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Introduction 

Many natural phenomena and technological problems are 

susceptible to MHD analysis. Geophysics encounters MHD 

characteristics in the interactions of conducting fluids and 

magnetic fields, engineers employ MHD principle, in the design 

of heat exchangers pumps and flow meters, in space vehicle 

propulsion, thermal protection, braking, control and re-entry, in 

creating novel power generating systems etc. The study of MHD 

is quite important in the field of aerodynamics, since the 

temperature that occurs in such flight speeds are sufficient to 

dissociate or ionize the air appreciably and the motion of this 

ionized air may be controlled by applying a magnetic field 

suitably. The study of MHD is also relevant in medical science. 

For instance there have been researches on Arteriosclerosis (the 

cause of a cardiac arrest) where the effect of externally applied 

transverse magnetic field on a pulsalite flow in constricted 

arteries (tubes) is considered. When an electrically conducting 

fluid flows past a flat plate, its motion can be retarded by 

applying a transverse magnetic field and the Lorentz force acts 

as a resistance force in the direction opposite to the direction of 

the fluid velocity. Due to this the skin friction at the plate is 

reduced and hence the boundary flow may be controlled by 

transverse magnetic field. 

            The geophysical importance of the flows in rotating 

frame of reference has attracted the attention of a number of 

scholars. There appeared a number of studies in this literature 

viz Vidyanidhy and Nigam [1], Jana and Datta [2]. The effects 

of uniform transverse magnetic field with or without suction on  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

different flow characteristics was investigated by Gupta [3], 

Soundalgekar and Pop [4] and Mazumdar et al.[5]. The 

similarity solutions of the unsteady Navier-Stokes equations in a 

rotating frame of reference was obtained by Gupta [6]. Singh et 

al. [7] studied the unsteady MHD Couette flow of electrically 

conducting fluid in a rotating system. Singh et al. [8] studied a 

periodic solution of oscillatory Couette flow in rotating system 

through porous medium. Recently Ahmed and Kalita [9] have 

studied MHD oscillatory flow past a porous plate in a rotating 

system with constant suction. The object of the present work is 

to investigate the effects of the transverse magnetic field and 

rotation parameter on an oscillatory flow past a horizontal 

porous plate with periodic suction, because of the importance of 

such problems in industry as well as in aerodynamics. This work 

is an extension to work done by Ahmed and Kalita from 

constant suction to periodic suction. 

Mathematical formulation: 
We consider an unsteady flow of a viscous incompressible 

fluid past a horizontal porous plate with periodic suction -
i t

0w (1 Ae ) , where 0w  is the mean constant suction 

velocity , A is a positive constant such that A <1,   is small 

reference parameter. 

 Our investigation is restricted to the following assumptions: 

1. All the fluid properties except the density in the buoyancy 

force term are constants. 

2. A magnetic field of uniform strength 0B  is applied normal to 

the plate. 
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ABSTRACT  

An analytical solution to the problem of an MHD oscillatory boundary layer flow past a porous 

horizontal plate with periodic suction is presented. The fluid in the boundary layer rotates 

about an axis normal to the plate with a uniform angular velocity. A magnetic field of uniform 

strength is assumed to be applied normal to the plate. The equations governing the flow and 

heat transfer are solved by regular perturbation technique assuming the solution to be consist 

of a mean part and a perturbed part. The expressions for the temperature fields, skin friction at 

the plate due to primary and secondary velocity fields and the rate of heat transfer from the 

plate to the fluid in terms of Nusselt number are obtained in non dimensional form. The 

dimensionless expressions for the amplitude and phases of the fluctuating parts of the skin 

friction, Nusselt number at the plate are also derived. The skin friction x  due to primary 

velocity and skin friction y due to secondary velocity at the plate, the amplitude and phase of 

the fluctuating part of x , the rate of heat transfer from the plate to the fluid in terms of 

Nusselt number and amplitudes and phases of the fluctuating parts of it  are demonstrated 

graphically and the effects of the parameters M (Hartmann number),   (rotation 

parameter)and A (suction parameter)on these fields are discussed.It is seen that M, ,A have 

significant effect on the flow and heat transfer characteristics.2000 Mathematics subject 
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3. The magnetic Reynolds number is so small that the induced 

magnetic field can be     neglected. 

4. The fluid is rotating about a normal to the plate with angular 

velocity . 

5. The flow far away from the plate is not affected by the 

rotation. 

We choose the origin on the plate, the X-axis along the direction 

of the free stream, Y-axis perpendicular to it horizontally and Z-

axis normal to the plate which is the axis of rotation. Since the 

plate is infinite in extent in X,Y directions, therefore all the 

quantities except the pressure p are dependent of z and t only. 

Let ˆ ˆ ˆq iu jv kw  
r

 be the fluid velocity at the 

point (x, y, z) . 

 

 
 

The equation of continuity gives 
w

0
z





 

which holds for 
i t

0w w (1 Ae )          (2.1) 

With the forgoing assumptions and under the usual boundary 

layer approximations, the equations governing the flow and heat 

transfer are: 
22

i t 0
02

Bu u U u
v w (1 Ae ) (U u)

t t zz

 
 



   
      

  
     (2.2)                               

22 B vv v vi t 0
(U u) w (1 Ae )

02t tz




 


  
     

 
      (2.3)                                       

  
2 2 22

2i t 20
02

p p

BT T T u v
w (1 Ae ) U u (v)

t z c z z cz


           

             
          

  (2.4) 

with relevant boundary conditions: 

i t
w w

i t
0

z 0 : u 0, v 0,T T (T T )e

z : u U U (1 e ), v 0,T T







       


       

      (2.5) 

                                                  

We now introduce the following non-dimensional quantities: 

2

0 0

2 2
0 0 0 0 0

2 2

0 0

2
w p w0

tw zwu v U
u , v , U , t , , , z ,

U U U w w

B UT T
M , Pr ,T , E

T T c (T T )w



 

 
        

 

  
   

  

 

where,   is the kinematic viscosity,   the density, pc  the 

specific heat at constant pressure, 0B  the applied magnetic 

field, U  the mean velocity,  the frequency of oscillation, M 

the Hartmann number, Pr the Prandtl number, E  the Eckert 

number, T the temperature,   the thermal diffusivity,   the 

electrical conductivity. 

The non-dimensional form of the equations (2.2),(2.3) and (2.4) 

are: 
2

i t

2

u u U u
v (1 Ae ) M(U u)

t t zz

   
       

  
          (2.6)                                             

2
i t

2

v v v
(U u) (1 Ae ) Mv

t zz

  
      

 
             (2.7)                                                              

  
2 22

2i t 2

2
P

T T T u v
r P(1 Ae ) E Pr ME Pr U u v

t z z zz

    
        

   

     
    
     

    (2.8)       

       with relevant boundary conditions: 

i t

i t

z 0 : u 0, v 0,T 1 e

z : u 1 e , v 0,T 0





      


      

                 (2.9) 

                                                                   

Solution of the problem: 

We introduce the complex variable q defined by q=u+iv                                                     

(3.1) 

 

        where 
2i 1   

The non-dimensional form of the equations can be rewritten as 

follows: 

   
2

i t

2

q q U q
(1 Ae ) U q M i

t t zz

   
        

  
      (3.2) 

                                              
22

i t

2

T T T q
Pr Pr(1 Ae ) E Pr ME Pr(U q)(U q)

t z zz

   
       

  
 (3.3)         

 ( q  being the conjugate complex of q) 

Subject to boundary conditions: 

i t

i t

z 0 : q 0,T 1 e

z : q 1 e U,T 0





     


      
              (3.4) 

 We represent the velocity q and temperature T assuming the 

small amplitude oscillation  <<1 as follows: 

 i t 2
0 1q q (z) e q (z) 0                                  (3.5) 

                                                                            

     i t 2
0 1T T z e T z 0                            (3.6) 

 Substituting (3.5) and (3.6) in (3.2) and (3.3) and by equating 

the coefficients of the harmonic terms and neglecting 
2  the 

following differential equations are obtained. 

   0 0 0q q M i q M i                          (3.7) 

                                                     

   1 1 1 0q q M i i q M i i Aq                           (3.8)   

                                               

  
2

0
0 0 0 0

dq
T Pr T E Pr ME Pr 1 q 1 q

dz
                      (3.9)                                               

 

  

0 11 1
1 1 1 0 0 0

0 1

1- q (1- q )dq dq
¢¢ ¢ ¢ ¢ ¢T Pr T - Pr iwT APT -E Pr q (z) q (z) - ME Pr

dz dz 1- q 1- q


   

   
   
    

  

                                                                                         (3.10) 

     subject to  the boundary conditions       

 
0 1 0 1

0 1 0 1

z 0 : q 0,q 0,T 1,T 1

z : q 1,q 1,T 0,T 0

    

    





             (3.11) 
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Here 0q and 1q  are the conjugates of the complex numbers 

0q and 1q  respectively. 

The solutions of the equations (3.7), (3.8), (3.9) and (3.10) 

subject to the boundary conditions (3.11) are 

1z
0q (z) 1 e


                                                     (3.12)  

                                                                                                        

  2 1z z
1 1 1q (z) AL 1 e 1 AL e

 
                     (3.13) 

                                                                

     1 1 zPrz
0 4 4T z 1 EPr L e EPr L e

         (3.14)                                                  

   
     z z z z Pr z3 1 2 1 2 1 1T z 1 L L L L e L e L e L e L e

1 12 13 14 15 12 13 14 15

             
          

                                                                                         (3.15) 

   where,  

 
1

1 1 4 M i

2

   
  , 

 
2

1 1 4 M i i

2

    
  , 

2

3

Pr Pr 4Pr i

2

  
  , 

 
1

1 2
1 1

L
M i i



     

, 

   
1 1

2 2

1 1 1 1

L

Pr

 


    

, 

   
3 2

1 1 1 1

1
L

Pr



    

, 

4 2 3L L ML  , 

   
1 2

5 2

1 2 1 2

L

Pr Pi

 


      

, 

   
1 2

6 2

1 2 1 2

L

Pr Pr i

 


      
, 

   
1 1

7 2

1 1 1 1

2
L

Pr Pr i

 


      

,

   
8 2

1 2 1 2

1
L

Pr Pr i



      

, 

   
9 2

1 2 1 2

1
L

Pr Pr i



      

,

   
10 2

1 1 1 1

2
L

Pr Pr i



      

   
1 1

11 2

1 1 1 1

L

Pr Pr i

 


      

,

    12 1 5 1 8L EPr 1 AL L M 1 AL L    , 

    13 1 6 1 9L EPr 1 AL L M 1 AL L    , 

 14 1 7 1 10 4 11L EPr AL L MAL L Pr AL L   , 

 4
15

A Pr 1 E Pr L
L

i





 

where 2, 3 4L L and L  are real and the others are complex 

constants, whose real and imaginary parts are shown in the 

Appendix. 

Velocity and temperature fields: 

The non-dimensional velocity field is given by 

   i t
0 1q q z e q z             (4.1) 

By splitting it into real and imaginary parts, the primary and 

secondary velocity components are derived as follows: 

0u u A cos( t )                                 (4.2) 

                                                                            

 0v v A sin t                                 (4.3) 

where ,  

              0 0 0u iv q                                      (4.4) 

                                                                                               

 1A q z                                                  (4.5) 

                                                                                        

 1argq z                                                  (4.6)                                     

The temperature in the non-dimensional form is given by 

   i t

0 1T T z Realpart of e T (z)    

        0T z B cos t                  (4.7) 

where,  

             1B T z                                           (4.8)                                                                                     

             1argT z                                        (4.9)                                                   

Skin friction: 

The skin frictions x and y  at the plate in the direction of 

primary and secondary velocities respectively are given by  

 x x0

z 0

du
G cos t

dz 


        


    (5.1)                                                          

y y0

z 0

dv
G sin ( t )

dz 


       


      (5.2)                                                    

where,     

            
1G q (0)            (5.3)                                                                               

             1arg q (0)                  (5.4)                                                                       

              x0 0u 0                  (5.5) 

                                                                                                        

 y0 0v 0                                    (5.6) 

                                                        

 Coefficient of heat transfer: 

The rate of heat transfer in terms of Nusselt number from the 

plate to the fluid is given by  

Nu = Real part of 
z 0

T

z 

 
 
 

 

      =   Real part of      i t
0 1T 0 e T 0    

      =     i t
0 1T 0 Realpartof e T 0    

       =    0T 0 H cos t     

where,  1H T 0                          (6.1) 
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  1arg T 0                             (6.2) 

7. Results and discussion: 
In order to study the effects of magnetic field, rotation 

parameter and suction parameter on the flow and heat transfer 

characteristics, we have carried out numerical calculations for 

the amplitudes and the phase of the fluctuating parts of the skin 

frictions at the plate due to primary and secondary velocity 

fields, heat transfer amplitude and phase, Nusselt number at the 

plate for different values of the physical parameters involved. 

These values are plotted in figures 1-13.Our investigation is 

restricted to Pr=0.7(Prandtl number), which corresponds to air, 

E=.05(Eckert number) and t
2


  , 1 (frequency of 

oscillation). The values of the other parameters are chosen 

arbitrarily. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 and 3 demonstrate the variation of the amplitude of the 

perturbed part of the skin friction |G| against Hartmann number 

M under the influence of suction parameter A and rotation 

parameter . These figures show that an increase in suction 

parameter A or rotation parameter   causes |G| (skin friction 

amplitude) to decrease whereas |G| increases significantly under 

the effect of applied magnetic field. 
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Figure 2: The skin friction amplitude 

|G| versus Hartmann number M for 

5   

Figure 3: The skin friction amplitude 

|G| versus Hartmann number M for 

A=.5 
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Figure 4: The skin friction 

phase tan   versus 

Hartmann number M for 

5  
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Figure 5: The skin friction 

phase tan   versus 

Hartmann number M for 

A=.5 
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Figure 6: The skin 

friction x  due to primary 

velocity versus Hartmann 
number M for 5   
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Figure 7: The skin friction 

x  due to primary 
velocity versus 
Hartmann number M for 

A=.5  
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Figure 8: The skin friction 

y  due to secondary velocity 

versus Hartmann number M 

for 5  
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Figure 9: The skin friction 

y  due to secondary 

velocity versus Hartmann 

number for A=.5 
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Figure 10: The heat transfer 

amplitude |H| versus 

Hartmann number M for 

5    
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Figure 11: The heat 

transfer amplitude |H| 

versus Hartmann number 

M for A=.5 
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Figure 12: The heat transfer 

phase tan  versus 

Hartmann number M for 

5  
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Figure 13: The heat transfer 

phase tan  versus 

Hartmann number M for 

A=.5 

Figure 14: The Nusselt number Nu at the plate versus Hartmann 

number M for A=.5 
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The variation of the skin friction phase tan   versus 

Hartmann number M is presented in figures 4 and 5. Figure 4 

shows that for large suction parameter A, tan   decreases as M 

increases and the rate of decrease of  tan   is very sharp for 

small M. For small and moderate values of A, the effect of M on 

tan   is not so pronounced. The same figure further indicates 

that tan   decrease as A increases and it is seen that for large 

M, tan   is not significantly affected by A. In other words it 

may be stated that due to application of a strong magnetic field 

the effect of the suction parameter A on  tan   is uncountable. 

It is inferred from figure 5 that the rotation of the fluid ceases to 

act on tan    when the strength of the applied transverse 

magnetic field is high. 

Figure 6 and 7 demonstrate how the skin friction x  due to 

primary velocity is affected by the parameter M, A and . It is 

clear from these two figures that there is a steady growth in x  

under the effect of the magnetic field, suction parameter A and 

rotation parameter . It signifies that the viscous drag on the 

plate in the direction of the free stream rises due to the 

application of the transverse magnetic field and under the effect 

of rotation and suction parameter. 

        The behavior of the skin friction y  due to secondary 

velocity under the influence of M, A and   is shown in figures 

8 and 9. We observe from these two figures that viscous drag on 

the plate due to secondary velocity s reduced when the strength 

of the magnetic field as well as the suction parameter A is 

increased or the angular velocity of rotation of the fluid is 

decreased. 

         Figure 10 and 11 exhibit the behavior of the amplitude of 

the perturbed part of the heat transfer |H| at the plate under the 

effect of M, A and . These figures clearly show that |H| falls 

under the effect of these parameters. 

         It is seen from figures 12 and 13 that there is a growth in 

the heat transfer phase tan  at the plate due to application of 

the transverse magnetic field or under the effect of rotation and 

suction parameters. 

          There is a clear indication from figures 14 that the Nusselt 

number Nu decreases when M or   are increased. In other 

words we can see that the rate of heat transfer from the plate to 

the fluid is reduced when a magnetic field is applied transversely 

to the flow or fluid is made to rotate about a normal to the plate. 

Conclusions: 

1. The applied magnetic field increases the amplitude of the 

perturbed part of the skin friction at the plate. 

2. The viscous drag on the plate in the direction of the free 

stream rises due to application of the transverse magnetic field 

or under the effects of rotation and suction parameter. 

3. The application of the magnetic field or suction or rotation 

causes the skin friction at the plate due to secondary velocity to 

decrease. 

4 |H|, the amplitude of the perturbed part of the rate of heat 

transfer falls when the values of the parameters M, A and  are 

increased. 

5. There is a reduction in the rate of heat transfer from the plate 

to the fluid due to application of the transverse magnetic field or 

rotation of the fluid about a normal to the plate. 
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