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Introduction  

Classical Euler-Bernoulli theory of beam (ETB) bending is 

based on hypothesis that the plane section, which is 

perpendicular to the neutral axis before bending, remains plane 

and perpendicular to the neutral axis after bending. The theory 

should not apply to deep beams since it disregards the effect of 

shear deformation.  

Timoshenko [1] has developed first order shear deformation 

theory (FSDT), which is based on hypothesis that the plane 

section, which is perpendicular to the neutral axis before 

bending, remains plane but not necessarily perpendicular to the 

neutral axis after bending. In this theory the transverse shear 

strain distribution over the cross-section of the beam is assumed 

to be constant through the thickness and thus require shear 

correction factor.  

Ghugal and Sharma [2] have developed a variationally 

consistent refined hyperbolic shear deformation theory for 

flexure and free vibration of thick isotropic beam.  

Ghugal and Nakhate [3] has developed trigonometric shear 

deformation theory for the static flexure of thick isotropic beam 

and obtained the general solution of thick isotropic beam with 

various support and loading conditions. 

Sayyad and Ghugal [4] have developed new hyperbolic 

shear deformation theory for the flexure of thick beams, in 

which combined effect of shear and bending rotations is 

considered. 

Sayyad and Ghugal [5] have carried out comparative study 

of refined beam theories for static flexure of deep beams. 

Ghugal [6] has developed trigonometric shear deformation 

theory for the flexure and vibration of thick beams. Ghugal and 

Waghe [IEI] have developed the trigonometric shear 

deformation theory for deep beams. 

In this paper a variationally consistent new Trigonometric 

shear deformation theory for beam is developed. In this theory 

rotation of normal is taken as combined effect of shear slope and 

bending slope at the neutral axis. The theory is applied to simply 

supported isotropic beam of rectangular cross-section carrying 

various loading cases for static flexure analysis. A close form 

solution for simply supported beam subjected to single sine load 

is obtained. The results obtained are compared with those of 

elementary, refined and exact beam theories available in the 

literature.  

Beam under Consideration 

 

The beam under consideration occupies the region:  

              
0

2 2 2 2

b b h h
x L; y ; z       

            (1)                                             

Where x, y, z are Cartesian coordinates, L is the length of beam, 

b is the width and h is the total depth of beam.  The beam is 

subjected to transverse load of intensity  q x  per unit length of 

the beam. 
 

Assumptions Made in Theoretical Formulation 

The axial displacement consists of two parts: 

(a) Displacement given by elementary theory of beam bending. 

(b) Displacement due to shear deformation, which is assumed to 

be Trigonometric in nature with respect to thickness coordinate, 

such that maximum shear stress occurs at neutral axis as 

predicted by the elementary theory of bending of beam 

1.The axial displacement u is such that the resultant of axial 

stress x , acting over the Cross- section should result in only 

bending moment and should not in force in x direction. 

2.The transverse displacement w is assumed to be a function of 

longitudinal (length) co-ordinate „x‟ direction 

3.The displacements are small as compared to beam thickness. 

4.The body forces are ignored in the analysis. (The body forces 

can be effectively taken into account by adding them to the 

external forces.) 
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5.One dimensional constitutive laws are used. 

6.The beam is subjected to lateral load only. 

The Displacement Field 

Based on the before mentioned assumptions, the 

displacement field of the present hyperbolic shear deformation 

theory is given as below: 

            

 

 

sin
dw h z

u z x
dx h

w w x





  



                              (2) 

where u is axial displacement component x direction and w is 

transverse displacement in z direction. The trigonometric 

function in terms of thickness coordinate in the displacement 

field of u is associated with  the transverse shear stress 

distribution through the thickness of beam and  the function  

(x)  is unknown function associated with shear slope/warping of 

the cross section of beam at neutral axis of beam 

Strain-Displacement Relationships
 Normal and shear strains are obtained within the framework 

of linear theory of elasticity using the displacement field given 

by equation (2) These relationships are given as follows: - 

Normal Strain: 

     

2

2
sinx

du dw h z d
z

dx h dxdx

 



   

        

(3)

                                                                                

         

Shear Strain: 

cosxz

du dw z

dz dx h


                                                            (4) 

Stress-Strain Relationships: 

The one-dimensional Hooke‟s law is applied. The axial 

stress 
x

  is related to strain  
x

 and the following constitutive 

relations relate shear stress to shear strain: 

                                                 
x x

zx zx

E

G

 

 




                             (5) 

Where E and G are the elastic constants of the beam material. 

Using the Eqns. (3) and (4) for strains, stresses and principle of 

virtual work, variationally consistent differential equations for 

the beam under consideration are obtained. The principle of 

virtual work when applied to the beam leads to: 

   
2

0 02

0

L h/ L

x x zx zx
-h/

σ δ +τ δ dxdz q x wdx=                     (6)                                                                                                  

   

substituting the value of , ,, zx x zxxσ     in above equation we get               

 2 2

2

cos 0

0 02

2 2L h/ L
d w h z d d w h z d z z

E -z + sin -z + sin G cos q x wdx=
dx h dx dx h dx h h

-h/

    
    

    
  

      
  

 

                                                                                                

(7) 

           

 

where the symbol   denotes the variational operator . 

Integrating Eqn. (6) by parts and collecting the coefficients of 

andw   the governing equations obtained are as follows:       

          
3 4 3 32

( )
4 3 312

Eh d w Eh d
q x

dx dx




            (8) 

 
3 3 3 2

3 2 2

2
0

3 2 2

Eh d w Eh d Gh

dx dx





                             (9) 

The associated consistent natural boundary conditions 

obtained are of following form: At the ends x=0and x=L or w is 

prescribed                                   

 

 
3 3 2

2 3 2

2
0

2

Eh d Eh d w

dx d x



 
   or () is prescribed          (12)                                    

       The governing differential equations and associated 

boundary conditions for static flexure of beam under 

consideration can be obtained directly from Eqns. (8) through 

(12).  

Thus, the variation ally consistent governing differential 

equations and boundary conditions are obtained. The static 

analysis of the beam is described by the solution of these 

equations and simultaneously satisfaction of the associated 

boundary conditions.  

 Illustrative Examples 

A simply supported uniform beam of rectangular cross-

section occupying the region given by expression (1) is 

considered for detailed numerical study.  

In order to prove the efficacy of the present theory, the 

following numerical examples are considered. The following 

material properties for beam are used.  

E = 210GPa, μ = 0.3 and 
 2 1

E
G





    

Where E is the Young‟s modulus, G is shear modulus and μ 

is the Poisson‟s ratio of beam material 

1. Simply supported beam subjected to uniformly distributed 

load 

The beam with origin on left hand side supported is simply 

supported at x = 0 and L. The beam is subjected to uniformly 

distributed load, q(x) at surface z = −h/2 acting in the downward 

z-direction (positive) as shown in Fig.2. 

 
Fig. 2 simply supported beam subjected to uniformly 

distributed load q (x) 

Simply Supported Beam with a concentrated load 

The beam with origin at left hand side support, is simply 

supported at x = 0 and L. The beam is subjected to a 

concentrated load, P at mid span at surface z =−h/2 acting in the 

z direction as shown in Fig.3 

 
Fig.3 simply supported beam with a concentrated load P 

Simply supported beam subjected to single sine load 

The beam with origin on left hand side supported is simply 

supported at x = 0 and L. The beam is subjected to single sine 

load, q (x) at surface z = −h/2 acting in the downward z-direction 

(positive) as shown in Fig 4.  
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    Fig.4 Simply Supported Beam subjected to single sine load              

Simply Supported Beam subjected to linearly varying load 

The beam with origin on left hand side supported is simply 

supported at x = 0 and L. The beam is subjected to linearly 

varying load, q(x) at surface z = −h/2 acting in the downward z-

direction (positive) as shown in Fig 5. 

 
Fig.5 Simply Supported Beam subjected to linearly varying 

load 

Simply Supported Beam subjected to parabolic load 

The beam with origin on left hand side supported is simply 

supported at x = 0 and L. The beam is subjected to parabolic 

load, q(x) at surface z = −h/2 acting in the downward z-direction 

(positive) as shown in Fig 3.6.      

Fig. 6 Simply Supported Beam subjected to parabolic load 

The Solution Scheme 

Following solution scheme is assumed for the static flexure 

of simply supported thick isotropic beams 

sin

cos

sin

m

m

m

m x
w w

L

m x

L

m x
q q

L




 



 
  

 

 
  

 

 
  

 

    

(13)       

 

       Substituting equation (13) in General equation (8) and 

(9) we get 
3 4 4 3 3 3

4 3 3

2

12
m m m

Eh m Eh m
w q

l l

 




   
    

   
                     (14) 

    
3 3 3 3 2 2

3 3 2 2

2
0

22
m m

Eh m Eh m Gh
w

l l

 


 

    
       
    

(15) 

Equation (3.14) and (3.15) can be written in following matrix 

form 
3 4 4 3 3 3

4 3 3

3 3 3 3 2 2

3 3 2 2

2

12

02

22

m m

m

Eh m Eh m

w ql l

Eh m Eh m Gh

l l

 



 

 

 
 

                
  

               (16)         

Crammer‟s rule is used to solve above equation  

Where, 

              

11 12

11 22 12 21

21 22

12

1 22

22

11

2 21

21

1 2

m

0

0

 And 

m

m

m

m

m m m

L L
D L L L L

L L

q L
D q L

L

L q
D q L

L

D D
W q q

D D


 
   
 

 
  
 

 
   
 

  

 

           &w wq qm m m m    

Now substitute the value of w and   in to displacement field to 

obtain displacement from equation   ( ) and ( ) 

 sin cosm

z m h z m
u h w q

h l h l

  




        
           

         (17) 

                                       

sin
m x

w wq
m L

 
   

 
                  (18)     

Stresses are obtain from equation (5) x
 and 

zx
  

       
2 2

2
sin sinx m

z m h z m m x
h w Eq

h h l ll

   
 



       
          

         (19) 

Determination of τzx via equation oequilibrium  

3 3 2 2

3 2

2 3 3 2 2

3 2

0

sin cos

cos cos
2

x zx

zx x

m

zx m

d d

dx dz

d d
dz dz

dz dx

z m h z m m x
hw Eq

h L h L L

z m h z h m m x
w Eq c

L h L L

 

 

   




   
 

 

 

 

       
         

       

    
       

    

 
(20) 

Now to find the value of constant „c‟we have τzx =0 at z = ± h/2 

2 3 3

3
cos

8
m

h m m x
c w Eq

L L

    
    

  
 Substituting the value 

of „c‟ in above equation we have 

23 3 2 2 2 2

3 2 2
1 4 cos cos

8zx

EE

m

m h z h z m m x
w Eq

L h h L L

   
 



       
                   

(21)       

For various loading cases mq  is used as follows given by Navier 

1. Simply supported beam subjected to Uniformly distributed 

load 
4

0
q

qm
m

 where  

0q = intensity of loading 

2. Simply supported beam subjected to a central concentrated 

load 
2

sin
p m

qm
L L


  where  distance of point load from 

one end is. 

3. Simply supported beam subjected to single sine load 
0

q qm   

h/2 

 L 

              
x,u 
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4. Simply supported beam subjected to Linearly varying 

load
2

0
q

qm
m

  

5. Simply supported beam subjected to Linearly Parabolic load 

2 cos 10 sin cos
q m

q m mm
m m m


 

  
   

 
 
 

 

Numerical results 

The results obtained for displacements and stresses are presented 

in the following non-dimensional form: 
3

4

0 0 00

10
; ; ; ;x zx

zxx

b bEbu Ew h Lu w s
hq h q qq L

 
       

The percentage error in the results obtained by present and other 

theories with respect to the corresponding results obtained by the 

theory of elasticity is calculated as follows: 

valuebya particularmodel valuebyexactelasticitysolution
%error = ×100

valuebyexactelasticitysolution



         #
Percentage error quoted is with respect to the corresponding 

value of exact elasticity solution [69] 
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Graph 1. Variation Of Axial Displacement ( u ) Through The 

Thickness Of Simply Supported Beam At(X = 0, Z) When 

Subjected To Uniformly Distributed Load For Aspect Ratio 
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Graph.2: Variation Of Axial Bending Stress  
x

 Through 

The Thickness Of Simply Supported Beam At (X=L/2,Z) 

When Subjected To Uniformly Distributed Load For  Aspect 

Ratio 4. 
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Graph 3: Variation of transverse shear stress 
CR

zx through 

the thickness of simply supported beam at (x=0,z) when 

subjected to uniformly distributed load for  aspect ratio 

4.using constitutive relation 
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Graph .4: Variation Of Transverse Shear Stress 
EE

zx Through The Thickness Of Simply Supported Beam At 

(X=0,Z) When Subjected To Uniformly Distributed Load 

For  Aspect Ratio 4.Using Equation Of Equilibrium. 
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Graph .5: Variation Of Axial Displacement ( u ) Through 

The Thickness Of Simply Supported Beam At (X=0, Z) 

When Subjected To Concentrated Point Load For  Aspect 

Ratio 4. 
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Graph .6: Variation Of Axial Bending Stress 
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Graph .7: Variation Of Transverse Shear  CR
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(X=L/2,Z) When Subjected To Concentrated  Load For  
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Graph .8: Variation Of Transverse Shear  EE
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Through The Thickness Of Simply Supported Beam At 

(X=L/2,Z) When Subjected To Concentrated  Load For  
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Graph .9: Variation Of Axial Displacement ( u ) Stress 

Through The Thickness Of Simply Supported Beam At 

(X=0,Z= ±H/2 When Subjected To Sine  Load For  Aspect 

Ratio 4. 
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Graph .10: Variation Of Axial Bending Stress ( x )Through 

The Thickness Of Simply Supported Beam At (X=L/2,Z) 

When Subjected To Sine  Load For  Aspect Ratio 4. 
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Graph .11: Variation Of Transverse Shear Stress 

CR

zx Through The Thickness Of Simply Supported Beam At 

(X=0,Z) When Subjected To Sine Load For  Aspect Ratio 

4.Using Constitutive Relation 
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Graph 12: Variation Of Transverse Shear Stress 
EE

zx Through The Thickness Of Simply Supported Beam At 

(X=0,Z) When Subjected To Sine  Load For  Aspect Ratio 

4.Using Equilibrium Equation 
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Graph 13: Variation Of Axial Displacement U Through The 

Thickness Of Simply Supported Beam At (X=L,Z) When 

Subjected To Linearly Varying Load For  Aspect Ratio 4. 
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Graph 14: Variation Of Axial Bending Stress 


x   Through 

The Thickness Of Simply Supported Beam At (X=L/2,Z) 

When Subjected To Linearly Varying Load For  Aspect 

Ratio 4. 
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Graph 15: Variation Of Transverse Shear Stress 
CR

zx Through The Thickness Of Simply Supported Beam At 

(X=0,Z) When Subjected To Linearly Varying Load For 

Aspect Ratio 4.Using Constitutive Relation 
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Graph 16: Variation Of Transverse Shear Stress 
EE

zx Through The Thickness Of Simply Supported Beam At 

(X=0, Z) When Subjected To Linearly Varying Load For 

Aspect Ratio 4.Using Equilibrium Equation. 
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Graph 17: Variation Of Axial Displacement ‘U’ Through 

The Thickness Of Simply Supported Beam At (X=L,Z) 

When Subjected To Parabolic Load For Aspect Ratio 4. 
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Graph 18: Variation Of Axial Bending Stress  x  Through 

The Thickness Of Simply Supported Beam At (X=L/2,Z) 

When Subjected To Parabolic Load For 
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Graph 19: Variation Of Transverse Shear Stress 
CR

zx  

Through The Thickness Of Simply Supported Beam At 

(X=0, Z) When Subjected To Parabolic Load For Aspect 

Ratio 4.Using Constitutive Relation. 
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Graph 20: Variation Of Transverse Shear Stress   Through 

The Thickness Of Simply Supported Beam At (X=0, Z) 

When Subjected To Parabolic Load For Aspect Ratio 

4.Using Equilibrium Equation. 

Discussion of results: 

The results obtained from the present theory are compared 

with those of the elementary beam theory (ETB), first order 

shear deformation theory of Timoshenko, higher order theories 

of Ghugal , Reddy, refined theory of beam by Ghugal  and exact 

elasticity solutions given by Timoshenko and Goodier,  

Example 1: Simply supported isotropic beam subjected to 

uniformly distributed load 

Comparison of axial displacement transverse displacement, 

axial bending stress and transverse shear stress for simply 

supported isotropic beam subjected to uniformly distributed load 

is presented in Tables 4.1 through 4.5 

a) The axial displacement predicted by present theory for simply 

supported isotropic beam subjected to uniformly distribute load 

is in error by 4.652% and 0.745% for aspect ratio 4 and 10 

respectively 

b) The axial displacement predicted by HSDT for simply 

supported isotropic beam subjected to uniformly distribute load 

is in error by 4.456 and 0.709% for aspect ratio 4 and 10 

respectively 

c)  Transverse displacement predicted by present theory 

overestimate the Transverse displacement by 1.12and0.112% for 

aspect ratio 4 and 10 respectively whereas ETB underestimate 

the same. 

d) Present theory and HSDT of Reddy is in excellent agreement 

with exact solution for all aspect ratios (See Table 4.2). 

e) The deflection predicted by ETB is lower than Present TSDT 

and Exact elasticity solution due to neglect of effect of shear 

deformation in ETB (See Table 4.2). 

f) Axial bending stress predicted by present theory and HSDT of 

Reddy good agreement with exact solution. 

g) ETB and FSDT under estimate the axial bending stress by 

1.693 and 0.264% for aspect ratio 4 and 10 respectively (See 

Table 4.4). 

h) Transverse shear stress CR

zx  predicted by present theory close 

agreement with exact solution while HSDT, FSDT and ETB 

underestimate the same (See Table 4.4). 

i) The Transverse shear stress EE

zx  predicted by present theory 

for simply supported isotropic beam subjected to uniformly 

distribute load is in error by –7.233% and –2.733% for aspect 

ratio 4 and 10 respectively (See Table 4.5) 

Example 2: Simply Supported Beam with a concentrated load 

Comparison of axial displacement, transverse displacement, 

axial bending stress and transverse shear stress for simply 

supported isotropic beam subjected to concentrated load is 

presented in Table 6 through 10 

a) For simply supported isotropic beam with concentrated load 

for axial displacement, percentage error is not   quoted due to 

non-availability/non existence of exact solution. 

b) Present theory over estimate Transverse displacement by 

2.9706 and 0.288 % for aspect ratio 4 and 10 respectively, also 

HSDT, FSDT, over estimate the same. While ETB 

underestimate the same.  

c) Present theory overestimates the axial bending stress 12.838 

and 4.468 for aspect ratio 4 and 10 respectively. While FSDT 

and ETB underestimate the same. 

d) The examination of table 4.9 revels that present theory and 

HSDT theory overestimate transverse shear stress, while FSDT 

underestimate the same.  

e) For simply supported isotropic beam with concentrated load 

for Transverse shear stress EE

zx  percentage error is not   quoted 

due to non-availability/non existence of exact solution. 

Example 3: Simply Supported Beam subjected to single sine 

load 

Comparison of axial displacement, transverse displacement, 

axial bending stress and transverse shear stress for simply 

supported isotropic beam subjected to single sine load is 

presented in Table 11 through 15 

a) The examination of table 4.11 reveals that maximum axial 

deflection obtained by present theory overestimate the value by 

3.569and 0.746 % for aspect ratio 4 and 6 respectively as 

compared to exact solution is given by Ghugal and also over 

estimate the value for HSDT, FSDT and ETB 

b) Transverse displacement predicted by present theory, HSDT 

and FSDT close agreement with exact solution. ETB under 

estimate the transverse displacement by 12.693 and 2.308% for 

aspect ratio 4 and 6 respectively.  

c) Present theory over estimate the axial bending stress by 

0.4495 and0.250% for aspect ratio 4 and 6 respectively where 

FSDT and ETB Underestimate the same.  

d) HSDT of Reddy show excellent results of transverse shear 

stress for all aspect ratio. 

e)  The examination of Table 4.14 reveals that transverse shear 

stress obtained by present theory overestimate the value by 

3.495% and 3.224% for aspect ratio 4 and 10 respectively. 

While HSDT of Reddy shows close agreement with exact 

solution 

f) For simply supported isotropic beam subjected to single sine 

load percentage error for Transverse shear stress EE

zx  is not 

quoted due to non-availability/non existence of exact solution 

(See Table 15) 

Example 4: Simply Supported Beam subjected to linearly 

varying load 

Comparison of axial displacement, transverse displacement 

axial bending stress and transverse shear stress for simply 

supported isotropic beam subjected to linearly varying load. is 

presented in Table 16 through 20 

a) The examination of Table 16 reveals that axial displacement 

obtained by present Theory, HSDT of Reddy, FSDT and ETB 

over estimate the value for aspect ratio 4 and 10 as compared to 

Theory of elasticity given by Timoshenko and Goodier
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b) Transverse displacement predicted by present theory and 

HSDT of Reddy is in good agreement with exact solution. FSDT 

over estimate the value by 1.2265% and 0.222% for aspect ratio 

4 and 10 respectively for the same, while ETB underestimate the 

same. 

c) Axial bending stress predicted by present theory and HSDT of 

Reddy is in excellent agreement with exact solution. ETB and 

FSDT under estimate the same. 

d) The examination of Table.19 reveals that present theory, 

HSDT, FSDT, underestimate Transverse shear stress for all 

aspect ratio as compared to exact solution. 

e) For simply supported isotropic beam subjected to linearly 

varying load for Transverse shear stress EE

zx  percentage error 

is not   quoted due to non-availability/non existence of exact 

solution 

Example 5: Simply Supported Beam subjected to parabolic load 

Comparison of axial displacement, transverse displacement 

axial bending stress 
x

at and transverse shear stress for Simply 

supported isotropic beam subjected to parabolic load is 

presented in Table no 21through 25. 

a) For simply supported isotropic beam with parabolic load axial 

displacement u , transverse displacement w , axial bending 

stress 
x

 and transverse shear stress 
zx

 
percentage error is not 

quoted due to non availability/non existence of exact solution 

Conclusions  

A refined shear deformation theory for bending of thick 

isotropic beam is presented and results obtained are discussed 

with those of other theories. The present theory has several 

features as given below: 

a) It is a displacement based, refined shear deformation theory 

which includes the transverse shear effects.  

b) The number of unknown variables is same as that in FSDT. 

c) The shear deformation in the beam is properly accounted for. 

d) Constitutive relations are satisfied in respect of axial stress 

and transverse shear stress. 

e) Transverse shear stress satisfies zero shear stress boundary 

conditions on top and bottom surfaces of the beam perfectly. 

f) The theory obviates the need of shear correction factor. 

The Theories having above features is used for static flexural 

and free flexural vibration analysis of thick isotropic beam. 

From this analysis, following conclusions are drawn. 

1) Present theory gives good result in respect of axial 

displacements.   

2) The use of present theory gives good result in respect of 

transverse displacements.   

3) The results of axial stress obtained by present theory are 

matching with results of available higher-order and refined shear 

deformation theories. 

4) The governing differential equations and the associated 

boundary conditions are variation ally consistent 
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Table 1 Comparison of axial displacement u at (x = L, z = ±h/2 ) for isotropic beam subjected to 

uniformly distributed load. 
Theory Model S = 2 % error# S = 4 %error# S = 10 % error# 

Present  TSDT 2.259 2.682 16.535 4.652 251.35 0.745 
Reddy HSDT 2.245 2.045 16.504 4.456 251.27 0.709 

Timoshenko FSDT 2.000 -9.091 16.000 1.265 250.00 0.200 

Bernoulli-Euler  ETB 2.000 -9.091 16.000 1.265 250.00 0.200 
Timoshenko and Goodier  Elasticity 2.200 0.0 15.800 0.0 249.50 0.0 

         #
 Percentage error quoted is with respect to the corresponding value of exact elasticity solution 

[69] 

 

 Table 2 Comparison of transverse displacement w at (x = L/2, z = 0) for isotropic beam subjected to 

uniformly distributed load 
Theory Model S = 2 % Error# S = 4 % Error# S = 10 % Error# 

Present  TSDT 2.529 3.098 1.805 1.120 1.601 1.12 
Reddy HSDT 2.532 3.221 1.806 1.176 1.602 0.250 

Timoshenko  FSDT 2.538 3.465 1.806 1.176 1.602 0.250 

Bernoulli-Euler  ETB 1.563 -36.282 1.563 -12.437 1.563 -2.190 
Timoshenko  

and Goodier   
Elasticity 2.453 0.0 1.785 0.0 1.598 0.0 

                                            # Percentage error quoted is with respect to the corresponding value of exact elasticity 

solution [69] 
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Table 3 Comparison of axial bending stress 
x

at (x = L/2, z = ± h/2) for isotropic beam 

subjected to uniformly distributed      load 
Theory Model S = 2 % Error# S = 4 % Error# S = 10 % Error# 

Present TSDT 3.278 2.438 12.280 0.656 75.284 0.112 

Reddy HSDT 3.261 1.960 12.263 0.516 75.268 0.090 

Timoshenko FSDT 3.000 -6.25 12.000 -1.693 75.000 -0.264 
Bernoulli-Euler ETB 3.000 -6.25 12.000 -1.693 75.000 -0.264 

Timoshenko 

and Goodier 
Elasticity 3.200 0.0 12.200 0.0 75.200 0.0 

                      #
 Percentage error quoted is with respect to the corresponding value of exact elasticity 

solution [69] 

 

Table .4 Comparison of transverse shear stress CR

zx at (x = 0, z = 0) for isotropic 

beam subjected   to uniformly distributed load 

Theory Model S = 2 % Error# S = 4 % Error# S = 10 
% Error# 

Present  TSDT 1.451 -3.267 2.993 -0.233 7.591 1.2133 

Reddy HSDT 1.415 -5.667 2.908 -3.067 7.361 -1.853 

Timoshenko  FSDT 0.984 -34.4 1.969 -34.367 4.922 -34.373 

Bernoulli-Euler  ETB ---  ---  ---  

Timoshenko  

and Goodier   
Elasticity 1.500 0.0 3.000 0.0 7.500 0.0 

    # Percentage error quoted is with respect to the corresponding value of exact 

elasticity   solution [69] 

 

Table .5 Comparison of transverse shear stress EE

zx at (x = 0, z = 0) for isotropic 

beam subjected to uniformly distributed load 
Theory Model S = 2 % Error# S = 4 % Error# S = 10 % Error# 

Present  TSDT 1.250 -16.667 2.783 -7.233 7.295 -2.733 

Reddy HSDT 1.262 -15.867 2.795 -6.833 7.304 -2.61 

Timoshenko FSDT 1.477 -1.533 2.953 -1.567 7.383 -1.56 
Bernoulli-Euler ETB 1.477 -1.533 2.953 -1.567 7.383 -1.56 

Timoshenko 

and Goodier 
Elasticity 1.500 0.0 3.000 0.0 7.500 0.0 

# Percentage error quoted is with respect to the corresponding value of exact 

elasticity solution [69] 

 
Table .6 Comparison of axial displacement u at (x = L, z =± h/2) for isotropic 

beam subjected to concentrated load. 
Theory Model S = 2 S = 4 S = 10 

Present TSDT 3.2776 24.5591 376.4214 
Reddy HSDT 3.2611 24.5263 376.3385 

Timoshenko FSDT 3.0001 24.0007 375.0122 

Bernoulli-Euler ETB 3.0001 24.0007 375.0109 
Timoshenko 

and Goodier 
Elasticity --- --- --- 

#
 Percentage error is not quoted due to non availability/non-existence of exact 

solution 

 

Table.7 Comparison of transverse displacement w at (x = L/2, z = 0) for 

isotropic beam subjected to concentrated load. 
Theory Model S = 2 % Error# S = 4 % Error# S = 10 % Error# 

Present TSDT 4.3257 7.63 2.9706 1.995 2.5764 0.288 
Reddy HSDT 4.3399 7.899 2.9726 20.635 2.5765 0.292 

Timoshenko FSDT 4.4198 9.978 2.9799 23.142 2.5768 0.304 

Bernoulli-Euler ETB 2.5000 -37.792 2.5000 -14.1631 2.5000 -2.686 
Timoshenko 

and Goodier 
Elasticity 4.0188 0.00 2.9125 0.00 2.5690 0.00 

#
 Percentage error quoted is with respect to the corresponding value of exact 

elasticity solution [69] 
 



Uday P. Naik et al./ Elixir Appl. Math. 43 (2012) 7004-7015 
 

7012 

Table .8 Comparison of axial bending stress 
x

at (x = L/2, z=± h/2) for 

isotropic beam subjected to concentrated load. 
Theory Model S = 2 % Error# S = 4 % Error# S = 10 % Error# 

Present TSDT 9.3101 67.907 28.7619 12.838 154.3242 4.468 

Reddy HSDT 9.3469 68.571 28.6790 12.513 154.0091 4.255 

Timoshenko FSDT 5.9065 6.523 23.6261 -7.311 147.6634 -0.041 
Bernoulli-Euler ETB 5.9065 6.523 23.6261 -7.311 147.6630 -0.0412 

Timoshenko 

and Goodier 
Elasticity 5.5448 0.0 25.4896 0.0 147.7239 0.0 

#
 Percentage error quoted is with respect to the corresponding value of 

exact elasticity solution [69] 

 
Table .9 Comparison of transverse shear stress 

zx at (x=0, z=0) for isotropic beam subjected to 

concentrated load. 
Theory Model S = 2 % Error# S = 4 % Error# S = 10 % Error# 

Present TSDT 1.5532 -- 3.1253 4.177 7.8912 5.216 

Reddy HSDT 1.5059 -- 3.0319 1.063 7.6519 2.025 

Timoshenko FSDT 1.0244 -- 2.0489 -31.703 5.1223 -31.702 
Bernoulli-Euler ETB --- -- --- -- --- -- 

Timoshenko 

and Goodier 

 

Elasticity 

 

--- 

 

-- 

 

3.000 

 

0.00 

 

7.500 

 

0.00 
#
 Percentage error is not quoted due to non availability/non-existence of exact solution 

 

Table.10 Comparison of transverse shear stress EE

zx at (x = 0, z= 0) for isotropic beam subjected 

to concentrated load. 
Theory Model S = 2 % Error# S = 4 % Error# S = 10 % Error# 

Present TSDT 1.4347 -- 2.9283 -- 7.5636 -- 

Reddy HSDT 1.4290 -- 2.9284 -- 7.5733 -- 

Timoshenko FSDT 1.5367 -- 3.0733 -- 7.6834 -- 
Bernoulli-Euler ETB 1.5367 -- 3.0733 -- 7.6834 -- 

Timoshenko 

and Goodier 
Elasticity --- -- --- -- --- -- 

#
 Percentage error is not quoted due to non availability/non-existence of exact solution 

 

Table .11 Comparison of axial displacement u at (x = 0, z = ± h / 2) for isotropic beam subjected 

to Sine load. 
Theory Model S = 2 S = 4 % Error# S = 10 % Error# 

Present TSDT 1.7225 12.7359 3.569 194.3895 0.746 
Reddy HSDT 1.7124 12.7150 3.399 194.3370 0.719 

Timoshenko FSDT 1.5481 12.3846 0.712 193.5098 0.290 

Bernoulli-Euler ETB 1.5481 12.3846 0.712 193.5092 0.289 
Ghugal Exact --- 12.2970 0.00 192.9500 0.00 

#
 Percentage error quoted is with respect to the corresponding value of exact elasticity solution 

[65] 

 

Table .12 Comparison of transverse displacement w at (x = L/2, z = 0) for isotropic beam 

subjected to Sine load 
Theory Model S = 2 % Error# S = 4 % Error# S = 10 % Error# 

Present TSDT 2.0138 -- 1.4288 1.262 1.2635 0.198 
Reddy HSDT 2.0163 -- 1.4291 1.283 1.2635 0.198 

Timoshenko FSDT 2.0223 -- 1.4295 1.311 1.2635 0.198 

Bernoulli-Euler ETB 1.2319 -- 1.2319 -12.693 1.2319 -2.308 

Ghugal Exact --- -- 1.4110 0.00 1.2610 0.00 
#
 Percentage error quoted is with respect to the corresponding value of exact elasticity 

solution [65] 
 

Table .1 3 Comparison of axial bending stress 
x

at (x = L/2, z = ± h/2) for isotropic beam 

subjected to Sine load 
Theory Model S = 2 % Error# S = 4 % Error# S = 10 % Error# 

Present TSDT 2.7057 -- 10.0028 0.449 61.0693 0.250 

Reddy HSDT 2.6898 -- 9.9864 0.285 61.0528 0.223 

Timoshenko FSDT 2.4317 -- 9.7268 -2.322 60.7929 -0.204 
Bernoulli-Euler ETB 2.4317 -- 9.7268 -2.322 60.7927 -0.204 

Ghugal Exact --- -- 9.9580 0.00 60.9170 0.00 
#
 Percentage error quoted is with respect to the corresponding value of exact Ghugal 

solution [65] 
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Table .1 4 Comparison of transverse shear stress 
zx at     (x = 0, z = 0) for 

isotropic beam subjected to Sine load. 
Theory Model S = 2 % Error# S = 4 % Error# S = 10 % Error# 

Present TSDT 0.9764 -- 1.9664 3.495 4.9258 3.244 

Reddy HSDT 0.9477 -- 1.9062 0.326 4.7732 0.0461 

Timoshenko FSDT 0.6366 -- 1.2732 -32.989 3.1831 -33.282 
Bernoulli-Euler ETB --- -- --- -- --- -- 

Ghugal Exact --- -- 1.900 0.00 4.7710 
0.00 

# Percentage error quoted is with respect to the corresponding value of exact 

elasticitySolution [65] 

 
Table.1 5 Comparison of transverse shear stress EE

zx at     (x = 0, z = 0) for isotropic 

beam subjected to Sine load. 
Theory Model S = 2 % Error# S = 4 % Error# S = 10 % Error# 

Present TSDT 0.9263 -- 1.8955 --- 4.7689 -- 

Reddy HSDT 0.9296 -- 1.8971 --- 4.7696 -- 

Timoshenko FSDT 0.9549 -- 1.9099 -- 4.7747 -- 
Bernoulli-Euler ETB 0.9549 -- 1.9099 -- 4.7746 -- 

Ghugal Exact --- -- --- -- --- -- 
#
 Percentage error quoted is with respect to the corresponding value of exact 

elasticitySolution [65] 

 

Table 16 Comparison of axial displacement u at (x = L, z = ± h/2) for isotropic beam 

subjected to linearly varying load. 
Theory Model S = 2 % error# S = 4 % Error# S = 10 % Error# 

Present TSDT 1.1295 2.682 8.2675 4.652 125.675 0.7415 
Reddy HSDT 1.1225 2.045 8.2520 4.456 125.635 0.709 

Timoshenko FSDT 1.0000 -9.091 8.0000 1.266 125.000 0.200 

Bernoulli-Euler ETB 1.0000 -9.091 8.0000 1.266 125.000 0.200 

Timoshenko 

and Goodier 
Elasticity 1.1000 0.00 7.9000 0.00 124.750 0.00 

#
 Percentage error quoted is with respect to the corresponding value of exact elasticity 

solution [69] 

 

Table 17 Comparison of axial displacement transverse displacement w at  (x = L/2, z = 0) 

for isotropic beam subjected to linearly varying load. 
Theory Model S = 2 % Error# S = 4 % Error# S = 10 % Error# 

Present TSDT 1.2645 3.098 0.9025 1.1204 0.8005 0.1877 
Reddy HSDT 1.2660 3.2205 0.9030 1.1765 0.8010 0.250 

Timoshenko FSDT 1.2690 3.465 0.9030 1.1765 0.8010 0.250 

Bernoulli-Euler ETB 0.7815 -36.282 0.7815 -12.437 0.7815 -2.190 
Timoshenko 

and Goodier 
Elasticity 1.2265 0.00 0.8925 0.00 0.7990 0.00 

#
 Percentage error quoted is with respect to the corresponding value of exact elasticity 

solution [69] 

 

Table 18 Comparison of axial bending stress 
x

at (x = L/2, z =  ± h/2) for isotropic beam 

subjected to linearly varying load. 
Theory Model S = 2 % Error# S = 4 % Error# S = 10 % Error# 

Present TSDT 1.6390 2.4375 6.1400 0.6557 37.642 0.112 

Reddy HSDT 1.6310 1.938 6.1315 0.5164 37.634 0.090 

Timoshenko FSDT 1.5000 -6.250 6.0000 -1.6393 37.500 -0.266 

Bernoulli-Euler ETB 1.5000 -6.250 6.0000 -1.6393 37.500 -0.266 

Timoshenko 

and Goodier 
Elasticity 1.6000 0.00 6.1000 0.00 37.600 0.00 

#
 Percentage error quoted is with respect to the corresponding value of exact elasticity 

solution [69] 
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Table 19 Comparison of for transverse shear stress 
zx at (x = 0, z = 0) isotropic beam 

subjected to linearly varying load. 
Theory Model S = 2 % Error# S = 4 % Error# S = 10 % Error# 

Present TSDT 0.7255 -3.267 1.4965 -0.233 3.7955 1.2133 

Reddy HSDT 0.7075 -5.667 1.4540 -3.067 3.6805 -1.853 

Timoshenko FSDT 0.6000 -20.00 1.2000 -20.00 3.0000 -20.00 
Bernoulli-Euler ETB --- -- --- -- --- -- 

Timoshenko 

and Goodier 
Elasticity 0.7500 0.00 1.5000 0.00 3.7500 0.00 

#
 Percentage error quoted is with respect to the corresponding value of exact 

elasticity solution [69] 

 

 Table .20 Comparison of for transverse shear stress EE

zx at (x = 0, z = 0) isotropic beam 

subjected to linearly varying load. 
Theory Model S = 2 % Error# S = 4 % Error# S = 10 % Error# 

Present TSDT 0.6250 -- 1.3195 -- 3.6475 -- 

Reddy HSDT 0.6310 -- 1.3975 -- 3.6520 -- 

Timoshenko FSDT 0.7385 -- 1.4765 -- 3.6915 -- 
Bernoulli-Euler ETB 0.7500 -- 1.4765 -- 3.6915 -- 

Timoshenko 

and Goodier 
Elasticity -- -- -- -- -- -- 

               #
 Percentage error quoted is with respect to the corresponding value of exact 

elasticity solution [69] 

 
Table 21 Comparison of axial displacement u at (x = L, z= ± h/2) for isotropic 

beam subjected to parabolic load. 
Theory Model S = 2 % Error# S = 4 z% Error# S = 10 % Error# 

Present TSDT 0.6840 -- 4.9754 -- 75.4467 -- 
Reddy HSDT 0.6797 -- 4.9655 -- 75.4204 -- 

Timoshenko FSDT 0.6000 -- 4.7999 -- 74.9991 -- 

Bernoulli-Euler ETB 0.6000 -- 4.7999 -- 74.9988 -- 
Timoshenko 

and Goodier 
Elasticity -- -- -- -- -- -- 

#
 Percentage error is not quoted due to non availability/non-existence of exact 

solution 

 

Table.22 Comparison of transverse displacement w at (x = L/2, z =0 ), for isotropic 

beam subjected to parabolic load. 
Theory Model S = 2 % Error# S = 4 % Error# S = 10 % Error# 

Present TSDT 0.7457 -- 0.5344 -- 0.4749 -- 
Reddy HSDT 0.7464 -- 0.5346 -- 0.4749 -- 

Timoshenko FSDT 0.7480 -- 0.5346 -- 0.4749 -- 

Bernoulli-Euler ETB 0.4635 -- 0.4635 -- 0.4635 -- 

Timoshenko 

and Goodier 
Elasticity -- -- -- -- -- -- 

#
 Percentage error is not quoted due to non availability/non-existence of exact 

solution 

 

Table 23 Comparison of axial bending stress 
x

at (x = L/2, z = ± h/2) for 

isotropic beam subjected to parabolic load 
Theory Model S = 2 % Error# S = 4 % Error# S = 10 % Error# 

Present TSDT 0.9452 -- 3.5622 -- 21.9480 -- 

Reddy HSDT 0.9410 -- 3.5667 -- 21.9438 -- 

Timoshenko FSDT 0.8750 -- 3.5002 -- 21.8762 -- 
Bernoulli-Euler ETB 0.8750 -- 3.5002 -- 21.8762 -- 

Timoshenko 

and Goodier 
Elasticity -- -- -- -- -- -- 

#
 Percentage error is not quoted due to non availability/non-existence of 

exact solution 
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Table 24 Comparison of transverse shear stress CR

zx at (x = 0, z = 0) for 

isotropic beam subjected to parabolic load 
Theory Model S = 2 % Error# S = 4 % Error# S = 10 % Error# 

Present TSDT 0.4704 -- 0.9820 -- 2.5062 -- 
Reddy HSDT 0.4598 -- 0.9552 -- 2.4307 -- 

Timoshenko FSDT 0.3255 -- 0.6511 -- 1.6277 -- 

Bernoulli-Euler ETB -- -- -- -- -- -- 
Timoshenko 

and Goodier 
Elasticity -- -- -- -- -- -- 

#
 Percentage error is not quoted due to non availability/non-existence of 

exact solution 

 
Table 25 Comparison of transverse shear stress EE

zx at (x = 0, z = 0) for 

isotropic beam subjected to parabolic load 
Theory Model S = 2 % Error# S = 4 % Error# S = 10 % Error# 

Present TSDT 0.3838 -- 0.8957 -- 2.3991 -- 

Reddy HSDT 0.3885 -- 0.9016 -- 2.4035 -- 

Timoshenko FSDT 0.4883 -- 0.9766 -- 2.4416 -- 
Bernoulli-Euler ETB 0.4883 -- 0.9766 -- 2.4416 -- 

Timoshenko 

and Goodier 
Elasticity -- -- -- -- -- -- 

#
 Percentage error is not quoted due to non availability/non-existence of exact 

solution 

 

 


