
Patil et al./ Elixir Adv. Engg. Info. 33 (2011) 2174-2178

2174

Introduction

The enormous popularity of the World Wide Web has

caused a tremendous increase in network traffic due to http

requests. This has given rise to problems like user-perceived

latency, Web server overload, and backbone link congestion.

Web caching is one of the ways to alleviate these problems [1, 2,

3, 4, 5, 6, 7, 8, 9, 10, 11].

One might argue that the ever decreasing prices of RAM

and disks renders the optimization or fine tuning of cache

replacement policies a “moot point”. Such a conclusion is ill

guided for several reasons. First, recent studies have shown that

Web cache hit ratio (HR) and byte hit ratio (BHR) grow in a log-

like fashion as a function of cache size [5, 26, 27, 28]. Thus, a

better algorithm that increases hit ratios by several percentage

points would be equivalent to a several-fold increase in cache

size. Second, the growth rate of Web content is much higher

than the rate with which memory sizes for Web caches are likely

to grow. The only way to bridge this widening gap is through

efficient cache management. Finally, the benefit of even a slight

improvement in cache performance may have an appreciable

effect on network traffic, especially when such gains are

compounded through a hierarchy of caches [6].

Cao and Irani have surveyed ten different policies and

proposed a new algorithm, Greedy-Dual-Size (GDS) in [5]. The

GDS algorithm uses document size, cost, and age in the

replacement decision, and shows better performance compared

to previous caching algorithms. In [4] and [12], frequency was

incorporated in GDS, resulting in Greedy-Dual-Frequency-Size

(GDSF) and Greedy-Dual-Frequency (GDF). While GDSF is

attributed to having best hit ratio (HR), it is having a modest

byte hit ratio (BHR). Conversely, GDF yields a best HR at the

cost of worst BHR [12].

We have proposed a new algorithm called Greedy-Dual-

Frequency-Size#, (GDSF#), which allows augmenting or

weakening the impact of size or frequency or both on HR and

BHR [13, 14, 15, 16, 17]. We extended this policy further by

incorporating the concept of future frequency which is used to

assign weight (key value) to the document while storing it in the

cache. This algorithm is an intelligent one as it can adapt to

changes in usage patterns as reflected by future frequency. We

call this innovative caching algorithm as Intelligent Predictive

GDSF#, (IPGDSF#).

Compared with web caching, prefetching goes one step

further by anticipating users’ future requests and pre-loading the

anticipated objects into a cache. When a user eventually requests

the anticipated objects, they are available in the cache. In the

past, several prefetching approaches have been proposed [31, 32,

33]. The general idea of prefetching is to request web objects

that are highly likely to occur in the near future. Such systems

often rely on a prediction model based on statistical correlation

between web objects. These models are trained on previous web

log data. Thus, prediction model construction is at the core of

prefetching algorithms. In this paper, we propose a Static

prefetching algorithm. We store the most popular documents

from Web server logs in a prefetch buffer which is a part of

main cache buffer.

Caching and prefetching have often been studied as separate

tools for reducing the latency observed by the users in accessing

the Web. Less work has been done on integration of caching and

prefetching techniques. Kroeger et al [36] study the combined

effect of caching and prefetching on end user latency. Yang and

Zhang have proposed an Integrated Prefetching and Caching

Algorithm using a Correlation-Based Prediction Model [37, 38].

Lan et al. [39] have proposed a Rule-Assisted Prefetching in

Tele:

E-mail addresses: jbpatil@hotmail.com,bvpawar@hotmail.com

 © 2011 Elixir All rights reserved

An integration approach of intelligent predictive caching and static prefetching

for internet web servers
1
J B Patil and

2
B. V. Pawar

1
Department of Computer Engineering, R. C. Patel Institute of Technology, Shirpur. (M.S.), India,

2
Department of Computer Science, North Maharashtra University, Jalgaon. (M.S.), India.

ABSTRACT

Web caching and Web prefetching are two important techniques used to reduce the

noticeable response time perceived by users. By integrating Web caching and Web

prefetching, these two techniques can complement each other since the Web caching

technique exploits the temporal locality, whereas Web prefetching technique utilizes the

spatial locality of Web objects [30]. In this paper, we develop algorithm Pre-IPGDSF# by

integrating Web caching and Web prefetching in Web servers. For caching, we use

innovative algorithm Intelligent Predictive Greedy Dual Size Frequency#, IPGDSF#, which

is an enhanced version of algorithm GDSF# developed by us [13, 14, 15, 16, 17]. For

prefetching, we use a static prefetching method. Using three different Web server logs, we

use trace driven analysis to evaluate the effects of different replacement policies on the

performance of a Web server. We specifically compare policies like GDSF, GDSF#, and

IPGDSF# with the proposed integrated policy Pre-IPGDSF#. Using trace-driven simulations

and for various standard cost criteria (hit rate and byte hit rate), we show that our proposed

integrated policy outperforms all other algorithms under consideration.

 © 2011 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 18 February 2011;

Received in revised form:

17 March 2011;

Accepted: 26 March 2011;

Keywords

Web caching,

Web prefetching,

Replacement policy,

Hit ratio,

Byte hit ratio,

Trace-driven simulation.

Elixir Adv. Engg. Info. 33 (2011) 2174-2178

Advanced Engineering Informatics

Available online at www.elixirpublishers.com (Elixir International Journal)

Patil et al./ Elixir Adv. Engg. Info. 33 (2011) 2174-2178

2175

Web-Server Caching. Yang et al. [40, 41] have proposed a

method for Mining Web Logs to obtain a Prediction Model and

using the model to extend the well-known GDSF caching policy.

Curcio, Leonardi, and Vitaletti [42] have proposed an Integrated

Prefetching and Caching for the World Wide Web via User

Cooperation. Teng, Chang, and Chen [30] developed algorithm

IWCP (Integration of Web Caching and Prefetching), by

integrating Web caching and Web prefetching in client-side

proxies.

In this paper, we propose a new technique to integrate

caching and prefetching. We integrate our static prefetching

algorithm with our caching algorithm IPGDSF#. We call this

Integrated Web caching and prefetching algorithm as Intelligent

Predictive GDSF# with Prefetching (Pre-IPGDSF#). We

compare Pre-IPGDSF# with algorithms like GDSF, GDSF#, and

IPGDSF#. Our simulation study shows that Pre-IPGDSF#

outperforms all other algorithms under consideration in terms of

hit rate (HR) as well as byte hit rate (BHR).

The remainder of this paper is organized as follows. Section

2 introduces Pre-IPGDSF#, a new algorithm for integrating Web

caching and prefetching. Section 3 describes the simulation

model for the experiment. Section 4 describes the experimental

design of our simulation while Section 5 presents the simulation

results. We present our conclusions in Section 6.

Pre-IPGDSF# Algorithm

We extract future frequency from the Web server logs. Then

it is used to extend our GDSF# policy. Our idea is similar to the

work of Bonchi et al. [18, 19] and Yang et al. [20]. While the

Web caching algorithm in [18, 19] was designed to extend the

LRU policy, Yang et al. [20] extended GDSF policy. We will be

extending our policy GDSF# [13, 14, 15, 16, 17].

As pointed out early in caching research [21], the power of

caching is in accurately predicting the usage of objects in the

near future. In earlier works, estimates for future accesses were

mostly built on measures such as access frequency, object size

and cost. Such measures cannot be used to accurately predict for

objects that are likely to be popular but have not yet been

popular at any given instant in time. For example, as Web users

traverse Web space, there are documents that will become

popular soon due to Web document topology, although these

documents are not yet accessed often in the current time instant

[20]. Our approach is based on predictive Web caching model

described by Yang et al. [20]. However, there are many

noteworthy differences. Firstly, we use simple statistical

techniques to find future frequency while Yang et al. use

sequential association rules to predict the future Web access

behavior. Secondly, for simplicity we do not try to identify user

sessions. We assume that a popular document, which is used by

one user, is likely to be used by many other users, which

normally is the case for popular documents. We demonstrate the

applicability of the method empirically through increased hit

rates and byte hit rates.

Similar to the approach by Bonchi et al. [18, 19], our

algorithm is an intelligent one as it can adapt to changes in usage

patterns as reflected by future frequency. This is because the

parameter future frequency, which is used in assigning weight

(key value) to the document while storing in the cache, can be

computed periodically in order to keep track of the recent past.

This characteristic of adapting to the flow of requests in the

historical data makes our policy intelligent. We call this

innovative caching algorithm as Intelligent Predictive GDSF#,

(IPGDSF#).

In GDSF#, the key value of document i is computed as follows

[13, 14, 15, 16, 17]:

where λ and δ are rational numbers, L is the inflation factor,

ci is the estimated cost of the document i, fi is the access frequency

of the document i, and si is the document size.

We now consider how to find future frequency, ffi for

document i from the Web logs. We mine the preprocessed Web

log files. We extract the unique documents from the logs. Then

we arrange these documents in the temporal order. Now for each

unique document, we extract the number of future occurrences

of that document. We call this parameter as future frequency, ff.

With this parameter, we can now extend GDSF# by calculating

Hi, the key value of document i as follows:

Here we add fi and ffi together, which implies that the key

value of a document i is determined not only by its past

occurrence frequency fi, but also by its future frequency ffi. By

considering both the past occurrence frequency and future

frequency, we can enhance the priority i.e. the key value of those

objects that may not have been accessed frequently enough in the

past, but will be in the near future according to the future

frequency. The more likely it occurs in the future, the greater the

key value will be. This will promote objects that are potentially

popular objects in the near future even though they are not yet

popular in the past. Thus, we look ahead in time in the request

stream and adjust the replacement policy.

Finally, we make the policy intelligent by periodically

updating future frequency when some condition becomes false,

e.g. at fixed time intervals or when there is a degradation in the

cache performance.

The idea of static prefetching is based on the rather obvious

fact that for any given Web server document access patterns

change very slowly [34, 35]. The documents that were accessed

frequently today will probably be accessed frequently tomorrow.

In other words, popular documents will remain popular.

Keeping the above fact in mind, we try to store the most

popular documents from Web server logs. We allocate 20% of

the total cache size for the prefetch buffer; the caching algorithm

uses the remaining 80%. The prefetching stops when the

prefetch buffer is full. This set of popular documents is updated

periodically to maximize the performance of the integrated

algorithm. For example, we can re-calculate the set of prefetched

documents daily based on document frequencies for the previous

day. The Web server would use the request log file for the day to

determine the documents to be cached during the following day.

In Figure 1, we give a formal description of the algorithm.

Procedure Prefetch {

while (space taken by prefetched documents < 20% of cache){

find popular document p

 insert p in cache

}

}

Procedure IPGDSF# {

Initialize L = 0

Find future frequency ffi

loop forever {

do {
Process each request document in turn:

let current requested document be i

if i is already in cache

Patil et al./ Elixir Adv. Engg. Info. 33 (2011) 2174-2178

2176

else

while there is not enough room in cache for i {

let L = min(Hi), for all i in cache

evict i such that Hi = L

}

load i into cache

} while (condition)

update (future frequency)

}

}

Figure 1: Pre-IPGDFS# algorithm.

Simulation Model for the Experiment

In case of Web Servers, a very simple Web server is

assumed with a single-level file cache. When a request is

received by the Web server, it looks for the requested file in its

file cache. A cache hit occurs if the copy of the requested

document is found in the file cache. If the document is not found

in the file cache (a cache miss), the document must be retrieved

from the local disk or from the secondary storage. On getting the

file, it stores the copy in its file cache so that further requests to

the same document can be serviced from the cache. If the cache

is already full when a file needs to be stored, it triggers a

replacement policy.

Our model also assumes file-level caching. Only complete

documents are cached; when a file is added to the cache, the

whole file is added, and when a file is removed from the cache,

the entire file is removed.

For simplicity, our simulation model completely ignores the

issues of cache consistency (i.e., making sure that the cache has

the most up-to-date version of the document, compared to the

master copy version at the original Web server, which may

change at any time).

Lastly, caching can only work with static files, dynamic

files that have become more and more popular within the past

few years, cannot be cached.

Workload Traces

In this study, logs from three different Web servers are

used: a Web server from an academic institute, Symbiosis

Institute of Management Studies, Pune, India; a Web server

from a manufacturing company, Thermax, Pune, India, and a

Web server for an E-Shopping site in UK,

www.wonderfulbuys.co.uk.

Experimental Design

This section describes the design of the performance study

of cache replacement policies. The discussion begins with the

factors and levels used for the simulation. Next, we present the

performance metrics used to evaluate the performance of each

replacement policy used in the study.

Factors and Levels

There are two main factors used in the in the trace-driven

simulation experiments: cache size and cache replacement

policy. This section describes each of these factors and the

associated levels.

Cache Size

The first factor in this study is the size of the cache. For the

Web server logs, we have used seven levels from 1 MB to 128

MB. Similar cache sizes are used by many researchers [3, 18,

19, 22, 23, 24, 25]. The upper bounds represent the Total Unique

Mbytes in the trace, which is essentially equivalent to having an

infinite size cache [29]. An infinite cache is one that is so large

that no file in the given trace, once brought into the cache, need

ever be evicted [25, 28].

It allows us to determine the maximum achievable cache hit

ratio and byte hit ratio, and to determine the performance of a

smaller cache size to be compared to that of an infinite cache.

Replacement Policy

We show the simulation results of GDSF, GDSF#,

IPGDSF#, and Pre-IPGDSF# for the Web server traces for hit

rate, and byte hit rate. For these algorithms, we consider the cost

function as one. In GDSF#, IPGDSF#, and Pre-IPGDSF#, we

use the best combination of λ = 2 and δ = 0.9 in the equation for

Hi.

Performance Metrics

The performance metrics used to evaluate the various

replacement policies used in this simulation are Hit Rate and

Byte Hit Rate.

Hit Rate (HR) Hit rate (HR) is the ratio of the number of

requests met in the cache to the total number of requests.

Byte Hit Rate (BHR) Byte hit rate (BHR) is concerned

with how many bytes are saved. This is the ratio of the number

of bytes satisfied from the cache to the total bytes requested.

Simulation Results

In this section, we present and discuss simulation results for

Thermax, Wonderfulbuys, and Symbiosis Web servers.

Simulation Results for Thermax

Figure 2 gives the comparison of Pre-IPGDSF# with other

algorithms.

Figure 2: Comparison of Pre-IPGDSF# with other

algorithms using Thermax trace

From Figure 2, it can be seen that when a cache size is

small, in fact, there is a minor loss in hit rate and byte hit rate

compared to other algorithms as can be expected because 20%

of the original cache area is now allocated to prefetch buffer. In

case of byte hit rate, Pre-IPGDSF# outperforms all other

algorithms under consideration.

Thus, for a cache size of 256 MB, there is an increase of

0.75% over GDSF (from 98.71% to 99.46%) in case of hit rate

and an increase of 4% over GDSF (from 94.19% to 98.19%) in

case of byte hit rate for the Thermax Web server log.

Simulation Results for Wonderfulbuys

Figure 3 gives the comparison of Pre-IPGDSF# with other

algorithms.

For the Wonderfulbuys data, at the lower end of cache size,

only in case of hit rate there is a minor loss. In case of byte hit

rate, Pre-IPGDSF# is superior to all the algorithms under study.

At the higher end of cache size, Pre-IPGDSF# proves its

superiority over the remaining three algorithms. Thus, for a cache

size of 128 MB, there is an increase of 0.21% over GDSF (from

99.66% to 99.87%) in case of hit rate and an increase of 0.43%

over GDSF (from 99.27% to 99.70%) in case of byte hit rate.

http://www.wonderfulbuys.co.uk/

Patil et al./ Elixir Adv. Engg. Info. 33 (2011) 2174-2178

2177

Figure 3: Comparison of Pre-IPGDSF# with other

algorithms using Wonderfulbuys trace

Simulation Results for Symbiosis

Figure 4 gives the comparison of Pre-IPGDSF# with other

algorithms.

Figure 4: Comparison of Pre-IPGDSF# with other

algorithms using Symbiosis trace

For the Symbiosis data, similar trend is noticed. Here, in

case of both hit rate and byte hit rate, there is a minor loss for

smaller cache sizes. However, at the upper end of cache size,

Pre-IPGDSF# easily outperforms the remaining three algorithms

under scrutiny. In case of cache size of 128 MB, there is an

increase of 0.18% over GDSF (from 98.16% to 99.34%) in case

of hit rate and an increase of 2.13% over GDSF (from 95.87% to

98.00%) in case of byte hit rate.

In summary, in case of Web servers, Pre-IPGDSF#

outperforms all the other algorithms under study when the cache

size is large. Minor loss in smaller sized cache can be explained

by the fact that in already small cache, some portion of original

cache buffer is utilized for the prefetch buffer.

6. Conclusions

In this paper, we have proposed an integrated algorithm

called Intelligent Predictive Web caching algorithm with

Prefetching, Pre-IPGDSF#, capable of adapting its behavior

based on access statistics. For this we have also proposed a

simple but effective static prefetching scheme.

We have integrated this static prefetching algorithm with

our caching algorithm IPGDSF#. This algorithm is in turn based

on the algorithm, GDSF#, which we proposed in [13, 14, 15, 16,

17]. IPGDSF# considers future frequency in calculating the key

value of the document, i.e. we look ahead in time in the request

stream and adjust the replacement policy. The future frequency

is mined from Web server logs using the simple statistical

techniques. We make the policy intelligent by periodically

updating future frequency when some condition becomes false.

We have compared Pre-IPGDSF# with cache replacement

policies like GDSF, GDSF#, and IPGDSF# for three Web

servers using trace-driven simulation method. We have used

metrics like hit ratio and byte hit ratio to measure and compare

the performance of these algorithms.

We have found that for small cache sizes there is minor loss

in case of the metric hit rate. However, for larger cache sizes,

Pre-IPGDSF# outperforms all other algorithms in terms of both

hit rate and byte hit rate.

References

[1] M. Arlitt, R. Friedrich, & T. Jin, “Workload Characterization

of Web Proxy Cache Replacement Policies”, In ACM

SIGMETRICS Performance Evaluation Review, August 1999.

[2] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams, & E.

A. Fox, “Caching Proxies: Limitations and Potentials”, In

Proceedings of the Fourth International World Wide Web

Conference, Pages 119-133, Boston, MA, December 1995.

[3] M. Arlitt & C. Williamson, “Trace Driven Simulation of

Document Caching Strategies for Internet Web Servers”,

Simulation Journal, Volume 68, Number 1, Pages 23-33,

January 1977.

[4] L. Cherkasova, “Improving WWW Proxies Performance

with Greedy-Dual-Size-Frequency Caching Policy”, In HP

Technical Report HPL-98-69(R.1), November 1998.

[5] P. Cao & S. Irani, “Cost-Aware WWW Proxy Caching

Algorithms”, In Proceedings of the USENIX Symposium on

Internet Technology and Systems, Pages 193-206, December

1997.

[6] S. Jin & A. Bestavros, “GreedyDual*: Web Caching

Algorithms Exploiting the Two Sources of Temporal Locality in

Web Request Streams”, In Proceedings of the Fifth

International Web Caching and Content Delivery Workshop,

2000.

[7] S. Podlipnig & L. Boszormenyi, “A Survey of Web Cache

Replacement Strategies”, ACM Computing Surveys, Volume 35,

Number 4, Pages 374-398, December 2003.

[8] L. Rizzo, & L. Vicisano, “Replacement Policies for a Proxy

Cache”, IEEE/ACM Transactions on Networking, Volume 8,

Number 2, Pages 158-170, April 2000.

[9] A. Vakali, “LRU-based Algorithms for Web Cache

Replacement”, In International Conference on Electronic

Commerce and Web Technologies, Lecture Notes in Computer

Science, Volume 1875, Pages 409-418, Springer-Verlag, Berlin,

Germany, 2000.

[10] R. P. Wooster & M. Abrams., “Proxy Caching that

Estimates Page Load Delays”, In Proceedings of the Sixth

International World Wide Web Conference, Pages 325-334,

Santa Clara, CA, April 1997.

[11] S. Williams, M. Abrams, C. R. Standridge, G. Abdulla, &

E. A. Fox, “Removal Policies in Network Caches for World-

Wide-Web Documents”, In Proceedings of ACM SIGCOMM,

Pages 293-305, Stanford, CA, 1996, Revised March 1997.

[12] M. F., Arlitt, L. Cherkasova, J. Dilley, R. J. Friedrich, & T.

Y Jin, “Evaluating Content Management Techniques for Web

Proxy Caches”, ACM SIGMETRICS Performance Evaluation

Review, Volume 27, Number 4, Pages 3-11, March 2000.

[13] J. B. Patil and B. V. Pawar, “GDSF#, A Better Algorithm

that Optimizes Both Hit Rate and Byte Hit Rate in Internet Web

Servers”, International Journal of Computer Science and

Applications, ISSN: 0972-9038, Volume 5, Number 4, Pages 1-

10, 2008.

[14] J. B. Patil and B. V. Pawar, “Trace Driven Simulation of

GDSF# and Existing Caching Algorithms for Internet Web

Servers”, Journal of Computer Science, Volume 2, Issue 3, Page

573, March-April 2008.

[15] J. B. Patil and B. V. Pawar, “GDSF#, A Better Algorithm

that Optimizes Both Hit Rate and Byte Hit Rate in Internet Web

Patil et al./ Elixir Adv. Engg. Info. 33 (2011) 2174-2178

2178

Servers”, BRI’S Journal of Advances in Science and

Technology, ISSN: 0971-9563, Volume 10, No. (I&II), Pages

66-77, June, December 2007.

[16] J. B. Patil and B. V. Pawar, “GDSF#, A Better Web

Caching Algorithm”, In Proceedings of International

Conference on Advances in Computer Vision and Information

Technology (ACVIT-2007), Co-sponsored by IEEE Bombay

Section, Pages 1593-1600, Aurangabad, India, November 28-30,

2007.

[17] J. B. Patil and B. V. Pawar, “Trace Driven Simulation of

GDSF# and Existing Caching Algorithms for Web Proxy

Servers”,

In Proceedings of The 6th WSEAS International Conference on

DATA NETWORKS, COMMUNICATIONS and COMPUTERS

(DNCOCO 2007),

Trinidad and Tobago, November 5-7, 2007, Pages 378-384,

ISBN: 978-960-6766-11-4, ISSN: 1790-5117.

[18] F. Bonchi, F. Giannotti, C. Gozzi, G. Manco, M. Nanni, D.

Pedreschi, C. Renso, and S. Ruggieri, “Web Log Data

Warehousing and Mining for Intelligent Web Caching,” Data

and Knowledge Engineering, Volume 39, Number 2, Pages 165-

189, 2001.

[19] F. Bonchi, F. Giannotti, G. Manco, M. Nanni, D. Pedreschi,

C. Renso, and S. Ruggieri, “Web Log Data Warehousing and

Mining for Intelligent Web Caching,”

In Proceedings of International Conference on Information

Technology: Coding and Computing (ITCC’01 Pages 0599- ,

2001.

[20] Q. Yang, and H.H. Zhang, “Web-Log Mining for Predictive

Web Caching”, IEEE Transactions on Knowledge and Data

Engineering, Volume 15, Number 4, Pages 1050-1053,

July/August 2003.

[21] L.A. Belady, “A Study of Replacement Algorithms for

Virtual Storage Computers,” IBM Systems Journal, Volume 5,

Number 2, Pages 78-101, 1966.

[22] H. Braun and K. Claffy, “Web Traffic Characterization: An

Assessment of the Impact of Caching Documents from NCSA’s

Web Server”, In Proceedings of Second International World

Wide Web Conference, Chicago, 1994.

[23] A. Bestavros, R. Carter, M. Crovella, A. Heddaya, and S.

Mirdad, “Application-Level Document Caching in the Internet”,

In Proceedings of Second International Workshop Services

Distributed Networked Environments (SDNE’95), Whistler, BC,

Canada, Pages 166-173, June 1995.

[24] E. Markatos, “Main Memory Caching of Web Documents”,

Computer Networks and ISDN Systems, Volume 28, Pages 893-

905, 1996.

[25] M. Busari, “Simulation Evaluation of Web Caching

Hierarchies”, MS Thesis, Dept of Computer Science, Uni of

Saskatchewan, Canada, 2000.

[26] C. R. Cunha, A. Bestavros, & M. E. Crovella,

“Characteristics of WWW Client-based Traces”, Technical

Report, BU-CS-95-010, Computer Science Department, Boston

University, 1995.

[27] V. Almeida, A. Bestavros, M. Crovella, & A., de Oliveria,

“Characterizing Reference Locality in the WWW”, In

Proceedings of PDIS’96: The IEEE Conference on Parallel and

Distributed Information Systems, Miami, 1996.

[28] M. Busari & C. Williamson, “On the Sensitivity of Web

Proxy Cache Performance to Workload Characteristics”, In

Proceedings of IEEE Infocom, Anchorage, Alaska, April 2001,

1225-1234.

[29] H. Bahn, S. H. Noh, S. L. Min, & K Koh, “Using Full

Reference History for Efficient Document Replacement in Web

Caches”, In Proceedings of Second USENIX Symposium on

Internet Technologies and Systems, Boulder, Colorado, USA,

October 1999.

[30] W. G. Teng, C. Y. Chang, and M. S. Chen, “Integrating

Web Caching and Web Prefetching in Client-Side Proxies”,

IEEE Transactions on Parallel and Distributed Systems,

Volume 16, Number 5, Pages 444-455, May 2005.

[31] D. Duchamp, D., “Prefetching Hyperlinks”, In Proceedings

of the Second USENIX Symposium on Internet Technologies and

Systems, Boulder, CO, 1999.

[32] E. Markatos and C. Chironaki, “A Top 10 Approach for

Prefetching the Web”, In Proceedings of INET’98 Conference,

Geneva, Switzerland, 1998.

[33] T. Palpanas and A. Mendelzon, “Web Prefetching Using

Partial Match Prediction”, In Web Caching Workshop, San

Diego, CA, 1999.

[34] J. Pitkow, and M. Recker, “A Simple Yet Robust Caching

Algorithm Based on Document Access Patterns”, In

Proceedings of Second International World Wide Web

Conference, Chicago, 1994.

[35] I. Tatarinov, A. Rousskov, and V. Soloviev, “Static

Caching in Web Servers”, In Proceedings of Sixth IEEE

International Conference on Computer Communications and

Networks (IC3N’97), Las Vegas, Nevada, USA, September

1997.

[36] T. M. Kroeger, D. D. E. Long, and J. C. Mogul, “Exploring

the Bounds of Web Latency Reduction from Caching and

Prefetching”, In Proceedings of the 1997 USENIX Symposium

on Internet Technologies and Systems, Monterey, CA,

December 1997.

[37] Z. Zhang, “An Integrated Prefetching and Caching

Algorithm for Web Proxies using a Correlation-based Prediction

Model”, M. S. Thesis, Department of Computing Science, Simon

Fraser University, December 2000.

[38] Q. Yang, and Z. Zhang, “Model based Predictive

Prefetching”, In Proceedings of the 12
th

 International Workshop

on Database and Expert Systems Applications, Pages 291-295,

September 03-07, 2001.

[39] B. Lan, S. Bressan, B. C. Ooi, and K. L. Tan, “Rule-

Assisted Prefetching in Web-Server Caching”, In Proceedings of

the 9
th

 International Conference on Information and Knowledge

Management, Pages 504-511, Washington DC, USA,

November, 2000.

[40] Q. Yang, H.H. Zhang, and I.T.Y. Li, “Mining Web Logs for

Prediction Models in WWW Caching and Prefetching”, In

Proceedings of Seventh ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Pages

473-478, August 2001.

[41] O. Yang, H. H. Zhang, and H. Zhang, “Taylor Series

Prediction: A Cache Replacement Policy Based on Second-

Order Trend Analysis, In Proceedings of the 34
th

 Hawaii

International Conference on Systems Sciences, IEEE Computer

Society, Piscataway, NJ, 2001.

[42] M. Curcio, S. Leonardi, A. Vitaletti, “Integrated

Prefetching and Caching for the World Wide Web”, Alcom-FT

Technical Report Series, ALCOMFT-TR-01-41, 2001.

