
A

V is the neAlfv   velocity, N is the Brunt Vaisala frequency, 
0

ρ  is the equilibrium density. 

0
ρ

2
0

H
m

μ
2
A

V  , 

g
1

β
1

α
dy

0
ρd

0
ρ

g2N  ,  2γ2α2α  ,  2σαTβ2α2K  .  
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Once equations (2.12) - (2.14) are solved with appropriate initial conditions for v̂ , θ̂  and  yĤ , other velocity and magnetic 

field components û , ŵ ,  xĤ and  zĤ can be obtained by inverting the relations (2.11). The pressure amplitude P̂  is obtained 

by taking the divergence of the momentum equations and is found to be   

 

  




 


 θ̂ Tασβ2Nv̂ σα 2

2K

 i
P̂ if  02K  .                                                                                                             (2.15) 

Two sets of solutions exist for equation (2.12) for v̂ . First, for 02K  , the disturbance is rotational. Second, for 02K  , 

corresponding to irrotational disturbances, since 
2ˆK v 0 corresponds to 0v̂2  in real space. But for yĤ  only one 

solution exists for 02K  , since for 02K  , i,e., 0
y

Ĥ2K  corresponds to 0
y

Ĥ2   which implies that 
y

Ĥ is 

force free magnetic field i,e., there is no magnetic field. Hence 0
y

Ĥ2  which  corresponds to irrotational solution is not 

taken into consideration.  

Now considering the case 02K  , we assume 

   ˆ ˆv α,β, γ,T v α,β, γ,T
R 0

     2 2ˆ ˆN v α,β, γ,T V  v α,β, γ,T
1 A 2

 

       
222 2ˆ ˆN v α,β, γ,T V v α,β, γ,T

3 4A
  2 2 ˆN V  v α,β, γ,T ...

5A
                                                                   (2.16) 

 

with similar expressions for  Ĥ α,β, γ,Ty and   θ̂ α,β, γ,T . 

At the zeroth, first and second order we have, 

 

 2σαTβ2α

γβ,α,
0

Ω̂

0
v̂



 ,                                                                                                                                                         (2.17) 

 

 γβ,α,
1

Ω̂
0

θ 


,                                                                                                                                                                       (2.18) 

 

 
i β -σαT-1ˆĤ Ω α,β, γ  tany 0σ α α0

 
  

   

 Ω̂ α,β, γ
2


                                                                                                

(2.19) 

 
 1 2 ˆ ˆv̂ α T Ω Ω

1 0 222α β σαT
 

 

ˆ 3Ω β - σαT2

3σ α α


    

 


                                                                                      (2.20) 

 











α

σαT-β1-tan
g

1
α α α σ

0
Ω̂

1
θ


,                                                                                                                                          (2.21) 

   
2 22α β σαTiα β - σαT β - σαT-1ˆ ˆ ˆĤ Ω Ω β tan α log Ω

220 22 α αα1 σ α
y

                  
   

(2.22)

 

3ˆ 3Ω α1 β σαT β σαT 1 β σαT β σαT1 10v̂ tan tan
2 22 σ α α 3 α αα β σαT 


                       
        



 
22α β σαT1

log
23 α

  
 
 
 

32 ˆ 3iα Ω1 β σαT β σαT 1 β σαT 1 2tan
6 α σ α 3 α

                        
           

                              (2.23) 
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0
2

θ̂  ,                                                                                                                                                                                        (2.24) 

 

2ˆ 2iΩ α 1 β σαT β σαT10Ĥ tany 2 2 α α2 σ α

            
   

2 β σαT β σαT1tan
3 α α

           
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1
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α σ


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
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














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




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
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2

α
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6

1
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2
σαTβ2α

log
3
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(2.25) 

The solution for 02K   is found by considering the perturbation equations where two – dimensional Fourier transform is 

used instead of the full three – dimensional decomposition. Using moving co-ordinate transformation (2.9), 0v̂2K   corresponds 

to  

 

 
2v v 2 2 2 2I I2iσ αT α σ α T v 0

I2 ηη

 
   


,                                                                                                           (2.26) 

 

   v v α,η, γ;T v ξ,η,ς,T
I I I

 
   



i αξ γζ
e dξ dζ

 
 
 


,                                                                                        (2.27) 

 

is the irrotational part of  v. The solution of equation (2.26) is found to be  

 

 
αη iσ αTη

v A T  e
I

 
   

αη iσ αTη
B T  e


                                                                                                        

(2.28) 

 

where A(T) and B(T) are constants of integration. 

In order to combine 
R

v̂  and 
I

v


 to obtain the complete solution and satisfy the matching condition 
R

v̂ must be inverted 

once to obtain  Tγ;η,α,
R

v


i,e., 

   
1

ˆv α,η, γ;T v α,β, γ;T
R R2π


 



iβ η
e  dβ

                                                                                                              
(2.29) 

 

With initial velocity, initial magnetic field and initial temperature given by  

       v x, y,z,0 V δ x - x  δ y - y  δ z - z
0 0 0 0


                                                                                                              

(2.30) 

 

       
0

z-zδ 
0

y-yδ 
0

x-xδ
0

θ
~

z,0y,x,θ 
                                                                                                                       

(2.31) 

 

       
0

z-zδ 
0

y-yδ 
0

x-xδ
0

Hz,0y,x,
y

H  .                                                                                                                (2.32) 

In terms of moving co-ordinates and three-dimensional Fourier transform is 

   v α,β, γ  Ω α,β, γ
00

 
i αx βy γz

0 0 0V e
0

 
 
 

 

                                                                                                         
(2.33)   

   







 
 0

γz
0

βy
0

αxi
e

0
θ
~

γβ,α,
1

Ωγβ,α,
0

θ
~

,                                                                                                            (2.34) 

   







 
 0

γz
0

βy
0

αxi
e

0
H
~

γβ,α,
2

Ωγβ,α,
0y

H


.                                                                                                     (2.35) 

R
v


is found to be 
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  
4 2 2 42 N α V Vi αx γz σαTη 14V Vα η2 20 0 0 A 0 Av e V N α T θ H e

R 30 0 0 2 2 45σ ασ α α g
1

 
 
 


   

     



 
 

3 4 4 2 4 3α η η α η2iαα V θ α N V H V α 7Vη e 4A 0 A 0 α 0 02 dη V
A 3σ α 33 3 23σ η η 45σ ασ α

                        

3 2 3 32 2 44 2 α η η α ηiαα θ V α V 43V iαα θ3 N V α VN α V e0 40 0 A 0 0 0A dη V
2 2 3 A36σ 6σ α 90 36ση2σ α α g 2σ α

1

        
                      

α η2 2 4 2 2 2 43N V α θ 2V iαH N V α H32iαα θVα η -iηe4A 0 A 0 0 A 00 e V
3 2A3 3σ 3 220σ α 270σ6σ α 6σ α

    
                     

 

 

4 3 2 2 5 -α η - η α η5iV α α θ N V  α θ e0 0A A iη dη
6σ 3 2 η - η2σ α

                   

.                                                                                                  (2.36) 

Then the total solution will be  

v = v v
R I


                                                                                                                                                                               
(2.37)  

3. Thermally Stratified Magnetohydrodynamic Bounded Plane Couette Flow  

In this case, a plane magnetohydrodynamicCouette flow with thermal stratification which is bounded at Hy   is 

considered (Fig.1). Here velocity v


 vanishes at Hη  , hence we have 

 
Fig 1.Sketch of bounded Magnetohydrodynamic Bounded Couette Flow with Thermal Stratification 

 

 

αH iσαTH αH iσαTH
e A e B
  

  v
R η H

 
  

                                                                                                       
(3.1) 

 

αH iσαTH -αH iσαTH
e A e B

 
  v

R η H
 
  

                                                                                                         
(3.2) 

 

From equations (3.1) and (3.2), A and B are found to be are found to be 

 
1

A
2 sinh 2αH

    
αH iσαTH αH iσαTH

v H  e v H  e
R R

   
  

                                                                   

(3.3)  
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 
1

B
2 sinh 2αH

  
αH iσαTH

v H  e
R

   
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 
αH iσαTH

v H  e
R

 
                                                                 

(3.4) 

 

where    
H ηR

vH
R

v





  
It is found that 

      v H A T + B  
R 1 1

 
 i αx γz σαT H - y

0 0 0
e

 
 
 
 

 
.                                                                                         (3.5) 

 

       v H A T + B  
R 2 2

 
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0 0 0
e

 
 
 
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 
                                                                                       (3.6) 

 

where 
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
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(3.8) 

By replacing H by –H in 
1

A and 
1

B we obtain 
2

A and 
2

B . 

4. Results and discussion  

In this problem, we have studied the lnearized perturbations of a basic flow of an inviscidmagnetohydrodynamic bounded 

couette flow with thermal stratification using piecewise linear velocity profiles. We have used unit pulse of velocity, magnetic 

field and temperature as initial distributions. 
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Fig 2. Curves of          versus T for   (a) o0φ  , (b) 

o45φ   and  (c) 
o180φ   for different values of 

A
V  

and  N= 0 

 

 

Fig 3.Curves of         versus T for   (a) o0φ  ,  (b) 

o45φ  and  (c) 
o180φ   for different values of  N  and 

A
V  = 0. 

 

We have resolved the perturbations into rotational and irrotational components. Plots are drawn to observe the variation of 

amplitude of rotational velocity 
R

v̂  with time.  

R
v̂

R
v̂
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Figs. (2) and (3) are plots of 
R

v̂ Vs T. These plots are drawn for different values of N and 
A

V  (N  =
A

V  = 0, 0.2, 0.5) and for 

different values of φ  (
0 0 0φ 0 , 45 ,180 ). We see that for 

A
V  = 0 as N increases, there is decay in 

R
v̂ , For N = 0 as 

A
V increases for all values of φ  there is growth in 

R
v̂ . 

5. Conclusions 

Graphically it is found that as time elapses, the amplitude of rotational velocity disturbances decay as thermal stratification 

increases and due to the increase in magnetic field there is growth in the amplitude of rotational velocity disturbances.  In the 

absence of thermal stratification and magnetic field, the results obtained here obtained coincides with Criminale and Drazin [1]. 
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