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Introduction 

The exact analytic solutions of Schrödinger equation can 

only be obtained for few cases. In recent years many authors 

have solved the Schrödinger equation for different potentials [1-

4]. Different methods have been deployed in solving the 

Schrödinger equation.  

These methods include, Super Symmetric quantum 

mechanics (SUSTQM), [5], Nikiforov-Uvarov    [6], algebraic 

approach [7-10], Asymptotic iteration method [11, 12], shape 

invariant [13-15] and factorization method [16-18]. Also in 

recent times, much attention has been paid on factorization 

method. This method reproduces accurate analytical solutions 

for many differential equations that are important in the 

applications to many problems in physics, such as the equation 

of Hermit, Laguerre, Legendre, Bessel and Jacobi [19-21].  

However, the factorization method gives a complete 

analytical solutions of Schrödinger equation for Woods-Saxon, 

Poschl-Teller and harmonic potentials.  

Recently, we use the factorization method and found the 

exact solution of Schrödinger equation for inverted Woods-

Saxon and Manning-Rosen Potential [3].  

Satisfied by the factorization method through comparisons 

with other methods, we are tempted to solve the time-

independent Schrödinger equation for Woods-Saxon plus 

Rosen-Morse potential [22]. This potential plays important role 

in many different fields of Physics such as chemical and 

molecular Physics.  

The organization of the paper is as follows: We present in 

section II, the Woods-Saxon plus Rosen-Morse Potential. In 

section III, we obtain the exact solutions of Woods-Saxon plus 

Rosen-Morse Potential. Finally, conclusions are given in the last 

section.  

Woods-Saxon plus Rosen-Morse Potential 

The generalized Woods-Saxon plus Morse Potential is 

given by  
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where r is the radius of the nuclei, a is a parameter defined 

as 
a2

1 , where a is a constant that are usually adjusted to 

the experimental value of nuclear interaction barrier and V0, V1, 

V2, V3 are potential depths of the nuclear.  

In Figs. 1 and 2 we present a plot of generalized Woods-

Saxon plus Rosen-Morse potential as a function of r for various 

parameters of α = 0.25, 0.5 and 0.75  
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Factorization Method  

In spherical co-ordinate, the Schrödinger is written as     
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where V(r) is the Woods-Saxon plus Rosen Morse Potential 

of equation (1).  

The exact solution of Eq. (2) is defined as  

 , , ( ) ( ) ( )r R r                                     (3) 

Substituting (3) in to (2), he obtain the following equation 
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where )1(    and   is angular quantum number and 

the magnetic quantum number   2,,0m . The 

solution of equations (5) and (6) are well known [7] and is 

usually given in terms of spherical harmonics function 

  ,mY . 

Solutions of the Radial Equation and Energy Eigenvalues  

The radial part of the Schrödinger equation is given as   
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where the deformed hyperbolic function are defined as  

2
)(,

2
)(

rr

q

rr

q

qee
rCosh

qee
rSin




 




  

)8(
)(

)(
tanh

rCos

rSinh

q

q

q



  

Equation(s) in its present form has no analytical solution for 

0 , an approximation method has to be made [23]. We write 

the centrifugal term 2
1

r
 in equation (7) as  

 
)9(,

1

1
2

2

2 r

r

qe

e

r 









 

which reduces to the improved approximation scheme [24] 

where q = -1. Substituting (9) into Eq. (7) yields  
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Now using the common ansaltz ,
)(
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could be transformed into 
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 where the last term provides a centrifugal potential, which 

together with second, third and fourth terms comprise the 

effective potential Veff(r). By using a new variable s = coth(αr), 

we can rewrite the Schrödinger equation of Eq. (11) as  
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where the following dimensionless constants have been 

employed 
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Equation (12) is the well known associated Jacobi. In order 

to solve Eq. (12) explicitly, we invoke the new ansatz for the 

wave function of the form [3].  
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where P(s) is the associated Jacobi polynomial satisfying 

Eq. (12). Now substituting, Eq. (14) into Eq. (12) and after a 

little algebraic, we obtain  
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Compare Eq. (15) with the standard associated Jacobi 

differential equation [25, 26],  
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Solving Eq. (17) explicitly, we have  
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where N, is the normalization constant. It is worthy to note at 

this point that in order to   obtain equation (18) from Eq. (17), 

we perform integration by partial fraction and solving the 

resulting quadratic equation yields equation (18) by taking the 

limit 1

)1()1(

1

22





 

ss

. 

Equation (15) that we obtain from the new ansaltz can be 

condensed as the generalized associated Jacobi differential 

equation. The associated Jacobi function with variable s from 

Eq. (16) can be written as [25, 26],  
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where ),(, nB  is the normalization constant and n,l are 

non-negative integers define in the internal  nl0 .  

The wave function w(s) in Eqn. (18) is a generalized wave 

function which comprises of the real and imaginary part and 

reduces to the known solution in the literature when the 

imaginary part Im w(s) = 0, [22]. 

 The wave function can be obtained from Eq. (14) as  
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Thus, the final form of the radial wave function can be written in 

terms of the Jacobi polynomials resulting  
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If we Taylor expand the terms in the logarithm to first order, 

we get  
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where Cn is the new normalization constant. Further 

comparison of Eq. (15) with Eq. (16) gives the energy spectrum 

for the Woods-Saxon plus Rosen Morse potential as  
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Discussion 

     The potential of equation (1) is a generalized potential 

consisting of the generalized Woods-Saxon and the generalized 

Rosen-Morse potentials.  

 In Figure 3, we present the plot of the Woods-Saxon 

potential with r, for different values of α= 0.25, 0.5 and 0.75 

respectively. The exact solution of this potential is given in [7]. 

We depict a similar plot in figure 4 for α= 0.25, 0.5 and 0.75 

where the range of r lies between 0 ≤ r ≤ 10. 

 
                       

 
We display in figure 5, the graph of Rosen-Morse potential 

as a function of r. Here we restrict the range of r between -10 ≤ r 

≤ 10 for various parameter of α= 0.25, 0.5 and 0.75 respectively. 

The shape of the Rosen-Morse potential may be viewed as a 

good candidate for common quark potential of QCD traits 

reported in [2] and [27]. We also have a similar plot for the 

Rosen-Morse in figure 6 but with the range of r restricted to 0 ≤ 

r ≤ 10. 
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The effective potential Veff(r) which is the sum of the 

potential U(r) and the centrifugal term is plotted as a function of 

r in figure 7 for l = 0, 1, 2, 3 corresponding to the s, p, d, f-states 

with deformation parameter q=1. We display a similar plot of 

Veff(r) versus in figure 8 for q= -1. The effective potential is also 

plotted as a function of r in figure 9 for s, p, and d-states 

respectively with deformation parameter q= -0.4 for comparison. 

 

 

 

 

Conclusion  

       In this paper, we solve the Schrodinger equation analytically 

with Woods-Saxon potential using a new ansatz for the 

wavefunction. We discuss the shape of these potentials and 

interestingly the Rosen-Morse potential capture the essentials of 

QCD quark-gluon dynamics. We obtain the eigenfunction and 

the corresponding eigenvalues for the potential and expressed 

the wavefunction in terms of the Jacobi polynomials. It is shown 

that our results reduce to those obtained in literatures when the 

imaginary part tends to zero. 
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