Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

Elixir Appl. Math. 43 (2012) 7004-7015

Refined beam theory for bending of thick beams subjected to various loading

Uday P. Naik¹, Atteshamuddin S. Sayyad² and Pratap N.Shinde³ ¹Department of Civil Engineering, P.R.E.C,Loni-423736, (M.S.), India ²Department of Civil Engineering, SRES's College of Engineering,Kopargaon-423601, (M.S.), India ³P.R.E.COE LONI, (M.S.) India.

ABSTRACT

ARTICLE INFO

Article history: Received: 29 December 2011; Received in revised form: 20 February 2012; Accepted: 23 February 2012;

Keywords

Shear deformation,

Thick beam, Flexure, Transverse shear stress.

Introduction

Classical Euler-Bernoulli theory of beam (ETB) bending is based on hypothesis that the plane section, which is perpendicular to the neutral axis before bending, remains plane and perpendicular to the neutral axis after bending. The theory should not apply to deep beams since it disregards the effect of shear deformation.

Timoshenko [1] has developed first order shear deformation theory (FSDT), which is based on hypothesis that the plane section, which is perpendicular to the neutral axis before bending, remains plane but not necessarily perpendicular to the neutral axis after bending. In this theory the transverse shear strain distribution over the cross-section of the beam is assumed to be constant through the thickness and thus require shear correction factor.

Ghugal and Sharma [2] have developed a variationally consistent refined hyperbolic shear deformation theory for flexure and free vibration of thick isotropic beam.

Ghugal and Nakhate [3] has developed trigonometric shear deformation theory for the static flexure of thick isotropic beam and obtained the general solution of thick isotropic beam with various support and loading conditions.

Sayyad and Ghugal [4] have developed new hyperbolic shear deformation theory for the flexure of thick beams, in which combined effect of shear and bending rotations is considered.

Sayyad and Ghugal [5] have carried out comparative study of refined beam theories for static flexure of deep beams. Ghugal [6] has developed trigonometric shear deformation theory for the flexure and vibration of thick beams. Ghugal and Waghe [IEI] have developed the trigonometric shear deformation theory for deep beams.

In this paper a variationally consistent new Trigonometric shear deformation theory for beam is developed. In this theory rotation of normal is taken as combined effect of shear slope and bending slope at the neutral axis. The theory is applied to simply supported isotropic beam of rectangular cross-section carrying various loading cases for static flexure analysis. A close form solution for simply supported beam subjected to single sine load is obtained. The results obtained are compared with those of elementary, refined and exact beam theories available in the literature.

© 2012 Elixir All rights reserved.

In this paper a new Trigonometric shear deformation theory is developed for the static

flexure of thick isotropic beam, considering Trigonometric functions in terms of thickness

co-ordinate associated with transverse shear deformation effect. The most important feature

of the theory is that the transverse shear stress can be obtained directly from the constitutive

relations satisfying the shear stress free surface conditions on the top and bottom of the

beam. Hence the theory obviates the need of shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work.

Results obtained for static flexure of simply supported isotropic beam subjected to various

loading cases are compared with those of other refined theories and exact solution.

The beam under consideration occupies the region:

$$b = b = b = h$$

 $0 \le x \le L; \quad -\frac{b}{2} \le y \le \frac{b}{2}; \quad -\frac{h}{2} \le z \le \frac{h}{2}$ (1) Where *x*, *y*, *z* are Cartesian coordinates, *L* is the length of beam, *b* is the width and *h* is the total depth of beam. The beam is subjected to transverse load of intensity q(x) per unit length of

Assumptions Made in Theoretical Formulation

The axial displacement consists of two parts:

the beam.

(a) Displacement given by elementary theory of beam bending.

(b) Displacement due to shear deformation, which is assumed to be Trigonometric in nature with respect to thickness coordinate, such that maximum shear stress occurs at neutral axis as predicted by the elementary theory of bending of beam

1. The axial displacement u is such that the resultant of axial stress σ_x , acting over the Cross- section should result in only bending moment and should not in force in x direction.

2. The transverse displacement w is assumed to be a function of longitudinal (length) co-ordinate 'x' direction

3. The displacements are small as compared to beam thickness.

4. The body forces are ignored in the analysis. (The body forces can be effectively taken into account by adding them to the external forces.)

5.One dimensional constitutive laws are used. 6.The beam is subjected to lateral load only.

The Displacement Field

Based on the before mentioned assumptions, the displacement field of the present hyperbolic shear deformation theory is given as below:

$$u = -z\frac{dw}{dx} + \frac{h}{\pi}\sin\frac{\pi z}{h}\phi(x)$$

$$w = w(x)$$
(2)

where u is axial displacement component x direction and w is transverse displacement in z direction. The trigonometric function in terms of thickness coordinate in the displacement field of u is associated with the transverse shear stress distribution through the thickness of beam and the function ϕ (x) is unknown function associated with shear slope/warping of the cross section of beam at neutral axis of beam

Strain-Displacement Relationships

Normal and shear strains are obtained within the framework of linear theory of elasticity using the displacement field given by equation (2) These relationships are given as follows: -Normal Strain:

$$\varepsilon_x = \frac{du}{dx} = -z\frac{dw^2}{dx^2} + \frac{h}{\pi}\sin\frac{\pi z}{h}\frac{d\phi}{dx}$$
(3)

Shear Strain:

$$\gamma_{xz} = \frac{du}{dz} + \frac{dw}{dx} = \cos\frac{\pi z}{h}\phi \tag{4}$$

Stress-Strain Relationships:

The one-dimensional Hooke's law is applied. The axial stress σ_x is related to strain \mathcal{E}_x and the following constitutive relations relate shear stress to shear strain:

$$\sigma_{x} = E\varepsilon_{x}$$

$$\tau_{zx} = G\gamma_{zx}$$
(5)

Where E and G are the elastic constants of the beam material. Using the Eqns. (3) and (4) for strains, stresses and principle of virtual work, variationally consistent differential equations for the beam under consideration are obtained. The principle of virtual work when applied to the beam leads to:

$$\int_{0}^{L} \int_{h/2}^{h/2} \left(\sigma_x \,\delta \varepsilon_x + \tau_{zx} \,\delta \gamma_{zx} \right) dx \,dz - \int_{0}^{L} q(x) \,\delta w \,dx = 0 \tag{6}$$

substituting the value of $\sigma_x, \gamma_z, \varepsilon_x, \delta \gamma_z$ in above equation we get

$$\int_{0-h/2}^{Lh/2} E\left(-z\frac{d^2w}{dx^2} + \frac{h}{\pi}\sin\frac{\pi z}{h}\frac{d\phi}{dx}\right)\left(-z\frac{d\delta^2w}{dx^2} + \frac{h}{\pi}\sin\frac{\pi z}{h}\frac{d\delta\phi}{dx}\right)\left(G\cos\frac{\pi z}{h}\phi\right)\left(\cos\frac{\pi z}{h}\phi\right) - \int_{0}^{L}q(x)\delta w\,dx = 0$$
(7)

where the symbol δ denotes the variational operator. Integrating Eqn. (6) by parts and collecting the coefficients of δw and $\delta \phi$ the governing equations obtained are as follows:

$$\frac{Eh^3}{12}\frac{d^4w}{dx^4} - \frac{2Eh^3}{\pi^3}\frac{d^3\phi}{dx^3} = q(x) \tag{8}$$

$$\frac{2Eh^3}{\pi^3}\frac{d^3w}{dx^3} - \frac{Eh^3}{2\pi^2}\frac{d^2\phi}{dx^2} + \frac{Gh}{2}\phi = 0$$
(9)

The associated consistent natural boundary conditions obtained are of following form: At the ends x=0 and x=L or w is prescribed

$$F_{-} = \frac{2 B h^{+}}{\pi^{+}} \frac{d^{+} p}{dx^{+}} - \frac{B h^{+}}{12} \frac{d^{+} w}{dx^{+}} = 0 \quad \text{or w is prescribed}$$
(10)

$$F_{x} = \frac{Bh^{3}}{12} \frac{d^{2}w}{dx^{2}} - \frac{2Bh^{3}}{x^{2}} \frac{d}{dx} = 0 \quad \text{ss} \frac{dw}{dx} \text{ is prescribe}$$
(11)

$$\frac{Eh^3}{2\pi^2}\frac{d\phi}{dx} - \frac{2Eh^3}{\pi^3}\frac{d^2w}{d^2x} = 0 \text{ or } (\phi) \text{ is prescribed}$$
(12)

The governing differential equations and associated boundary conditions for static flexure of beam under consideration can be obtained directly from Eqns. (8) through (12).

Thus, the variation ally consistent governing differential equations and boundary conditions are obtained. The static analysis of the beam is described by the solution of these equations and simultaneously satisfaction of the associated boundary conditions.

Illustrative Examples

A simply supported uniform beam of rectangular crosssection occupying the region given by expression (1) is considered for detailed numerical study.

In order to prove the efficacy of the present theory, the following numerical examples are considered. The following material properties for beam are used.

$$E = 210$$
 GPa, $\mu = 0.3$ and $G = \frac{E}{2(1 + \mu)}$

Where *E* is the Young's modulus, G is shear modulus and μ is the Poisson's ratio of beam material

1. Simply supported beam subjected to uniformly distributed load

The beam with origin on left hand side supported is simply supported at x = 0 and L. The beam is subjected to uniformly distributed load, q(x) at surface z = -h/2 acting in the downward z-direction (positive) as shown in Fig.2.

Fig. 2 simply supported beam subjected to uniformly distributed load q(x)

Simply Supported Beam with a concentrated load

The beam with origin at left hand side support, is simply supported at x = 0 and L. The beam is subjected to a concentrated load, P at mid span at surface z = -h/2 acting in the z direction as shown in Fig.3

Fig.3 simply supported beam with a concentrated load *P* Simply supported beam subjected to single sine load

The beam with origin on left hand side supported is simply supported at x = 0 and L. The beam is subjected to single sine load, q(x) at surface z = -h/2 acting in the downward z-direction (positive) as shown in Fig 4.

Fig.4 Simply Supported Beam subjected to single sine load Simply Supported Beam subjected to linearly varying load

The beam with origin on left hand side supported is simply supported at x = 0 and L. The beam is subjected to linearly varying load, q(x) at surface z = -h/2 acting in the downward z-direction (positive) as shown in Fig 5.

Fig.5 Simply Supported Beam subjected to linearly varying load

Simply Supported Beam subjected to parabolic load

The beam with origin on left hand side supported is simply supported at x = 0 and L. The beam is subjected to parabolic load, q(x) at surface z = -h/2 acting in the downward z-direction (positive) as shown in Fig 3.6.

Fig. 6 Simply Supported Beam subjected to parabolic load

The Solution Scheme

Following solution scheme is assumed for the static flexure of simply supported thick isotropic beams

$$w = w_{m} \sin\left(\frac{m\pi x}{L}\right)$$

$$\phi = \phi_{m} \cos\left(\frac{m\pi x}{L}\right)$$

$$q = q_{m} \sin\left(\frac{m\pi x}{L}\right)$$
(13)

Substituting equation (13) in General equation (8) and (9) we get

$$\left(\frac{Eh^3}{12}\frac{m^4\pi^4}{l^4}\right)w_m - \left(\frac{2Eh^3}{\pi^3}\frac{m^3\pi^3}{l^3}\right)\phi_m = q_m$$
(14)

$$-\left(\frac{2Eh^{3}}{\pi^{3}}\frac{m^{3}\pi^{3}}{l^{3}}\right)w_{m} + \left[\frac{Eh^{3}}{2\pi^{2}}\left(\frac{m^{2}\pi^{2}}{l^{2}}\right) + \frac{Gh}{2}\right]\phi_{m} = 0 (15)$$

Equation (3.14) and (3.15) can be written in following matrix form

$$\begin{bmatrix} \frac{Eh^3}{12} \frac{m^4 \pi^4}{l^4} & -\frac{2Eh^3}{\pi^3} \frac{m^3 \pi^3}{l^3} \\ -\frac{2Eh^3}{\pi^3} \frac{m^3 \pi^3}{l^3} & \frac{Eh^3}{2\pi^2} \left(\frac{m^2 \pi^2}{l^2}\right) + \frac{Gh}{2} \end{bmatrix} \begin{bmatrix} w_m \\ \phi_m \end{bmatrix} = \begin{bmatrix} q_m \\ 0 \end{bmatrix}$$
(16)

Crammer's rule is used to solve above equation Where,

$$D = \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} = L_{11}L_{22} - L_{12}L_{21}$$

$$D_1 = \begin{bmatrix} q_m & L_{12} \\ 0 & L_{22} \end{bmatrix} = q_m L_{22}$$

$$D_2 = \begin{bmatrix} L_{11} & q_m \\ L_1 & x, u \end{bmatrix} = -q_m L_{21}$$

$$W_m = \frac{D_1}{D}q_m \text{ And } \phi_m = -\frac{D_2}{D}q_m$$

$$W_m = \overline{W}q_m \And \phi_m = \overline{\phi}q_m$$

Now substitute the value of w and ϕ in to displacement field to obtain displacement from equation () and ()

$$\therefore u = \left[\left(\frac{z}{h} \right) h \times \overline{w} \left(\frac{m\pi}{l} \right) + \frac{h}{\pi} \sin\left(\frac{\pi z}{h} \right) \overline{\phi} \right] q_m \cos\left(\frac{m\pi}{l} \right)_{(17)}$$
$$\therefore w = \overline{w} q_m \sin\left(\frac{m\pi x}{l} \right) \qquad (18)$$

Stresses are obtain from equation (5) σ_x and τ_x

$$\therefore \sigma_x = \left[\left(\frac{z}{h}\right) h \times \overline{w} \left(\frac{m^2 \pi^2}{l^2}\right) - \frac{h}{\pi} \sin\left(\frac{\pi z}{h}\right) \frac{m\pi}{l} \overline{\phi} \right] Eq_m \sin\left(\frac{m\pi x}{l}\right)$$
(19)

Determination of τ_{zx} via equation oequilibrium

$$\frac{d\sigma_x}{dx} + \frac{d\tau_{zx}}{dz} = 0$$

$$\int \frac{d\tau_{zx}}{dz} dz = \int -\frac{d\sigma_x}{dx} dz$$

$$= -\left[\left(\frac{z}{h}\right)hw\frac{m^3\pi^3}{L^3} - \frac{h}{\pi}\sin\left(\frac{\pi z}{h}\right)\overline{\phi}\left(\frac{m^2\pi^2}{L^2}\right)\right]Eq_m\cos\left(\frac{m\pi x}{L}\right)$$

$$\tau_{zx} = -\left[\frac{z^2}{2}w\frac{m^3\pi^3}{L^3} + \frac{h}{\pi}\cos\left(\frac{\pi z}{h}\right)\frac{h}{\pi}\overline{\phi}\frac{m^2\pi^2}{L^2}\right]Eq_m\cos\left(\frac{m\pi x}{L}\right) + c$$
Now to find the value of constant 'c' we have $\tau_{zx} = 0$ at $z = \pm h/2$

 $\begin{bmatrix} k^2 & m^3 \sigma^3 \end{bmatrix} \qquad (m \sigma r)$

$$\therefore c = \left[\frac{n}{8} \frac{-m\pi}{L^3}\right] Eq_m \cos\left(\frac{m\pi x}{L}\right)$$
 Substituting the value

of 'c' in above equation we have

$$\therefore \tau_{x}^{EE} = \left[-\frac{w}{w} \frac{m^3 \pi^3}{L^3} \frac{h^2}{8} \left(1 - 4 \left(\frac{z}{h} \right)^2 \right) - \frac{h^2}{\pi^2} \cos\left(\frac{\pi z}{h} \right) \overline{\phi} \frac{m^2 \pi^2}{L^2} \right] Eq_m \cos\left(\frac{m\pi x}{L} \right) (21)$$

For various loading cases q_m is used as follows given by Navier 1. Simply supported beam subjected to Uniformly distributed

load
$$q_m = \frac{4q_0}{m\pi}$$
 where

 q_0 = intensity of loading

2. Simply supported beam subjected to a central concentrated load $q_m = \frac{2p}{L} \sin \frac{m\pi\xi}{L}$ where ξ distance of point load from one end is.

3. Simply supported beam subjected to single sine load $q_m = q_0$

4. Simply supported beam subjected to Linearly varying

load
$$q_m = \frac{2q_0}{m\pi}$$

5. Simply supported beam subjected to Linearly Parabolic load

$$q_m = \frac{2q_0}{m\pi} \left(\sin m\pi + \frac{\cos m\pi}{m\pi} - \cos m\pi - \frac{1}{m\pi} \right)$$

Numerical results

The results obtained for displacements and stresses are presented in the following non-dimensional form:

$$\overline{u} = \frac{Ebu}{q_0 h}; \overline{w} = \frac{Ew10h^3}{q_0 L^4}; \overline{\sigma_x} = \frac{b\sigma_x}{q_0}; \overline{\tau_{zx}} = \frac{b\tau_{zx}}{q_0}; s = \frac{L}{h}$$

The percentage error in the results obtained by present and other theories with respect to the corresponding results obtained by the theory of elasticity is calculated as follows:

$$\%$$
 error = $\frac{\text{value by a particular model - value by exact elasticity solution}}{\text{value by exact elasticity solution}} \times 100$

[#]Percentage error quoted is with respect to the corresponding value of exact elasticity solution [69]

Graph 1. Variation Of Axial Displacement (\overline{u}) Through The Thickness Of Simply Supported Beam At(X = 0, Z) When Subjected To Uniformly Distributed Load For Aspect Ratio

Graph.2: Variation Of Axial Bending Stress $(\bar{\sigma}_x)$ Through

The Thickness Of Simply Supported Beam At (X=L/2,Z) When Subjected To Uniformly Distributed Load For Aspect

Graph 3: Variation of transverse shear stress $\overline{\tau}_{zx}^{CR}$ through the thickness of simply supported beam at (x=0,z) when subjected to uniformly distributed load for aspect ratio 4.using constitutive relation

Graph .4: Variation Of Transverse Shear Stress

 $\overline{\tau}_{zx}^{EE}$ Through The Thickness Of Simply Supported Beam At (X=0,Z) When Subjected To Uniformly Distributed Load For Aspect Ratio 4.Using Equation Of Equilibrium.

Graph .5: Variation Of Axial Displacement (\overline{u}) Through

Graph .6: Variation Of Axial Bending Stress $\overline{\sigma}_x$ Through The Thickness Of Simply Supported Beam At (X=L/2,Z) When Subjected To Concentrated Load For Aspect Ratio

Graph .7: Variation Of Transverse Shear $(\overline{\tau}_{xx}^{CR})$ Stress Through The Thickness Of Simply Supported Beam At (X=L/2,Z) When Subjected To Concentrated Load For Aspect Ratio 4.Using Constitutive Relation

Graph .8: Variation Of Transverse Shear $(\overline{\tau}_{xx}^{EE})$ Stress Through The Thickness Of Simply Supported Beam At (X=L/2,Z) When Subjected To Concentrated Load For Aspect Ratio 4.Using Equilibrium Equation

Graph .9: Variation Of Axial Displacement (\overline{u}) Stress Through The Thickness Of Simply Supported Beam At (X=0,Z= \pm H/2 When Subjected To Sine Load For Aspect

Graph .10: Variation Of Axial Bending Stress (σ_x)Through The Thickness Of Simply Supported Beam At (X=L/2,Z) When Subjected To Sine Load For Aspect Ratio 4.

Graph .11: Variation Of Transverse Shear Stress

 $\overline{\tau}_{zx}^{CR}$ Through The Thickness Of Simply Supported Beam At (X=0,Z) When Subjected To Sine Load For Aspect Ratio 4.Using Constitutive Relation

Graph 12: Variation Of Transverse Shear Stress

Graph 13: Variation Of Axial Displacement U Through The Thickness Of Simply Supported Beam At (X=L,Z) When Subjected To Linearly Varying Load For Aspect Ratio 4.

Graph 14: Variation Of Axial Bending Stress $\overline{\sigma}_x$ Through The Thickness Of Simply Supported Beam At (X=L/2,Z) When Subjected To Linearly Varying Load For Aspect

Graph 15: Variation Of Transverse Shear Stress

 $\overline{\tau}_{zx}^{CR}$ Through The Thickness Of Simply Supported Beam At (X=0,Z) When Subjected To Linearly Varying Load For Aspect Ratio 4.Using Constitutive Relation

Graph 16: Variation Of Transverse Shear Stress

 $\overline{\tau}_{zx}^{EE}$ Through The Thickness Of Simply Supported Beam At (X=0, Z) When Subjected To Linearly Varying Load For Aspect Ratio 4.Using Equilibrium Equation.

Graph 17: Variation Of Axial Displacement 'U' Through The Thickness Of Simply Supported Beam At (X=L,Z) When Subjected To Parabolic Load For Aspect Ratio 4.

Graph 18: Variation Of Axial Bending Stress $\overline{\sigma}_x$ Through The Thickness Of Simply Supported Beam At (X=L/2,Z) When Subjected To Parabolic Load For

Graph 19: Variation Of Transverse Shear Stress $\overline{\tau}_{zx}^{CR}$ Through The Thickness Of Simply Supported Beam At (X=0, Z) When Subjected To Parabolic Load For Aspect Ratio 4.Using Constitutive Relation.

Graph 20: Variation Of Transverse Shear Stress Through The Thickness Of Simply Supported Beam At (X=0, Z) When Subjected To Parabolic Load For Aspect Ratio 4.Using Equilibrium Equation.

Discussion of results:

The results obtained from the present theory are compared with those of the elementary beam theory (ETB), first order shear deformation theory of Timoshenko, higher order theories of Ghugal, Reddy, refined theory of beam by Ghugal and exact elasticity solutions given by Timoshenko and Goodier,

Example 1: Simply supported isotropic beam subjected to uniformly distributed load

Comparison of axial displacement transverse displacement, axial bending stress and transverse shear stress for simply supported isotropic beam subjected to uniformly distributed load is presented in Tables 4.1 through 4.5

a) The axial displacement predicted by present theory for simply supported isotropic beam subjected to uniformly distribute load is in error by 4.652% and 0.745% for aspect ratio 4 and 10 respectively

b)The axial displacement predicted by HSDT for simply supported isotropic beam subjected to uniformly distribute load is in error by 4.456 and 0.709% for aspect ratio 4 and 10 respectively

c) Transverse displacement predicted by present theory overestimate the Transverse displacement by 1.12and0.112% for aspect ratio 4 and 10 respectively whereas ETB underestimate the same.

d)Present theory and HSDT of Reddy is in excellent agreement with exact solution for all aspect ratios (See Table 4.2).

e) The deflection predicted by ETB is lower than Present TSDT and Exact elasticity solution due to neglect of effect of shear deformation in ETB (See Table 4.2).

f) Axial bending stress predicted by present theory and HSDT of Reddy good agreement with exact solution.

g)ETB and FSDT under estimate the axial bending stress by 1.693 and 0.264% for aspect ratio 4 and 10 respectively (See Table 4.4).

h)Transverse shear stress $\overline{\tau}_{zx}^{CR}$ predicted by present theory close agreement with exact solution while HSDT, FSDT and ETB underestimate the same (See Table 4.4).

i) The Transverse shear stress $\overline{\tau}_{zx}^{EE}$ predicted by present theory for simply supported isotropic beam subjected to uniformly distribute load is in error by -7.233% and -2.733% for aspect ratio 4 and 10 respectively (See Table 4.5)

Example 2: Simply Supported Beam with a concentrated load

Comparison of axial displacement, transverse displacement, axial bending stress and transverse shear stress for simply supported isotropic beam subjected to concentrated load is presented in Table 6 through 10

a) For simply supported isotropic beam with concentrated load for axial displacement, percentage error is not quoted due to non-availability/non existence of exact solution.

b) Present theory over estimate Transverse displacement by 2.9706 and 0.288 % for aspect ratio 4 and 10 respectively, also HSDT, FSDT, over estimate the same. While ETB underestimate the same.

c) Present theory overestimates the axial bending stress 12.838 and 4.468 for aspect ratio 4 and 10 respectively. While FSDT and ETB underestimate the same.

d) The examination of table 4.9 revels that present theory and HSDT theory overestimate transverse shear stress, while FSDT underestimate the same.

e) For simply supported isotropic beam with concentrated load for Transverse shear stress $\overline{\tau}_{zx}^{EE}$ percentage error is not quoted due to non-availability/non existence of exact solution.

Example 3: Simply Supported Beam subjected to single sine load

Comparison of axial displacement, transverse displacement, axial bending stress and transverse shear stress for simply supported isotropic beam subjected to single sine load is presented in Table 11 through 15

a) The examination of table 4.11 reveals that maximum axial deflection obtained by present theory overestimate the value by 3.569and 0.746 % for aspect ratio 4 and 6 respectively as compared to exact solution is given by Ghugal and also over estimate the value for HSDT, FSDT and ETB

b)Transverse displacement predicted by present theory, HSDT and FSDT close agreement with exact solution. ETB under estimate the transverse displacement by 12.693 and 2.308% for aspect ratio 4 and 6 respectively.

c)Present theory over estimate the axial bending stress by 0.4495 and 0.250% for aspect ratio 4 and 6 respectively where FSDT and ETB Underestimate the same.

d)HSDT of Reddy show excellent results of transverse shear stress for all aspect ratio.

e) The examination of Table 4.14 reveals that transverse shear stress obtained by present theory overestimate the value by 3.495% and 3.224% for aspect ratio 4 and 10 respectively. While HSDT of Reddy shows close agreement with exact solution

f) For simply supported isotropic beam subjected to single sine load percentage error for Transverse shear stress $\overline{\tau}_{zx}^{EE}$ is not quoted due to non-availability/non existence of exact solution (See Table 15)

Example 4: Simply Supported Beam subjected to linearly varying load

Comparison of axial displacement, transverse displacement axial bending stress and transverse shear stress for simply supported isotropic beam subjected to linearly varying load. is presented in Table 16 through 20

a) The examination of Table 16 reveals that axial displacement obtained by present Theory, HSDT of Reddy, FSDT and ETB over estimate the value for aspect ratio 4 and 10 as compared to Theory of elasticity given by Timoshenko and Goodier b)Transverse displacement predicted by present theory and HSDT of Reddy is in good agreement with exact solution. FSDT over estimate the value by 1.2265% and 0.222% for aspect ratio 4 and 10 respectively for the same, while ETB underestimate the same.

c) Axial bending stress predicted by present theory and HSDT of Reddy is in excellent agreement with exact solution. ETB and FSDT under estimate the same.

d)The examination of Table.19 reveals that present theory, HSDT, FSDT, underestimate Transverse shear stress for all aspect ratio as compared to exact solution.

e) For simply supported isotropic beam subjected to linearly varying load for Transverse shear stress $\overline{\tau}_{zx}^{EE}$ percentage error is not quoted due to non-availability/non existence of exact solution

Example 5: Simply Supported Beam subjected to parabolic load Comparison of axial displacement, transverse displacement

axial bending stress $\bar{\sigma}_x$ at and transverse shear stress for Simply supported isotropic beam subjected to parabolic load is presented in Table no 21 through 25.

a) For simply supported isotropic beam with parabolic load axial displacement \overline{u} , transverse displacement \overline{w} , axial bending

stress $\bar{\sigma}_x$ and transverse shear stress $\bar{\tau}_{zx}$ percentage error is not quoted due to non availability/non existence of exact solution

Conclusions

A refined shear deformation theory for bending of thick isotropic beam is presented and results obtained are discussed with those of other theories. The present theory has several features as given below:

a) It is a displacement based, refined shear deformation theory which includes the transverse shear effects.

b)The number of unknown variables is same as that in FSDT.

c) The shear deformation in the beam is properly accounted for.d)Constitutive relations are satisfied in respect of axial stress and transverse shear stress.

e) Transverse shear stress satisfies zero shear stress boundary conditions on top and bottom surfaces of the beam perfectly.f) The theory obviates the need of shear correction factor.

The Theories having above features is used for static flexural and free flexural vibration analysis of thick isotropic beam. From this analysis, following conclusions are drawn.

1)Present theory gives good result in respect of axial displacements.

2) The use of present theory gives good result in respect of transverse displacements.

3)The results of axial stress obtained by present theory are matching with results of available higher-order and refined shear deformation theories.

4) The governing differential equations and the associated boundary conditions are variation ally consistent

References

1.S. P. Timoshenko, "On the correction for shear of the differential equation for transverse vibrations of prismatic bars," *Philosophical Magazine, Series* 6, Vol. 41, pp. 742-746, 1921.

2. Y. M. Ghugal and R. Sharma, "Hyperbolic shear deformation theory for flexure and vibration of thick isotropic beams," *International Journal of Computational Methods*, Vol. 6, No. 4, pp. 585-604, 2009.

3. Y. M. Ghugal and V. N. Nakhate, "Flexure of thick beams using trigonometric shear deformation theory," The Bridge and Struct. Engineer," *The Quarterly Journal of the Indian National Group of International Association for bridge and Structural Engineering*, Vol. 39, No. 4, pp. 1-17, 2010

4. A.S.Sayyad and Y.M.Gugal Flexure of Thick Beams using New Hyperbolic Shear Deformation Theory International journal Of Mechanics Issue 3, Volume 5, 2011

5. Sayyad A. S. and Ghugal Y. M., "Comparative Study of Refined Beam Theories for Static Flexure of Deep Beams", *Proceeding of Seventh Structural Engineering Convention*, Annamalai university, Annamalai Nagar, T. N., Vol. 1, pp. 202-210.

6. Y. M. Ghugal "Flexure and vibration of thick beams using trigonometric shear deformation theory" *Journal of Experimental & Applied Mechanics Volume 1, Issue 1, December 2010, Pages 1-27.*

7. Y. M. Ghugal and Waghe "Flexural Analysis of Deep Beams using Trigonometric Shear Deformation Theory" Journal of Institute of Engineer

Table 1 Comparison of axial displacement \overline{u} at $(x = L, z = \pm h/2)$ for isotropic beam subjected to

Theory	Model	S = 2	% error [#]	S = 4	%error [#]	S = 10	% error [#]
Present	TSDT	2.259	2.682	16.535	4.652	251.35	0.745
Reddy	HSDT	2.245	2.045	16.504	4.456	251.27	0.709
Timoshenko	FSDT	2.000	-9.091	16.000	1.265	250.00	0.200
Bernoulli-Euler	ETB	2.000	-9.091	16.000	1.265	250.00	0.200
Timoshenko and Goodier	Elasticity	2.200	0.0	15.800	0.0	249.50	0.0

[69]

Table 2 Comparison of transverse displacement \overline{w} at (x = L/2, z = 0) for isotropic beam subjected to uniformly distributed load

	u	minition	ny uisti n	Juicu I	au		
Theory	Model	S = 2	% Error [#]	S = 4	% Error [#]	S = 10	% Error [#]
Present	TSDT	2.529	3.098	1.805	1.120	1.601	1.12
Reddy	HSDT	2.532	3.221	1.806	1.176	1.602	0.250
Timoshenko	FSDT	2.538	3.465	1.806	1.176	1.602	0.250
Bernoulli-Euler	ETB	1.563	-36.282	1.563	-12.437	1.563	-2.190
Timoshenko and Goodier	Elasticity	2.453	0.0	1.785	0.0	1.598	0.0
Percentage er	ror quoted	d is wi	th respec	t to the	e corresp	onding	value of

⁷⁰¹⁰

solution [69]

subjected to uniformly distributed load Theory Model S = 2 % Error# S = 4 % Error# S = 10 % Error[#] Present TSDT 3.278 2.438 12.280 0.656 75.284 0.112 Reddy HSDT 3.261 1.960 12.263 0.516 75.268 0.090 Timoshenko FSDT 3.000 -6.25 12.000 -1.693 75.000 -0.264 Bernoulli-Euler -6.25 -0.264 ETB 3.000 12.000 -1.693 75.000 Timoshenko Elasticity 3.200 0.0 12.200 0.0 75.200 0.0 and Goodier

Table 3 Comparison of axial bending stress $\bar{\sigma}_x$ at $(x = L/2, z = \pm h/2)$ for isotropic beam

[#] Percentage error quoted is with respect to the corresponding value of exact elasticity solution [69]

Table .4 Comparison of transverse shear stress $\overline{\tau}_{zx}^{CR}$ at (x = 0, z = 0) for isotropic beam subjected to uniformly distributed load

D.	cam subj	icicu i	o unitor i	my uisi	i ibuttu i	uau	
Theory	Model	S = 2	% Error [#]	$\mathbf{S}=4$	% Error [#]	S = 10	% Error [#]
Present	TSDT	1.451	-3.267	2.993	-0.233	7.591	1.2133
Reddy	HSDT	1.415	-5.667	2.908	-3.067	7.361	-1.853
Timoshenko	FSDT	0.984	-34.4	1.969	-34.367	4.922	-34.373
Bernoulli-Euler	ETB						
Timoshenko and Goodier	Elasticity	1.500	0.0	3.000	0.0	7.500	0.0
		· · · · · · · · · · · · · · · · · · ·		4 . 41			1 (

[#] Percentage error quoted is with respect to the corresponding value of exact elasticity solution [69]

Table .5 Comparison of transverse shear stress $\overline{\tau}_{zx}^{EE}$ at (x = 0, z = 0) for isotropic beam subjected to uniformly distributed load

beam subjected to uniformity distributed load											
Theory	Model	S = 2	% Error [#]	S = 4	% Error [#]	S = 10	% Error [#]				
Present	TSDT	1.250	-16.667	2.783	-7.233	7.295	-2.733				
Reddy	HSDT	1.262	-15.867	2.795	-6.833	7.304	-2.61				
Timoshenko	FSDT	1.477	-1.533	2.953	-1.567	7.383	-1.56				
Bernoulli-Euler	ETB	1.477	-1.533	2.953	-1.567	7.383	-1.56				
Timoshenko and Goodier	Elasticity	1.500	0.0	3.000	0.0	7.500	0.0				

[#] Percentage error quoted is with respect to the corresponding value of exact elasticity solution [69]

Table .6 Comparison of axial displacement \overline{u} at $(x = L, z = \pm h/2)$ for isotropic

beam s	beam subjected to concentrated load.									
Theory	Model	S = 2	S = 4	S = 10						
Present	TSDT	3.2776	24.5591	376.4214						
Reddy	HSDT	3.2611	24.5263	376.3385						
Timoshenko	FSDT	3.0001	24.0007	375.0122						
Bernoulli-Euler	ETB	3.0001	24.0007	375.0109						
Timoshenko and Goodier	Elasticity									

[#] Percentage error is not quoted due to non availability/non-existence of exact solution

Table.7 Comparison of transverse displacement \overline{w} at (x = L/2, z = 0) for isotropic beam subjected to concentrated load.

	- sour op		Susjeeree				
Theory	Model	S = 2	% Error [#]	S = 4	% Error [#]	S = 10	% Error [#]
Present	TSDT	4.3257	7.63	2.9706	1.995	2.5764	0.288
Reddy	HSDT	4.3399	7.899	2.9726	20.635	2.5765	0.292
Timoshenko	FSDT	4.4198	9.978	2.9799	23.142	2.5768	0.304
Bernoulli-Euler	ETB	2.5000	-37.792	2.5000	-14.1631	2.5000	-2.686
Timoshenko	Elasticity	4.0188	0.00	2.9125	0.00	2.5690	0.00
and Goodier							

[#] Percentage error quoted is with respect to the corresponding value of exact elasticity solution [69]

isotropic beam subjected to concentrated load.										
Theory	Model	S = 2	% Error [#]	S = 4	% Error [#]	S = 10	% Error [#]			
Present	TSDT	9.3101	67.907	28.7619	12.838	154.3242	4.468			
Reddy	HSDT	9.3469	68.571	28.6790	12.513	154.0091	4.255			
Timoshenko	FSDT	5.9065	6.523	23.6261	-7.311	147.6634	-0.041			
Bernoulli-Euler	ETB	5.9065	6.523	23.6261	-7.311	147.6630	-0.0412			
Timoshenko and Goodier	Elasticity	5.5448	0.0	25.4896	0.0	147.7239	0.0			
[#] Percentage error quoted is with respect to the corresponding value of										
exact elastici	ity solutio	n [69]		-						

Table .8 Comparison of axial bending stress $\bar{\sigma}_x$ at $(x = L/2, z=\pm h/2)$ for

Table .9 Comparison of transverse shear stress $\overline{\tau}_{x}$ at (x=0, z=0) for isotropic beam subjected to

	concentrated load.										
	Theory	Model	S = 2	% Error [#]	S = 4	% Error [#]	S = 10	% Error [#]			
	Present	TSDT	1.5532		3.1253	4.177	7.8912	5.216			
	Reddy	HSDT	1.5059		3.0319	1.063	7.6519	2.025			
	Timoshenko	FSDT	1.0244		2.0489	-31.703	5.1223	-31.702			
	Bernoulli-Euler	ETB									
	Timoshenko										
	and Goodier	Elasticity			3.000	0.00	7.500	0.00			
# Perc	Percentage error is not quoted due to non availability/non-existence of exact solution										

Table.10 Comparison of transverse shear stress $\overline{\tau}_{zx}^{EE}$ at (x = 0, z = 0) for isotropic beam subjected

to concentrated load.									
Theory	Model	S = 2	% Erro	S = 4	% Error [#]	S = 10	% Error [#]		
Present	TSDT	1.4347		2.9283		7.5636			
Reddy	HSDT	1.4290		2.9284		7.5733			
Timoshenko	FSDT	1.5367		3.0733		7.6834			
Bernoulli-Euler	ETB	1.5367		3.0733		7.6834			
Timoshenko and Goodier	Elasticity								

[#] Percentage error is not quoted due to non availability/non-existence of exact solution

Table .11 Comparison of axial displacement \overline{u} at $(x = 0, z = \pm h/2)$ for isotropic beam subjected

to	Sine	load
----	------	------

Theory	Model	S = 2	S = 4	% Error [#]	S = 10	% Error [#]				
Present	TSDT	1.7225	12.7359	3.569	194.3895	0.746				
Reddy	HSDT	1.7124	12.7150	3.399	194.3370	0.719				
Timoshenko	FSDT	1.5481	12.3846	0.712	193.5098	0.290				
Bernoulli-Euler	ETB	1.5481	12.3846	0.712	193.5092	0.289				
Ghugal	Exact		12.2970	0.00	192.9500	0.00				

[#] Percentage error quoted is with respect to the corresponding value of exact elasticity solution [65]

Table .12 Comparison of transverse displacement \overline{w} at (x = L/2, z = 0) for isotropic beam

subjected to Sine load									
Theory	Model	S = 2	% Error [#]	S = 4	% Error [#]	S = 10	% Error [#]		
Present	TSDT	2.0138		1.4288	1.262	1.2635	0.198		
Reddy	HSDT	2.0163		1.4291	1.283	1.2635	0.198		
Timoshenko	FSDT	2.0223		1.4295	1.311	1.2635	0.198		
Bernoulli-Euler	ETB	1.2319		1.2319	-12.693	1.2319	-2.308		
Ghugal	Exact			1.4110	0.00	1.2610	0.00		
				-		-			

[#] Percentage error quoted is with respect to the corresponding value of exact elasticity solution [65]

Table .1 3 Comparison of axial bending stress $\overline{\sigma}_x$ at $(x = L/2, z = \pm h/2)$ for isotropic beam

subjected to Sine load								
Theory	Model	S = 2	% Error [#]	S = 4	% Error [#]	S = 10	% Error [#]	
Present	TSDT	2.7057		10.0028	0.449	61.0693	0.250	
Reddy	HSDT	2.6898		9.9864	0.285	61.0528	0.223	
Timoshenko	FSDT	2.4317		9.7268	-2.322	60.7929	-0.204	
Bernoulli-Euler	ETB	2.4317		9.7268	-2.322	60.7927	-0.204	
Ghugal	Exact			9.9580	0.00	60.9170	0.00	
tage error qu	oted is	with r	espect to	the cor	respondi	ng value	of exac	

[#] Percentage error quoted is with respect to the corresponding value of exact Ghugal solution [65]

Table .1 4	Comparison	of transverse	shear stress	$\overline{\tau}_{zx}$ at	(x = 0, z = 0) for
------------	------------	---------------	--------------	---------------------------	--------------------

isotropic beam subjected to Sine load.									
Theory	Model	S = 2	% Error [#]	S = 4	% Error [#]	S = 10	% Error [#]		
Present	TSDT	0.9764		1.9664	3.495	4.9258	3.244		
Reddy	HSDT	0.9477		1.9062	0.326	4.7732	0.0461		
Timoshenko	FSDT	0.6366		1.2732	-32.989	3.1831	-33.282		
Bernoulli-Euler	ETB								
Ghugal	Exact			1.900	0.00	4.7710	0.00		

[#] Percentage error quoted is with respect to the corresponding value of exact elasticitySolution [65]

Table.1 5 Comparison of transverse shear stress $\overline{\tau}_{zx}^{EE}$ at (x = 0, z = 0) for isotropic

beam subjected to Sine load.									
Theory	Model	S = 2	% Error [#]	S = 4	% Error [#]	S = 10	% Error [#]		
Present	TSDT	0.9263		1.8955		4.7689			
Reddy	HSDT	0.9296		1.8971		4.7696			
Timoshenko	FSDT	0.9549		1.9099		4.7747			
Bernoulli-Euler	ETB	0.9549		1.9099		4.7746			
Ghugal	Exact								
# D		4 1 1	• 41	4 41	1	• 1	e 4		

[#] Percentage error quoted is with respect to the corresponding value of exact elasticitySolution [65]

Table 16 Comparison of axial displacement \overline{u} at $(x = L, z = \pm h/2)$ for isotropic beam subjected to linearly varying load.

subjected to linearly varying load.									
Theory	Model	S = 2	% error [#]	S = 4	% Error [#]	S = 10	% Error [#]		
Present	TSDT	1.1295	2.682	8.2675	4.652	125.675	0.7415		
Reddy	HSDT	1.1225	2.045	8.2520	4.456	125.635	0.709		
Timoshenko	FSDT	1.0000	-9.091	8.0000	1.266	125.000	0.200		
Bernoulli-Euler	ETB	1.0000	-9.091	8.0000	1.266	125.000	0.200		
Timoshenko and Goodier	Elasticity	1.1000	0.00	7.9000	0.00	124.750	0.00		
						-			

[#] Percentage error quoted is with respect to the corresponding value of exact elasticity solution [69]

Table 17 Comparison of axial displacement transverse displacement \overline{w} at (x = L/2, z = 0)for isotropic beam subjected to linearly varying load.

IOr	for isotropic beam subjected to linearly varying load.									
Theory	Model	S = 2	% Error [#]	S = 4	% Error [#]	S = 10	% Error [#]			
Present	TSDT	1.2645	3.098	0.9025	1.1204	0.8005	0.1877			
Reddy	HSDT	1.2660	3.2205	0.9030	1.1765	0.8010	0.250			
Timoshenko	FSDT	1.2690	3.465	0.9030	1.1765	0.8010	0.250			
Bernoulli-Euler	ETB	0.7815	-36.282	0.7815	-12.437	0.7815	-2.190			
Timoshenko and Goodier	Elasticity	1.2265	0.00	0.8925	0.00	0.7990	0.00			

[#] Percentage error quoted is with respect to the corresponding value of exact elasticity solution [69]

Table 18 Comparison of axial bending stress $\bar{\sigma}_x$ at $(x = L/2, z = \pm h/2)$ for isotropic beam

subjected	to 1	inearly	varving	heol
Suprecieu	υı	meany	var ving.	ivau.

				··· / C			
Theory	Model	S = 2	% Error [#]	S = 4	% Error [#]	S = 10	% Error [#]
Present	TSDT	1.6390	2.4375	6.1400	0.6557	37.642	0.112
Reddy	HSDT	1.6310	1.938	6.1315	0.5164	37.634	0.090
Timoshenko	FSDT	1.5000	-6.250	6.0000	-1.6393	37.500	-0.266
Bernoulli-Euler	ETB	1.5000	-6.250	6.0000	-1.6393	37.500	-0.266
Timoshenko	F1	1 (000	0.00	c 1000	0.00	27 (00	0.00
and Goodier	Elasticity	1.6000	0.00	6.1000	0.00	37.000	0.00

[#] Percentage error quoted is with respect to the corresponding value of exact elasticity solution [69]

Table 19 Comparison of for transverse shear stress $\overline{\tau}_{zx}$ at (x = 0, z = 0) isotropic beam

and so the	4. 1.	 ! 1	J
CHENTAM	1/1 11/1	 1 FW/1 FM/F	411141

subjected to intearry varying load.								
Model	S = 2	% Error [#]	S = 4	% Error [#]	S = 10	% Error [#]		
TSDT	0.7255	-3.267	1.4965	-0.233	3.7955	1.2133		
HSDT	0.7075	-5.667	1.4540	-3.067	3.6805	-1.853		
FSDT	0.6000	-20.00	1.2000	-20.00	3.0000	-20.00		
ETB								
Elasticity	0.7500	0.00	1.5000	0.00	3.7500	0.00		
	Model TSDT HSDT FSDT ETB Elasticity	Model S = 2 TSDT 0.7255 HSDT 0.7075 FSDT 0.6000 ETB Elasticity 0.7500	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

[#] Percentage error quoted is with respect to the corresponding value of exact elasticity solution [69]

Table .20 Comparison of for transverse shear stress $\overline{\tau}_{zx}^{EE}$ at (x = 0, z = 0) isotropic beam subjected to linearly varying load

	subjected to inlearly varying load.										
Theory	Model	S = 2	% Error [#]	S = 4	% Error [#]	S = 10	% Error [#]				
Present	TSDT	0.6250		1.3195		3.6475					
Reddy	HSDT	0.6310		1.3975		3.6520					
Timoshenko	FSDT	0.7385		1.4765		3.6915					
Bernoulli-Euler	ETB	0.7500		1.4765		3.6915					
Timoshenko and Goodier	Elasticity										

[#] Percentage error quoted is with respect to the corresponding value of exact elasticity solution [69]

Table 21 Comparison of axial displacement \overline{u} at $(x = L, z = \pm h/2)$ for isotropic hear subjected to perchapted and

	beam subjected to parabolic load.									
Theory	Model	S = 2	% Error [#]	S = 4	z% Error#	S = 10	% Error [#]			
Present	TSDT	0.6840		4.9754		75.4467				
Reddy	HSDT	0.6797		4.9655		75.4204				
Timoshenko	FSDT	0.6000		4.7999		74.9991				
Bernoulli-Euler	ETB	0.6000		4.7999		74.9988				
Timoshenko and Goodier	Elasticity									

[#] Percentage error is not quoted due to non availability/non-existence of exact solution

Table.22 Comparison of transverse displacement \overline{w} at (x = L/2, z = 0), for isotropic beam subjected to parabolic load.

beam subjected to parabone road.								
Theory	Model	S = 2	% Error [#]	S = 4	% Error [#]	S = 10	% Error [#]	
Present	TSDT	0.7457		0.5344		0.4749		
Reddy	HSDT	0.7464		0.5346		0.4749		
Timoshenko	FSDT	0.7480		0.5346		0.4749		
Bernoulli-Euler	ETB	0.4635		0.4635		0.4635		
Timoshenko	Elasticity							
and Goodier								

[#] Percentage error is not quoted due to non availability/non-existence of exact solution

Table 23 Comparison of axial bending stress $\bar{\sigma}_x$ at $(x = L/2, z = \pm h/2)$ for

isotropic beam subjected to parabolic load								
Theory	Model	S = 2	% Error [#]	S = 4	% Error [#]	S = 10	% Error [#]	
Present	TSDT	0.9452		3.5622		21.9480		
Reddy	HSDT	0.9410		3.5667		21.9438		
Timoshenko	FSDT	0.8750		3.5002		21.8762		
Bernoulli-Euler	ETB	0.8750		3.5002		21.8762		
Timoshenko and Goodier	Elasticity							

[#] Percentage error is not quoted due to non availability/non-existence of exact solution

Table 24 Comparison of transverse shear stress $\overline{\tau}_{zx}^{CR}$ at (x = 0, z = 0) for

isotropic beam subjected to parabolic load								
Theory	Model	S = 2	% Error [#]	S = 4	% Error [#]	S = 10	% Error [#]	
Present	TSDT	0.4704		0.9820		2.5062		
Reddy	HSDT	0.4598		0.9552		2.4307		
Timoshenko	FSDT	0.3255		0.6511		1.6277		
Bernoulli-Euler	ETB							
Timoshenko and Goodier	Elasticity							

[#] Percentage error is not quoted due to non availability/non-existence of exact solution

Table 25 Comparison of transverse shear stress $\overline{\tau}_{zx}^{EE}$ at (x = 0, z = 0) for isotropic beam subjected to parabolic load

isotropic beam subjected to parabolic load								
Theory	Model	S = 2	% Error [#]	S = 4	% Error [#]	S = 10	% Error [#]	
Present	TSDT	0.3838		0.8957		2.3991		
Reddy	HSDT	0.3885		0.9016		2.4035		
Timoshenko	FSDT	0.4883		0.9766		2.4416		
Bernoulli-Euler	ETB	0.4883		0.9766		2.4416		
Timoshenko and Goodier	Elasticity							

[#] Percentage error is not quoted due to non availability/non-existence of exact solution