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Introduction 

Maintenance management, a combination of various 

activities to minimize the deleterious effects of failure, aims to 

retain equipment in operable condition or restore to operable 

condition. In order to achieve the two primary goals of down 

time control and productivity control, issues related to 

maintenance systems caught the attention of researchers and 

practitioners. The systems such as Breakdown Maintenance 

(BDM), Preventive Maintenance (PM), Condition-based 

Maintenance (CBM), Reliability Centered Maintenance (RCM) 

and Total Productive Maintenance (TPM) are identified with 

considerable attention in literatures. The starting point for all 

these techniques is failure data analysis which involves 

identifying the trends in product or system failure and using 

which one can attempt to correct them or compensate for them, 

thereby improving the reliability. In Reliability engineering, 

determination of burn-in plays a key role in provisions of 

warranty. As pointed out by Jenab et al. (2010), fitting 

probability distributions, like Weibull distribution to data related 

to electronic components, is an essential activity in warranty 

forecasting model and lifetime analysis. 

Notations 

ANN : Artificial Neural Network 

BDM : Breakdown Maintenance 

 : Shape parameter of Two- parameter Weibull 

Distribution 

PM : Preventive Maintenance 

C.V : Coefficient of Variation 

E(T) : Expected value of T 

f(t) : pdf of random variable T 

F(t) : Distribution function of t 

h(t) : hazard rate function 

ln : Natural logarithm 

MLE : Maximum Likelihood Estimator 

 : mean of a random variable 

pdf : Probability density function 

RCM : Reliability Centered Maintenance 

R
2
 : coefficient of determination 

TPM : Total Productive Maintenance 

TTF  : Time to failure 

R.V : Random Variable 

 : Standard deviation of a random variable 

t : specific value of R.V, T 

T : R.V TTF 

 : Scale parameter of Two- parameter Weibull 

Distribution 

V(T) : Variance of T 

WPP : Weibull Probability Plot 

X : ideal value of the parameter 

Y : predicted value of the parameter 

Literature Review 

The lifetime distribution is named “Weibull distribution”, 

after a Swedesh mechanical engineer Walodie Weibull who 

published perhaps the first paper on it in 1939. The probability 

density for Weibull family is given in the Equation (1)      
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where,  and  are shape and scale parameters respectively. 

    Weibull analysis is primarily concerned with reliability 

estimation and prediction of the system under investigation. 

Fitting distribution to the failure data with appropriate 

parameters enables to decide right maintenance strategy. Pandit 

(1978) and Ramalingam et al. (1978) carried out investigations 

pertaining to the statistical analysis of reliability using data 

available in manufacturing processes. The authors found that
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ABSTRACT  

Reliability assessment popularly known as Weibull analysis is an exercise primarily 

concerned with reliability estimation and prediction with which failure process of a system 

can better be analyzed. Many situations like modeling failure processes, decision of effective 

maintenance policy, estimation of maintenance float factors, downtime assessment and 

reduction greatly rely on the parameters of the life distributions fitted to the failure data. As 

the Weibull distribution involves transcendental equation, determining parameters is quite 

difficult task. To this effect, a Nomograph is developed and presented in this paper to closely 

determine the Weibull parameters. The paper articulates the development of Nomograph and 

procedure for its implementation. Results and discussions carried out proves statistically that 

the results obtained using the Nomograph are better than the commonly used its 

counterparts. 
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normal, Weibull and exponential distributions can be fitted to 

tool life data for turning, milling, drilling and cutting operations. 

Lowe and Lewis (1983) estimated maintenance float factors 

fitting Weibull distribution, using Weibull probability plot 

(WPP). Wayne (1985) observed while carrying out reliability 

assessment on mechanical components that most of the bearing 

life data from the field is adequately represented by Weibull 

distribution with shape parameter 1.5. Pan et al. (1986) proposed 

a mathematical model for predicting the system reliability of 

cutting tools for an automated machining system with various 

carbide parts using Weibull distribution. Abdul-Nour et al. 

(1998) while implementing RCM in an aluminium plant found 

that the amount and type of maintenance applied depend 

strongly on the life model fitted of the equipments. Beichelt 

(2001) analyzed a policy for optimal scheduling replacement 

intervals of technical systems on the basis of maintenance cost 

parameter. The author validated the policies proposed using 

Raileigh (a specific case of Weibull distribution) and Maxwell 

distributions. Lai et al. (2003) developed a general model to 

describe bathtub-shaped hazard-rate function. An advantage of 

the model is that the model parameters can be estimated easily 

based on a Weibull probability plot (WPP) that serves as a tool 

for model identification.  

 Abbasi et al. (2008) remarked that Weibull distribution 

plays important role in reliability studies and they have many 

applications in engineering. According to the authors, estimating 

parameters of three-parameter Weibull distribution is quite 

difficult, and to that effect the authors developed an approach 

that takes the advantage of artificial neural networks (ANN) 

exploiting the concept of the moment method to estimate 

Weibull parameters. Further, it was demonstrated the power of 

the proposed ANN-based method by conducting extensive 

simulation study and compared the results with maximum 

likelihood estimator (MLE) and two moment-based methods. 

Yeh et al. (2009) proposed a maintenance scheme for leased 

equipment, using hazard-rate reduction method and derived an 

optimal PM policy that minimizes expected total cost. The 

authors developed an efficient algorithm to derive the optimal 

PM policy, and a closed-form solution was obtained for the case 

where the lifetime distribution of the equipment is Weibull. This 

algorithm was applied to various numerical examples. 

Weibull Distribution 

The mean, variance, distribution function and hazard rate 

for the Weibull distribution are given in Equations (2), (3), (4) 

and (5) respectively. 

 ( ) 1 (1/ )E T         (2)                      
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The uniqueness of Weibull model is that a family of curves 

can be generated for different values of shape and scale 

parameters, which can be used to cover the entire bathtub profile 

piecewise and therefore, they can be used to describe any failure 

process. The major bottleneck in the reliability assessment 

program is determining these parameters. The following sections 

briefly discuss four methods commonly used for estimating 

these parameters. 

Weibull Probability Plot (WPP) 

This technique involves plotting time to failure, T against 

distribution function F(t) using appropriate scale. Equation (6) is 

used for plotting and this can be obtained by taking natural 

logarithm on Equation (4) two times and rearranging. 

       ln ln {1/[1-F(t)]}= β ln( t) - β ln()   (6)                                 

The graphical representation of Equation (6) is known as 

Weibull Probability Plot (WPP) i.e., ln.ln(.) on ordinate and lnt 

on Abcissa. If the collected failure data fits to a straight line after 

the required transformation as suggested by the Equation (6), it 

is inferred that the life model follows Weibull distribution.  

Then, correspondingly the parameters can be evaluated from the 

plot.  

Maximum Likelihood Estimator (MLE)  

This method involves construction of likelihood function 

for the given sample observation using probability density 

function (pdf) possessing the parameters to be estimated. The 

values of the parameters are calculated using the property that 

the likelihood function must be the maximum. 

Method of Moments 

This method uses the property that theoretical moments are 

equal to the observed moments. Equating as much number of 

moments as the number of parameters to be estimated and 

thereupon solving we get the parameters.  

Chi-square Test 

This method for a set of proposed parameters computes 

expected frequency which in turn is compared with the observed 

frequency. The deviations are summed up as a single numeric 

value referred as observed total deviation. If this observed 

deviation is lesser than the standard chi-square value for a 

desired significance level, the set of parameters proposed are 

accepted, else the parameters are adjusted and the procedure of 

testing is repeated. Statgraphics plus Version 6.0 incorporates 

this facility is used in this study for the comparative analysis.  

The Problem on Hand 

The two parameters viz. shape parameter β and scale 

parameter  can be related through mean () and variance (
2
) 

but the expressions are unfortunately transcendental, which 

introduces difficulty in establishing a closed form solution. Xie 

(2002) mentioned that among different methods available to 

estimate the parameters of Weibull distribution, WPP and MLE 

are used commonly. Methods like MLE and method of moments 

will not yield closed form solutions. As reported by William and 

Douglas (1980), the method of moments does not always 

generate an estimate that is compatible with the knowledge of 

the situation. Therefore, graphical approaches perhaps gained 

their importance. Jiang and Murthy (1995) observed that often 

when the failure data are plotted on WPP yields a curve rather a 

straight-line whereby the parameter estimation looses its 

accuracy.  

 The estimation of Weibull parameters not only models the 

failure process but also helps in deciding effective maintenance 

policy, estimation of maintenance float factors, management of 

downtime etc. Therefore, there was considerable motivation to 

develop a suitable decision aid to determine Weibull parameters 

 and  more closely and also easily. This motivation gave an 

impetus to develop a Nomograph, the details of which are 

presented in the subsequent sections of the paper.  

 )/(
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t
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Development of Nomograph 

Using Equations (2) and (3) as it is and solving them for  

and  is difficult. It was found logical to use the ratio of standard 

deviation to mean which is the Coefficient of Variation (CV). 

By doing so, we gain an advantage of eliminating the scale 

parameter   and the resulting relation is given by Equation (7). 
2
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                                                 (7)  

  Now the problem reduces to uni-variate, i.e., CV over . 

But, still, the equation remains transcendental. Therefore, an 

attempt was made to overcome this difficulty by means of a 

graphical approach. This resulted in the development of a very 

useful Nomograph as an aid, the details of which are as follows. 

The Nomograph as a Decision Aid 

The Equation (7) represents a functional relationship 

between CV and . The graphical representation of this 

relationship results in a Nomograph. For a given β obtained 

from the Nomograph, scale parameter,  can be obtained using 

the    Equation (8) which is the rearrangement of Equation (2).  

 
 In order to develop the Nomograph, it was necessary to 

have data ideally following Weibull distribution. For this 

purpose, twenty data sets, each consisting of 5000 data points 

were simulated using Statgraphics Plus Version 6.0. Care has 

been taken to nullify the effect of seed. (Bloch and Geitner, 

1993) found that most of the engineering problems involve 

shape parameter greater than 0.5 while, most of the wear 

processes assume  = 4.0 which closely represents normal 

distribution. Hence, the twenty sets were generated having β in 

the range of 0.5 to 6.0. The salient measures of these twenty sets 

generated are shown in Table 1.  

Using these twenty sets of data, the graph obtained with CV 

along the Ordinate and  along the Abscissa is plotted and the 

Nomograph obtained is as shown in Figure 1. The Nomograph 

can be now used to estimate  and  for the given set of data 

values. For the calculated C.V for the given data  can be 

obtained from the Nomograph. Then using Equation (8), the 

parameter  can be obtained. 

 
Results and Discussion 

For the twenty sets of data generated  and  were 

calculated using the three different methods viz. Weibull 

probability plot, Chi-square test with 5% confidence using 

Statgraphics Plus Version 6.0 and the Nomograph developed. 

The values obtained for β and  are referred as 1, 2 and 3, and 

1, 2 and 3 respectively for these methods which are presented 

in Table 2. To ascertain the merit of a method, a comparative 

analysis has been carried out as detailed in the following 

sections. The mean squared error of each of the methods in the 

estimation of  and  is shown in the last row of the Table 2.  

The smaller the mean squared error value clearly reveals the 

better performance of the Nomograph. The superior 

performance is more significant in the estimation of . The 

results obtained by three methods were further subjected to 

scatter plots to strengthen the investigation. 

Scatter Plots  

In the scatter plot, the ideal value of the parameter used in 

simulation, X is plotted against the value obtained using various 

methods, Y. The points lying on this line reveals that the values 

obtained are accurate and the departure will indicate the degree 

of closeness of values obtained. Therefore, the straight line Y = 

X is known as „accuracy line‟. The coefficient of determination 

(R
2
) conforms to the adequacy of the fit. The results of the 

scatter plots on  obtained using all the three methods are shown 

in Figures 2 through 4 with the respective regression equations. 

Similar analysis was carried out for  as well, which are shown 

in Figures 5 through 7. 

 It is quite evident from the Figures 2 through 4 that the 

regression model particularly in the case of the Nomograph is 

fitting well, as the coefficient of determination is unity. The Y 

intercepts for all the cases are low but the Nomograph in 

particular, possesses the least value. The slope of the regression 

line approaches unity indicating that the parameters, especially 

, obtained from Nomograph is expected to be more accurate. 

The results and discussion presented in the preceding sections 

provided sufficient encouragement to use Nomograph to 

evaluate  and  for Weibull distribution. 
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Model Adequacy  

To ascertain the statistical adequacy of the model, F and t-

tests for significance of regression and residual analysis were 

carried on the parameters evaluated using Nomograph. Minitab 

software was used for this purpose. The details of F and t-tests 

along with residual analysis on shape and scale parameters 

obtained using the Nomograph, are presented in Table 3 and 

Table 4 respectively. The results of the tests conform to the 

adequacy of the model.  

 
Normal plot for residuals of shape parameter using 

Nomograph 

 

 
Normal plot for residuals of shape parameter using  

Nomograph 

 

Conclusions  

Weibull distribution plays key roles in maintenance 

management, especially in the area of Reliability Centered 

Maintenance (RCM). Moreover basic failure processes can be 

represented successfully by family of Weibull distribution and 

hence Weibull distribution is effective in life modeling with its 

two parameters viz. shape parameter  and scale parameter . 

The commonly used methods like WPP, chi-square tests etc. do 

not provide closer solution. The Nomograph developed in this 

study provides closer solution to the parameter estimation and it 

is easy to implement due its simplicity. The values obtained 

using the Nomograph were found to be closer as compared to its 

counterparts and the consistency in accuracy was statistically 

investigated and found satisfactory. 
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Table 1. The salient measures of the simulated data 
Set Parameters used for data generation Measures of life data generated 

    CV 

1 0.55 55 182.72 95.04 1.92 

2 0.60 60 157.43 91.18 1.730 

3 0.65 65 146.99 91.63 1.600 

4 0.70 70 132.83 88.43 1.500 

5 0.75 75 128.63 93.22 1.380 

6 0.80 80 112.80 90.12 1.250 

7 0.85 85 107.55 89.89 1.200 

8 0.90 90 105.52 96.24 1.100 

9 0.95 95 101.62 97.81 1.040 

10 1.00 100 96.32 97.10 0.990 

11 1.25 125 93.72 117.85 0.795 

12 1.80 180 91.77 159.82 0.574 

13 2.50 250 94.31 221.72 0.425 

14 3.00 300 97.89 268.91 0.364 

15 3.25 325 98.44 292.40 0.337 

16 4.00 400 102.22 361.81 0.283 

17 4.25 425 100.62 386.10 0.260 

18 4.75 475 103.54 438.17 0.236 

19 5.50 550 106.18 508.43 0.209 

20 6.00 600 110.56 555.30 0.199 

 

Table 2. Comparison of the values of s and s obtained by the three methods 
set Parameters estimated using Squared error of estimates obtained by 

WPP Chi-square test Nomograph WPP Chi-square test Nomograph 

1 1 2 2 3 3 1 1 2 2 3 3 

1 0.557 56.78 0.556 56.85 0.55 55.74 4.9E-05 3.1684 3.6E-5 3.4225 0 0.5476 

2 0.596 60.09 0.596 60.18 0.6 61.03 1.6E-05 0.0081 1.6E-5 0.0324 0 1.0609 

3 0.641 67.14 0.647 66.59 0.65 67.06 8.1E-05 4.5796 9.0E-6 2.5281 0 4.2436 

4 0.678 69.3 0.687 68.62 0.7 69.87 0.00048 0.49 0.00017 1.9044 0 0.0169 

5 0.757 78.29 0.753 78.35 0.75 78.26 4.9E-05 10.8241 9.0E-6 11.2225 0 10.6276 

6 0.815 80.24 0.812 80.34 0.8 79.54 0.00023 0.0576 0. 14E-3 0.1156 0 0.2116 

7 0.869 83.37 0.863 83.32 0.85 82.47 0.00036 2.6569 0.00017 2.8224 0 6.4009 

8 0.888 92.23 0.904 91.72 0.9 91.43 0.00014 4.9729 1.6E-05 2.9584 0 2.0449 

9 0.979 96.62 0.976 96.64 0.95 95.45 0.00084 2.6244 0.00068 2.6896 0 0.2025 

10 0.994 97.68 1 97.25 1 97.1 3.6E-05 5.3824 0 7.5625 0 8.41 

11 1.268 126.89 1.264 126.86 1.25 126.53 0.00032 3.5721 0.0002 3.4596 0 2.3409 

12 1.784 180.14 1.8 179.68 1.8 179.65 0.00026 0.0196 0 0.1024 0 0.1225 

13 2.546 249.49 2.52 249.94 2.475 249.88 0.00212 0.2601 0.0004 0.0036 63E-5 0.0144 

14 3.02 300.95 2.98 301.18 3 300.1 0.0004 0.9025 0.0004 1.3924 0 0.01 

15 3.26 326.18 3.28 326.12 3.25 326.34 1.0E-04 1.3924 0.0009 1.2544 0 1.7956 

16 3.96 398.99 3.96 399.42 4 399.17 0.0016 1.0201 0.0016 0.3364 0 0.6889 

17 4.34 424.00 4.34 423.99 4.275 424.99 0.0081 1 0.0081 1.0201 63E-5 1.0E-04 

18 4.88 477.83 4.82 478.28 4.75 478.56 0.0049 8.0089 0.0049 10.7584 0 12.6736 

19 5.569 551.25 5.569 550.34 5.5 550.43 0.00476 1.5625 0.00476 0.1156 0 0.1849 

20 5.847 599.84 5.847 599.84 6 599.22 0.02341 0.0256 0.02341 0.0256 0 0.6084 

Sum 0.04825 52.5282 0.04591 53.7269 125E-5 52.2058 

Mean Squared Error (MSE) 0.00241 2.62641 0.0023 2.68635 6.25E-5 2.61029 
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Table 3. Summary output of shape parameter from the Nomograph 

 

Regression Statistics      

Multiple R 0.9999903      

R Square 0.9999806      

Adjusted R Square 0.9999795      

Standard Error 0.0082309      

Observations 20      

ANOVA       

 df SS MS F Significance F  

Regression 1 62.77 62.77 926520.3 7.31E-44  
Residual 18 0.0012 6.77E-05    

Total 19 62.7712     

       

t-test       

 Coefficients Std Error t Stat P-value Lower 95% Upper 95% 

Intercept -0.0015 0.0029 -0.523 0.607 -0.0077 0.0046 

X Variable 1 1.0007 0.001 962.559 7.31E-44 0.9985 1.0029 

 

Table 4. Summary output of scale parameter from the Nomograph 

Regression            Statistics      

Multiple R 0.99996      

R Square 0.99992      

Adjusted R Square 0.99992      

Standard Error 1.65229      

Observations 20      

       

ANOVA       

 df SS MS F Significance F  

Regression 1 626956 626956 229648 2.0695E-38  

Residual 18 49.1412 2.73007    

Total 19 627005     

       

t-test       

 Coefficients Std Error t Stat P-value Lower 95% Upper 95% 

Intercept 0.36779 0.58973 0.62366 0.5407 -0.8712 1.6068 

slope 1.00011 0.00209 479.216 2.1E-38 0.9957 1.0045 

 


