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1. Introduction 

The study of stability of stratified shear flows forms an important part of fluid dynamics due to its relevance to meteorology 

and oceanography.  

 There are two fundamental methods which have been used in the theory of linear stability of shear flows. The first is the 

method of normal modes in which the shear flow under consideration is superimposed with disturbances where growth behaviour 

determines the instability. But a complete transient and asymptotic behaviour could not be traced. In the other method, temporal 

evolution of the disturbance is obtained by using transform methods and deem the flow unstable if any disturbance grows without 

bound after a long enough time. This method does not require any eigen value calculations and it does not involve critical levels. 

More number of research papers are available related to normal mode analysis compared to papers on initial-value problem 

approach.  

The dynamics of fluids in rotating system has developed rapidly in recent years due to interest in geophysical flow problems. 

Earth’s atmosphere, oceans and core of stars and galaxies all exhibit this phenomenon.  

Peterson et al. [5] studied the theoretical aspects of modeling stratified turbulent flows subjected to rotation and found that the 

most commonly used linear models are ill-posed when the combined effect of system rotation and stratification is imposed; the 

models do not exhibit a steady state solution. Cambon [2] studied theoretically, experimentally and numerically linear and 

nonlinear structuring effects caused by coriolis force and/or buoyancy force/density stratification. Salhi and Cambon [6] studied 

the stability problem of unbounded shear flow, subjected to a uniform vertical density stratification, with Brunt-Väisälä 

frequency and rotating about an axis aligned with the span wise direction and obtained stability diagrams. Benoit Cushman et al. 

[1] studied mechanism by which stability may occur in rotating stratified flows. They are motion of individual particles (inertial 

instability) and organized motions across the flow (baroclinic instability). 

Chen Wang et al [3] studied ageostrophic instability in rotating, stratified interior vertical shear flows. Two types of 

baroclinic, ageostrophic instability were found for intermediate Rossby number which resulted in unbalanced instabilities. Wang 

et al. [9] studied the instability associated baroclinic critical layers in rotating stratified shear flow using normal mode analysis and 

showed that the resulting coupling between the Kelvin and gravity waves leads to an over reflectional instability. Vijayalakshmi 

and Balagondar [7] studied the stability of linearized disturbances in a two-layered stratified shear flow with rotation using initial 

value problem approach and concluded that for large rotation the system is destabilized.  Vijayalakshmi [8] studied the stability of 

linearized disturbances in a stratified bounded couette flow using initial value problem approach.  

In this paper we have considered the evolution of linearized perturbations in a stratified shear flow with rotation for bounded 

couette flow with unit pulse of velocity and density as initial conditions which is due to the work of Criminale and Drazin [4]. The 

distributions are resolved into two components, rotational and irrotational. The solution for the hypothetical initial value problem 

for which the basic flow is unbounded but coincides with the actual flow in the layer is the rotational solution. The irrotational 

solution in each layer is specified uniquely by satisfying the interfacial conditions and boundary conditions.  
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Using the initial value problem approach, the evolution of linearized perturbations in a 

stratified shear flow with rotation is studied. Here the resulting equation in time posed by 

using Fourier transformation and Square transformation is solved for the Fourier 
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2. Mathematical Formulation 

Consider a cartesian co-ordinate system OXYZ such that OY is vertical with an incompressible, heterogeneous, inviscid fluid 

which rotates with an uniform angular velocity   about the y–axis i,e.,  0, , 0  . The equations of motion of an 

incompressible, inviscid, stratified fluid in the presence of Coriolis force are 
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Here q


 is the velocity vector, p, ρ , g


 respectively denotes the pressure, density at a point and the acceleration due to gravity with 

component –g in the y–direction.  
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To study the evolution of linearized disturbances in a stratified shear flow with rotation, we linearize equations (2.1) - (2.3) about 
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Using (i) moving coordinates transformation by defining  t, T  y t σ -x   ξ  , yη  , zζ   

(ii) three - dimensional Fourier transformation given by 

   
i αξ βη γζ
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wave – number space and defining the velocity components in the φandα  directions as 
α

ŵγûα
u


 , 

α

ŵαûγ
w


 , the above set of equations will be reduced to  
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ρ  is the equilibrium density, N is the Brunt Vaisala frequency 

Two solutions exist for (2.9). For 02K  , the disturbance is rotational and for 02K  , the disturbance is irrotational, since 

2ˆK v 0  results in Laplace equation 0v̂2  in real space. 

Now considering the case 02K  , we assume the perturbation expression of the form 
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where Rv̂  is the velocity for rotational disturbances. 
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The solution for 
2K 0  is found by considering the perturbation equations by using two – dimensional Fourier transform. 
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obtain  Tγ;η,α,
R

v


i,e., 

    dβ
η iβ -

eTγ;β,α,
R

v̂
2π

1
Tγ;η,α,

R
v 







.                                      (2.19) 

With initial velocity and initial density as unit pulse, the initial conditions are given by  

       
0

z-zδ 
0

y-yδ 
0

x-xδ
0

Vz,0y,x, v  , 

 

       
0

z-zδ 
0

y-yδ 
0

x-xδ
0

ρ~z,0y,x,ρ  , 

 

       w  x, y,z,0 W δ x - x  δ y - y  δ z - z
0 0 0 0 0

                                      (2.20) 

In terms of moving co-ordinates and three-dimensional Fourier transform,  

   







 
 0

γz
0

βy
0

αxi
e

0
Vγβ,α,

0
Ω γβ,α,

0
v


, 

   







 
 0

γz
0

βy
0

αxi
e

0
ρ~γβ,α,

1
Ωγβ,α,

0
ρ~   

   
i αx βy γz

0 0 0w  ξ,η,ζ,0 Ω α,β, γ W e
0 2 0

 
 
 

 
                                       (2.21) 

R
v


is found to be 
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                              (2.22) 

Here 
0

y-ηη  . Now the complete solution will be  

I
v

R
vv


 .                                       (2.23) 

R
v


and
I

v


 given by equations (2.22) and (2.18). 

 

3. Stratified Bounded Couette Flow with Rotation 

 

In this case, a stratified plane Couette flow bounded at Hy   is considered (Fig. 1). Here velocity v


 vanishes at 

Hη  , hence we have 

 

 

 

Fig 1. Sketch of Stratified Bounded Couette Flow with Rotation 
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vB
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e

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, 
                   

(3.1) 

 
H ηR

vB
αTHiσHα-

eA
αTHiσHα

e






 

, (3.2) 

From equations (3.1) and (3.2), A and B are found to be 

   

 Hα2sinh  2

αTHiσHα
e H

R
v

αTHiσHα
e H

R
v

A











. 
(3.3) 
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   

 Hα2sinh  2

αTHiσHα
e H

R
v

αTHiσHα
e H

R
v

B











. 
(3.4) 

where     
H ηR

vH
R

v





. 

It is found that 

   
 i αx γz σαT H - y

0 0 0
v H A T + B  e

R 1 1

 
 
 
 

 
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(3.5) 
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
 . 

(3.6) 
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1 0
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
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i αx +γz -σαTη -α η0 0B v - e TV e
R1 0

0
H y

 
 
 

 
 
 
   

 

By replacing H by –H in 
1

A and 
1

B we obtain 
2

A and 
2

B . 

 

4. Results and Discussions 

In this paper, we have considered the linear stability of a basic flow of an inviscid stratified shear flow with rotation using 

piecewise linear velocity profiles with unit pulse for velocity and density as initial distributions. Here we have concentrated on 

bounded couette flow.  In these piecewise linear profiles, the disturbance in each layer is resolved into the sum of two 

components, the rotational and irrotational solution. We have drawn plots for the variation of rotational velocity 𝒗̂𝑹 (Fig.2 & 3) 

with time.  

Figs. 2(a)–(c) and 3(a)–(c) are plots of 𝒗̂𝑹versus T for different values of Brunt Vaisala frequency N (N = 0, 0.2, 0.5) and  

φ(φ = 0o , 45o , 90o) for 
1

R
= 0 and 2 respectively. 

  
We see that there is decay in 𝑣̂𝑅 for φ = 00, 4500 but for φ = 900    there is increase in 𝑣̂𝑅for large time for all values of 

N and Ro.  
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5. Conclusions 

Graphically, we can conclude that rotation highly destabilizes the system. For φ = 900  there is increase in the amplitude of 

rotational velocity disturbances for large time for all values of  N and Ro. 
090φ   implies that the boundaries are placed far 

away from each other.  When 
1

0
Ro

  i,e., for large rotation the disturbances grows with time making the system unstable. In the 

absence of stratification and rotation the results obtained here coincides with Criminale and Drazin [4] and in the absence of 

rotation, the results obtained coincides with Vijayalakshmi [8]. 
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