
Rakesh Kumar et al./ Elixir Adv. Engg. Info. 34 (2011) 2557-2564

2557

Introduction

Metrics are the units of measurement taken on a particular

item or process. Software engineering metrics are the units of

measurement that are used to characterize: a) Processes, e.g.,

activities of problem definition, analysis, designing b) Product,

e.g., designs models, source code and test cases c) People, e.g.,

Efficiency and productivity of the designer, programmer and

tester. Many software metrics have been proposed in the

literature [CHI94] [FEN96].

For these metrics to be widely accepted, empirical studies of

the use of these metrics as quality indicators are required.

According to lord Kelvin, a physicist, Software Metrics is

“When you can measure what you are speaking about, and can

express it in numbers, you know something about it; but when

you cannot measure it, when you cannot express it in numbers,

your knowledge is of a meager and unsatisfactory kind: it may

be the beginning of knowledge, but you have scarcely in your

thoughts advanced to the stage of science.”

Classification of metrics

According to [MIL88] and [MOE93], metrics can be

classified by different aspects as procedure oriented metrics,

object oriented metrics and web based metrics.

Procedural metrics are those which measure the properties

related to software developed in procedural programming

languages. Object oriented development requires analysis,

design and implementation in software metrics.

Web based metrics are those which represent the size of

web applications.

Procedural metrics

Procedural metrics are those metrics which are used to

measure the properties related to software developed in

procedural programming languages. They are organized around

a view of the software in which the individual procedural or

subprogram is the most significant unit. These metrics consists

of: a) Lines of Code (LOC):The Lines of Code measures the

volume of code that is used to compare or estimate projects that

use the same language, and is coded using the same coding

standards. [CON86] Several ways are given below through

which the lines can be counted depending upon what is counted

and what line of count can be achieved. i) Physical lines

(LINES): This is the simplest line count. Each line ends with a

line break, usually CR+LF. LINES counts every line, be it a

code, a comment or an empty line. ii) Logical lines of code

(LLOC): The number of logical lines can be counted by LLOC.

Where two or more lines are joined with the "_" line

continuation sequence, they count as one line. b) McCabe‟s

Cyclomatic complexity: MCCabe developed a measure of the

complexity of a program known as cyclomatic complexity.

[CAB76] The cyclomatic complexity (CC) of a graph (G) is

computed by the formula: CC(G) = Number (edges) : Number

(nodes) + 1. This metric is used as an ease of maintenance

metric, a quality metric, it can measure the minimum effort and

best areas of concentration for testing. c) Knot metric: The Knot

metric was designed for a method of modeling control flow in

Fortran programs. The programmers draw lines, in source code

text, to indicate how different instructions would alter program

Tele:

E-mail addresses: rsagwal@rediffmail.com,

 allagh.gurvinder@gmail.com

 © 2011 Elixir All rights reserved

Software metrics – a survey to procedure oriented, object oriented and web

based metrics
Rakesh Kumar

1
 and Gurvinder Kaur

2

1
Department of Computer Science and Applications, Kurukshetra University Kurukshetra.
2
Guru Nanak Khalsa Institute of Technology and Management Studies, Yamuna Nagar.

ABSTRACT

Without the help of measurement quality software cannot be built. Measurement is an

essential aspect for achieving the basic management objectives of prediction, progress, and

process improvement. Software measurement is the raw data associated with various

elements of the software process and product. It acts as a quantitative basis for the

development and validation of models for a software development process. The major goal

of software metrics is identification and measurement of the essential parameters affecting

the software development. An oft-repeated phrase by De Marco holds true; “You can‟t

manage what you can‟t measure!” [DEM86]. All process improvement must be based on
measuring where you have been, where you are now, and properly using the data to predict

where you are heading. Collecting good metrics and properly using them always leads to

process improvement! This paper gives an exhaustive overview of metrics used in software

development in different language paradigms. Metrics are classified as procedure oriented,

object oriented and web oriented metrics. The object oriented metrics are further classified

into Chidamber and MOOD metrics. In an object-oriented system, traditional metrics which

are generally applied to the methods comprising the operations of a class is also highlighted.

Web based objects further classified as multimedia files, web building blocks, scripts and

links are also described.

 © 2011 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 24 March 2011;

Received in revised form:

23 April 2011;

Accepted: 28 April 2011;

Keywords

Software Metrics,

Software Measurement,

Procedure Oriented Metrics,

Object Oriented Metric,

Web Based Metrics.

Elixir Adv. Engg. Info. 34 (2011) 2557-2564

Advanced Engineering Informatics

Available online at www.elixirpublishers.com (Elixir International Journal)

Rakesh Kumar et al./ Elixir Adv. Engg. Info. 34 (2011) 2557-2564

2558

flow. For these program complexity was used. The knot metric

was used to measure program complexity by counting the

intersections of control flow lines in the program models

[TAI84]. For any structured procedural program, the knot

complexity measure can be computed as the sum of intersecting

program jumps. A program jump from line A to line B, denoted

as an ordered pair (A, B), intersects with another program jump

(X, Y) if either of the following conditions are satisfied:

1)min(A,B) < min(X,Y) < max(A,B) AND max(X,Y) >

max(A,B) 2) min(A,B) < max(X,Y) < max(A,B) AND

min(X,Y) < min(A,B).

These intersecting program jumps are known as knots. d)

Function Point Analysis (FP) by Allan J. Albrecht was an

objective and structured technique to measure software size by

quantifying its functionality provided to the user based on the

requirements and logical design.

This technique breaks the system into smaller components

so that they can be better understood and analyzed. It divides the

system into five basic components namely external inputs,

external outputs, queries, logical master files and interface files.

[ALB83]. FP can be calculated as: FP = count total *[0.65 +

0.01*Fi] where: FP = Total number of adjusted function

points, count total = the sum of all user inputs, outputs,

inquiries, files and external interfaces to which have been

applied the weighting factor and Fi = a complexity adjustment

value. e) Fan-In Fan-Out Complexity:

Henry and Kafura [HEN81][SOM92] proposed a method

that identify the number of calls to the module and the number

of calls from a module. The procedure‟s complexity (C) is then

defined as: C = L x (Fan-in x Fan-out)
2
 where L is any measure

of module length such as LOC or V(G), fan-in = the number of

calls to the module and fan-out = the number of calls from the

module. C is compared with Halstead‟s E metric and McCabe‟s

cyclomatic complexity in [HEN81]. f) Bang Metrics: Demacro‟s

Bang Metric is used to predict the application size based on the

analysis model [DEM98]. This metric is calculated by using

certain algorithms and data primitives from a set of formal

specifications for the software. g) Halstead Software Science:

Maurice Halstead developed a quantitative measure of

complexity directly from the operators and operands in the

module to measure a program module's complexity directly from

source code. [HAL77].

The number of unique operators and operands (n1 and n2)

as well as the total number of operators and operands (N1 and

N2) can be calculated by collecting the frequencies of each

operator and operand token of the source program. He identified

a set of metrics for several aspects of programs and software

production effort. He proposed program vocabulary (n), program

length (N), and volume (V) metrics and effort (E) and

development time (T). (i) The vocabulary size of a program (n)

is the sum of the number of unique operators and operands: n =

n1 + n2 (ii) The length N of a program can be defined as the

total usage of „all‟ operators appearing in the implementation

plus the total usage of „all‟ operands appearing in the

implementation. N = N1+ N2 (iii) The program volume (V) is

the information contents of the program, measured in

mathematical bits. It can be calculated as: V = N * log2(n) (iv)

The Halstead Effort estimates the amount of work that it would

take to recode a particular method. The effort (E) is proportional

to the volume and to the difficulty level of the program. E = V *

D (v) The time (T) of a program is proportional to the effort. T

= E / 18

Object-Oriented Metrics

Object Oriented Metrics are the metrics for analyzing OO

language as an indicator of quality attributes. “Object-oriented

design is a method of design encompassing the process of object

oriented decomposing and a notation for depicting both logical

and physical as well as static and dynamic models of the system

under design”[SHE95].

Inheritance, association, aggregation, polymorphism and

message passing are some of the objet-oriented mechanisms.

Chidamber also defined a large number of object-oriented

metrics which included Weighted Methods per Class (WMC),

Number of Children (NOC), and Response for Class (RFC)

[CHI94]. Metrics also further categorized for measuring size

such as number of methods, number of attributes, number of

classes, measuring coupling such as direct class coupling,

number of dependencies in and coupling factor.

The Object Oriented metrics are further divided into two

sub-categories: Intra and Inter Class Metrics. Intra class metrics

are the metrics which measure characteristics related to one

class, such as Weighted Methods per Class (WMC), Number of

Children (NOC), and Depth of Inheritance Tree [CHI94]. Inter

class metrics are those that measure features between a set of

classes such as Coupling Factor (CF) and Method Hiding Factor

(MHF) [ABR94].

OO metrics gather quantitative measurement of their

product and processes for possible improvement as well as

estimation for the software project. OO Software Development

Methodologies divides the development cycle into 4 phrases,

Analysis, Design, Implementation and Testing. OO metrics has

different aims and purpose for different phrases of the

development:

1) Analysis phrase: In the analysis phrase, use case models are

used to capture the functional requirements of a software

project. Measurement helps in estimate of cost, schedule and

resource required in the software project. In 1993, Gustav

Karner of Objectory (now Rational Software) used the “Use

Case Points” method for sizing and estimating projects. 2)

Design and Implementation Phrase: In this phrase metrics

evaluate the design to highlight possible inappropriate design to

the system designer. Possible metrics used to determine

inappropriate design includes Coupling between Object Classes

(CBO), Response for a Class (RFC), Depth of Inheritance Tree

(DIT), and Number of Children (NOC). 3) Testing Phrase:

Estimation of software testing efforts can be derived from use

case model from the analysis phrase. This assists the project

manager to estimate the test effort needed for the project.

Metrics for analysis

Chidamber - Kemerer (CK) [CHI94] and MOOD[1,2]

[ABR95] [ABR01]suites are two suites of metrics in object-

oriented.

Chidamber & kemerer object-oriented metrics suite: The

Chidamber & Kemerer metrics suite originally consists of 6

metrics calculated for each class: WMC, DIT, NOC, CBO, RFC

and LCOM. 1) Weighted Methods Per Class (WMC): Number of

methods defined in class is known as WMC. [CHI93][BAS96].

It measures the complexity of an individual class. A class with

more member functions is more complex and therefore results to

errors. Larger the number of methods in a class, greater is the

potential impact on children as children inherit all the methods

defined in a class. 2) Depth of Inheritance Tree (DIT): The

depth of a class within the inheritance hierarchy is defined as the

maximum length from the class node to the root/parent of the

http://www.verifysoft.com/en_halstead_metrics.html#2
http://www.verifysoft.com/en_halstead_metrics.html#33
http://www.verifysoft.com/en_halstead_metrics.html#34
http://www.verifysoft.com/en_halstead_metrics.html#36

Rakesh Kumar et al./ Elixir Adv. Engg. Info. 34 (2011) 2557-2564

2559

class hierarchy tree and is measured by the number of ancestor

classes. [CHI94] 3) Number of Children (NOC): This is the

number of direct descendants (subclasses) for each class.

[CHI93] [BAS96] 4) Coupling between Object Classes (CBO):

It is the number of classes to which a class is coupled.

[CHI93][BAS96][WHI97][BRI96][HOU] 5) Response for a

Class (RFC and RFC´): The response set of a class is a set of

methods that can be executed in response to a message received

by an object of that class. RFC = M + R and RFC‟ = M + R‟

where M = number of methods in the class R = number of

remote methods directly called by methods of the class R‟ =

number of remote methods called, recursively through the entire

call tree. [CHI93][BAS96][WHI97][BRI96] 6) Lack of Cohesion

of Methods (LCOM): The 6th metric is the number of

disjoint/non-intersection sets of local methods.

Mood And Mood2 Metrics: Fernando Brito e Abreu defined

the MOOD metrics for designing a summary of the overall

quality of an object-oriented project. The original MOOD

metrics suite consists of 6 metrics. The MOOD2 metrics were

added later.

i) MOOD metrics suite: The metrics suite includes 6 metrics:

MHF, AHF, MIF, AIF, PF and CF.a) Method Hiding Factor

(MHF) & Attribute Hiding Factor (AHF): MHF measure how

methods can be encapsulated in a class and AHF measure the

encapsulation of variables in a class. b) Method Inheritance

Factor (MIF) & Attribute Inheritance Factor (AIF): MIF is the

inherited methods/total methods that are available in a class

whereas AIF is the inherited attributes/total attributes which are

available in a class. 3) Polymorphism Factor (PF):

Polymorphism Factor measures the degree of method overriding

in the class inheritance tree. Also, PF = number of actual method

overrides / maximum number of possible method overrides. 4)

Coupling Factor (CF): Coupling Factor is the factor that

measures the actual couplings among classes in relation to the

maximum number of possible couplings. [BRI96]

ii) MOOD2 metrics Suite: The MOOD2 metrics set is a later

addition by the author of the MOOD metrics set. This includes

OHEF, AHEF, IIF, PPF. [ABR01]. a) Operation/Attribute

Hiding Effectiveness Factor (OHEF & AHEF): OHEF are the

classes that access operations. AHEF are classes that access

attributes. b) Internal inheritance factor (IIF): It is the class that

inherits a visual basic class or all the classes that inherit

something is known as IIF. If there is no inheritance then IIF=0.

Parametric polymorphism factor (PPF): This metric is the

percentage of the classes that are parameterized.

[ABR95][ABR01] [MIS03][ABR96][BRI96]. Some measures

that can be computed using PPF are: 1) Coupling: Stevens

defined coupling as "the measure of the strength of association

established by a connection from one module to another

[MYE74]. 2) Cohesion:

“Cohesion measures the degree of connectivity among the

elements of a single class or object” [SHE95].3) Encapsulation:

It is packaging or binding together a collection of items like low

: level (records and arrays) and mid : level encapsulation

(subprograms as procedures, functions, subroutines and

paragraphs) 4) Factoring Effectiveness: This is equivalent to the

number of unique methods by total number of methods 5)

Application Granularity: This equals total number of objects /

total function points. 6) Methods per class: Average number of

methods per object class = Total number of methods / Total

number of object classes.

Object-Oriented Specific Metrics

Different metrics were applied to the concepts of classes,

coupling, and inheritance as:

Class Metrics: Different types of class Metrics are: 1) Attribute

Hiding Factor (AHF): Ratio of sum of inherited attributes in all

classes to the total number of available classes attributes

[MOR88]. 2) Class Cohesion (CCO): This measures the

relations between the classes [CHI91]. 3) Class Entropy

Complexity (CEC): It helps in measuring the complexity of

classes based on information content [DAV97]. 4) Comment

Lines per Method (CLM): This measures the percentage of

comments in methods [LOR94]. 5) Data Access Metric (DAM):

It is the ratio of the number of private attributes to the total

number of attributes declared in the class [DAV97]. 6) Function

Oriented Code (FOC): Percentage of non object–oriented code

used in a program can be measured. [LOR94].7) Internal

Privacy (INP): It refers to the use of accessory functions even

within a class [CHI94]. 8) Measure of Attribute Abstraction

(MAA): This is ratio of the number of attributes inherited by a

class to the total number of attributes in the class [DAV97]. 9)

Measure of Functional Abstraction (MFA): It is the ratio of the

number of methods inherited by a class to the total number of

methods accessible by members in the class [DAV97].10)

Number of Abstract Data types (NAD): Number of user-defined

objects used as attributes in a class that are necessary to

instantiate an object instance of the class [DAV97]. 11) Number

of Class Methods in a class (NCM): It weighs the measures in a

class but not in instances [LOR94].12) Number of Instance

Variables in a class (NIV): It measures relations of a class with

other objects of the program [LOR94]. 13) Number Of Ancestors

(NOA): It is the total number of ancestors of a class [KOL93].

14) Number of Public Attributes (NPA): It counts the number of

attributes declared as public in a class [DAV97]. 15) Number of

Parameters per Method (NPM): It is the average number of

parameters per method in a class [DAV97]. 16) Number of

Reference Attributes (NRA): It counts the number of pointers

and references used as attributes in a class [DAV97]. 17)

Percentage of Commented Methods (PCM): It is the percentage

of commented methods [LOR94]. 18) Public Data (PDA): It

counts the accesses of public and protected data of a class

[CAB94]. 19) Percent of Potential Method uses actually Reused

(PMR): It is the percentage of the actual method uses [MOR88].

20) Percentage of Public Data (PPD): It is the percentage of the

public data of a class [CAB94]. 21) Weighted Class Size (WCS):

It is the number of ancestors plus the total class method size

[KOLE93].

Method Metrics – The Method metrics can be categorized as:

1) Average Method Complexity (AMC): It is the sum of the

cyclomatic complexity of all methods divided by the total

number of methods [MOR88]. 2) Average Method Size (AMS):

It measures the average size of program methods [LOR94]. 3)

MAX V(G) (MAG): It is the maximum cyclomatic complexity of

the methods of one class M. 4) Method Complexity (MCX): It

relates complexity with the number of messages

[LOR94][DRE89].

Coupling Metrics: The Coupling Metrics can be classified as

following: 1) Class Coupling (CCP): It measures connections

between classes based on the messages they exchange [BOY93].

2) Coupling Factor (CFA): It is the ratio of the maximum

possible number of couplings in the system to the actual number

of couplings not imputable to inheritance [HAR98].

http://yunus.hacettepe.edu.tr/~sencer/size.html#fp

Rakesh Kumar et al./ Elixir Adv. Engg. Info. 34 (2011) 2557-2564

2560

Inheritance Metrics: The Inheritance Metrics are: 1) FAN:IN

(FIN): It is the number of classes from which a class is derived

and high values indicates excessive use of multiple inheritance

[CAB94]. 2) Class Hierarchy Nesting Level (HNL): It measures

the depth in hierarchy that every class is located [LOR91]. 3)

Method Reuse Metrics (MRE): It indicates the level of methods

reuse [ABR94]. 4) Number of Methods Inherited (NMI): It

measures the number of methods a class inherits [LOR94]. 5)

Number of Methods Overridden (NMO): It is the number of

methods needed to be re-declared by the inheriting class

[LOR94]. 6) Percent of Potential Method uses Overridden

(PMO): It is the percentage of the overridden methods

[MOR88]. 7) Ratio between Depth and Breadth (RDB): It is the

ratio between the depth and the width of the hierarchy of the

classes [BEL99]. 8) Reuse Ratio (RER): It is the ratio of the

number of super-classes divided by the total number of classes

[ROS97]. 9) Specialization Index (SIX): It measures the type of

specialization [LOR94]. 10) Specialization Ratio (SPR): It is the

ratio of the number of subclasses divided by the number of

super-classes [ROS97].

System Metrics: The System metrics includes: 1) Average

Depth of Inheritance (ADI): It is computed by dividing the sum

of nesting levels of all classes by the number of classes

[DAV97]. 2) Average Number of Ancestors (ANA): It

determines the average number of ancestors of all the classes

[DAV97]. 3) Application Granularity (APG): It is the total

number of objects divided by the total number of function points

[MOR88]. 4) Association Complexity (ASC): It measures the

complexity of the association structure of a system [KOL93]. 5)

Category Naming (CAN): It divides classes into semantically

meaningful sets [CHI94]. 6) Number of time a Class is Reused

(CRE): It measures the references in a class and the number of

the applications that reuse this class [LOR94][ABR94]. 7)

Functional Density (FDE): It is the ratio of LOC to the function

points [FEN97]. 8) Number of Classes Thrown away (NCT): It

measures the number of times a class is rejected until it is finally

accepted [LOR94][WES92]. 9) Number Of Hierarchies (NOH):

It is the number of distinct hierarchies of the system

[KOL93].10) Object Library Effectiveness (OLE): It is the ratio

of the total number of object reuses divided by the total number

of library objects [MOR88]. 11) Problem Reports per Class

(PRC): It measures defect reports on this class [LOR94]. 12)

Percent of Reused Objects Modified (PRO): It declares the

percentage of the reused objects that have been modified

[BEL99].13) System Reuse (SRE): It declares the percentage of

the reuse of classes [ABR94].

Lorenz and Kidd Object-Oriented Metrics

Lorenz and Kidd also proposed some metrics for the

quantification of software quality assessment [LOR94]. They

introduced 11 metrics applicable to class diagrams. These

metrics were classified into three categories: 1) Class size

metrics quantifies an individual class. This includes: a) Number

of Public Methods (NPM): This is used to count the number of

public methods in a class. b) Number of Methods (NM): In this

the total number of methods in a class counts all public, private

and protected methods. c) Number of Public Variables per class

(NPV): This metric counts the number of public variables in a

class. d) Number of Variables per class (NV): The total number

of variables including public, private and protected variables. 2)

Class Inheritance metrics which gives quality of the classes with

the use of inheritance. These metrics can be categorized into: a)

Number of Methods Inherited (NMI): This metric measures the

number of methods inherited by a subclass b) Number of New

Methods (NNA): A method is defined as an added method in a

subclass if there is no method of the same name in any of its

super classes. 3) Class Internals metrics which shows the general

characteristics of classes. a) Average parameters per Method

(APM): This is defined as the total number of parameters in a

class / Total number of methods b) Specialization Index (SIX):

The specialization index measures to what extent subclasses

redefine the behavior of their super classes.

Web Application Metrics

Estimation of the size of web applications is a new

problems for cost analysts as hypertext languages (html, xml,

etc.), multimedia files (audio, video, etc.), scripts (for animation,

bindings, etc.) and web building blocks (active components like

ActiveX and applets, building blocks like buttons and objects

like shopping carts, and static components like DCOM and

OLE) are employed in such applications. Improved size

estimating techniques are therefore needed to address the

shortfall. Else, the size estimates that we use to drive our cost

models will be flawed.

Using Halstead software science [HAL77] Web Objects as a

new metrics was developed for representing the size of web

applications. Web Objects are an extension of function points.

There are four additional types of objects incorporated into web

applications: a) Multimedia files: These are developed to

incorporate audio, video and images into applications. These

helps in creating web pages; creating video for the web (MPEG-

1&2 files); creating publishable documents for the web; and

creating, editing and enhancing complex images for both clients

and servers. b) Web building blocks: These develop web-enabled

fine-grained component and building block libraries and any

wrapper code required to either instantiate or integrate them.

These make use of the additional active (ActiveX, applets,

agents, guards, etc.), fine-grained static (COM, DCOM, OLE,

etc.) and course-grain reusable (shopping carts, buttons, logos,

etc.) building blocks that are acquired or developed to

incorporate into web applications for both client and server. c)

Scripts: these are developed to link html/xml data and generate

reports automatically; query ODBC- compliant databases via

prompts; integrate and animate applications via predefined logic

(via GIF); and direct dynamic web content per customizable

pallets, masks, windows and commands (streaming video, real-

time 3D, special effects, motion, guided workflow, batch

capture, etc.) for both clients and servers. d) Links (xml, html

and query language lines): These link the applications,

integrate them together dynamically and bind them to the

database and other applications in a persistent manner.

Web Application Metrics

There are some of the web application metrics as described

below: 1) HTTP Content: These explain about the HTTP

Content metrics, their descriptions, and user actions. a) Average

Connect Time: This metric measures the average connect time

for all pages in the transaction. This can be calculated as: Total

Connect Time / Number of Connections Made. The Connect

Time is one of the phases of a transaction that helps to isolate

and fix response time problems. b) Average First Byte Time:

This metric measure the average First Byte Time for all pages in

the transaction. This metric can be computed as: Total First

Byte Time / Number of Requests Made. The First Byte time is

one of the phases of a transaction that helps to isolate and fix

response time problems. c) Average Response Time: The

Average Page Response metric calculates the average response

Rakesh Kumar et al./ Elixir Adv. Engg. Info. 34 (2011) 2557-2564

2561

time of the pages within a single transaction. This is calculated

as: Total Transaction Time / Number of Pages in the

Transaction. d) Beacon Name: The beacon name is the name of

the beacon for which the current metric data is being collected.

e) Broken Count: This metric measures the number of errors

encountered when displaying content for the pages accessed by

the transaction. f) Computed Response Time: This metric

represents the estimated response time for a client to fetch all the

pages in a transaction. g) Connect Time: Connect Time is the

first phase of a transaction and represents the time it takes for a

connection to the Web server established for all requests. Each

transaction is broken into individual phases by Enterprise

Manager. h) Content Time: It is the amount of time taken to

transfer page content to the browser. Page content includes

images and style sheets, as opposed to the HTML coding for the

page. i) First Byte Time: This is the total time taken between the

last byte of the request sent and the first byte of the response

received by the server for all requests made. j) HTML Bytes:

This metric provides information about the amount of data

transferred during the selected transaction. k) HTML Content:

This metric serves as a container for a set of metrics that provide

information about the content of the Web pages. l) HTTP

Response: This metric is a container for a set of metrics used to

measure the performance of the Web Application transactions.

m) HTML Time: It is the amount of time taken to transfer the

HTML coding of the page to the browser. n) Page Content

Bytes: This metrics provides information about the amount of

data transferred during the selected transaction. o) Redirect

Time: This represents the total time of all redirects within a

transaction. p) Slowest Response Time: This metric indicates the

maximum response time measured for a particular page within a

transaction. q) Status: This metric returns a value of 1 if the

selected beacon was successfully able to run the transaction for

this Web application target. r) Status Description: If the beacon

is unable to run the transaction successfully, this metric returns a

description of the error that prevented the transaction from

running. s) Total Bytes: This metric provides information about

the amount of data transferred during the selected transaction. t)

Total Response Time: This metric calculates total transaction

time by assuming all contents of a page are fetched in a serial

manner. u) Transaction Name: It is the name of the transaction

for which the current metric data is collected. v) Transfer Rate:

This indicates how quickly data is being transferred from the

Web server to the client browser. This is computed as: Total

Kilobytes Received / Total Transaction Time. w) Web

Application: Enterprise Manager can be used to view

performance and availability metrics for the Web applications.

2) HTTP Step Group: The following describes the HTTP Step

Group metrics, their descriptions, and user actions. a) [HTTP

Step Group] Broken URL Count: This metrics measures the

number of errors encountered when displaying content for the

pages accessed by the step group. b) [HTTP Step Group]

Connect Time: Connect Time is the total time spent in the

transaction connecting to the server. There may be multiple

connections made during a transaction. c) [HTTP Step Group]

First Byte Time: This metric measure the First Byte Time, which

is the total time taken between the last byte of the request sent

and the first byte of the response received by the server for all

requests made. d) [HTTP Step Group] First Byte Time per Page:

This is the First Byte Time divided by the number of pages in

the step group. e) [HTTP Step Group] HTML Time: This metrics

measures the HTML Time, which is the amount of time it takes

to transfer the HTML coding of the page to the browser. f)

[HTTP Step Group] Non-HTML Time: This is the amount of

time it takes to transfer the non-HTML content such as images

to the browser. g) [HTTP Step Group] Perceived Slowest Page

Time: It is the amount of time that a web browser takes to play

the slowest page in a step group. h) [HTTP Step Group]

Perceived Time per Page: It is the average amount of time that a

Web browser takes to play each page in the step group. i) [HTTP

Step Group] Perceived Total Time: It is the amount of time a

Web browser takes to play the step group. j) [HTTP Step

Group] Redirect Time: It represents the total time of all redirects

within a step group. The time taken to redirect the request affect

the overall response time of the page. k) [HTTP Step Group]

Status: It indicates whether the Web transaction was successful.

l) [HTTP Step Group] Status Description: If the beacon is

unable to run the transaction successfully, this metrics returns a

description of the error that prevented the transaction from

running. m) [HTTP Step Group] Time per Connection: This is

the Connect Time divided by the number of connections made

while playing a step group. n) [HTTP Step Group] Total Time:

Indicates the overall time spent in processing the step group. o)

[HTTP Step Group] Transfer Rate (KB per second): The

transfer rate indicates how quickly data is being transferred from

the Web server to the client browser. This is computed as: Total

Kilobytes Received / Total Transaction Time. 3) HTTP

Transaction: The lists the HTTP Transaction metrics, their

descriptions, and user actions. a) [HTTP Transaction] Connect

Time: Connect Time is the total time spent in the transaction

connecting to the server. b) [HTTP Transaction] First Byte

Time: This metric measure the First Byte Time, which is the

total time taken between the last byte of the request sent and the

first byte of the response received by the server for all requests

made. c) [HTTP Transaction] First Byte Time per Page: This is

the First Byte Time divided by the number of pages in the

transaction. d) [HTTP Transaction] HTML Time: This metric

measures the HTML Time, which is the amount of time it takes

to transfer the HTML coding of the page to the browser. e)

[HTTP Transaction] Non-HTML Time: This is the amount of

time it takes to transfer the non-HTML content such as images

to the browser. f) [HTTP Transaction] Perceived Slowest Page

Time: This is the amount of time a web browser takes to play the

slowest page in the transaction. g) [HTTP Transaction]

Perceived Time per Page: This is the average amount of time a

Web browser takes to play each page in the transaction. h)

[HTTP Transaction] Perceived Total Time: This is the amount

of time that a web browser takes to play the transaction. i)

[HTTP Transaction] Redirect Time: Redirect time represents the

total time of all redirects within a transaction. The time taken to

redirect the request affect the overall response time of the page.

j) [HTTP Transaction] Status: Indicates whether the Web

transaction was successful. k) [HTTP Transaction] Status

Description: If the beacon is unable to run the transaction

successfully, this metric returns a description of the error that

prevented the transaction from running. l) [HTTP Transaction]

Time per Connection: This is the Connect Time divided by the

number of connections made while playing a transaction. m)

[HTTP Transaction] Total Time: It indicates the overall time

spent to process the transaction. n) [HTTP Transaction]

Transfer Rate (KB per second): The transfer rate indicates how

quickly data is being transferred from the Web server to the

client browser. This is computed as: Total Kilobytes Received /

Total Transaction Time. 4) HTTP User Action: The following

Rakesh Kumar et al./ Elixir Adv. Engg. Info. 34 (2011) 2557-2564

2562

section lists the HTTP User Action metrics, their descriptions,

and user actions. a) [HTTP Step] Connect Time: Connect Time

is the total time spent in the transaction connecting to the server.

b) [HTTP Step] First Byte Time: This metric measure the First

Byte Time, which is the total time taken between the last byte of

the request sent and the first byte of the response received by the

server for all requests made. c) [HTTP Step] First Byte Time per

Page Element: This is the First Byte Time divided by the

number of step elements. d) [HTTP Step] HTML Time: This

metric measures the HTML Time, which is the amount of time it

takes to transfer the HTML coding of the page to the browser. e)

[HTTP Step] Non-HTML Time: This is the amount of time it

takes to transfer the non-HTML content such as images to the

browser. f) [HTTP Step] Perceived Slowest Page Element Time:

This is the amount of time that a Web browser takes to play the

slowest step element. g) [HTTP Step] Perceived Time per Page

Element: The average amount of time that it would take a Web

browser to play each page in a step. h) [HTTP Step] Perceived

Total Time: The amount of time that takes a Web browser to

play the step element. i) [HTTP Step] Redirect Time: Redirect

time represents the total time of all redirects within a step. The

time taken to redirect the request affects the overall response

time of the page. j) [HTTP Step] Status: Indicates whether the

Web transaction was successful. k) [HTTP Step] Status

Description: If the beacon is unable to run the transaction

successfully, this metric returns a description of the error that

prevented the transaction from running. l) [HTTP Step] Time per

Connection: This is the Connect Time divided by the number of

connections made while playing a step element. m) [HTTP Step]

Total Time: Indicates the overall time spent in processing the

step.

This includes all the phases of the transaction, including

Connect Time, Redirect Time, First Byte Time, HTML Time,

and Non-HTML Time. n) [HTTP Step] Transfer Rate (KB per

second): The transfer rate indicates how quickly data is being

transferred from the Web server to the client browser. This is

computed as: Total Kilobytes Received / Total Transaction

Time. o) [HTTP Step] URL: This is the URL associated with the

step. 5) HTTP Raw: This lists the HTTP Raw metrics, their

descriptions, and user actions. a) HTTP Raw Connect Time: This

is the total time spent in the transaction connecting to the server.

There may be multiple connections made during a transaction.

b) HTTP Raw First Byte Time: This is the First Byte Time

divided by the number of pages in the step, step group, or

transaction. c) HTTP Raw HTML Time : This metric measures

the HTML Time, which is the amount of time it takes to transfer

the HTML coding of the page to the browser. d) HTTP Raw

Non-HTML Time: This is the amount of time it takes to transfer

the non-HTML content such as images to the browser. e) HTTP

Raw Perceived Slowest Page / Page Element Time: The amount

of time that it would take a web browser to play the slowest page

in the step, step group, or transaction. f) HTTP Raw Perceived

Time per Page / Page Element: The average amount of time that

take a Web browser to play each page in the step, step group, or

transaction. g) HTTP Raw Perceived Total Time: Indicates the

overall time spent to process the step, step group, or transaction.

This includes all the phases of the step / step group / transaction,

including Connect Time, Redirect Time, First Byte Time,

HTML Time, and Non-HTML Time. h) HTTP Raw Redirect

Time: Redirect time represents the total time of all redirects

within a transaction. The time taken to redirect the request can

affect the overall response time of the page. i) HTTP Raw

Status: Indicates whether the Web transaction was successful. j)

HTTP Raw Status Description: If the beacon is unable to run the

step, step group, or transaction successfully, this metric returns a

description of the error that prevented the transaction from

running. k) HTTP Raw Time Per Connection: This metric

measures the average connect time for all pages in the

transaction. This is calculated as: Total Connect Time / Number

of Connections Made. l) HTTP Raw Transfer Rate (KB per

second): The transfer rate indicates how quickly data is being

transferred from the Web server to the client browser. This is

computed as: Total Kilobytes Received / Total Transaction

Time. m) HTTP Raw Total Time: Indicates the overall time

spent to process the step, step group, or transaction. This

includes all the phases of the transaction, including Connect

Time, Redirect Time, First Byte Time, HTML Time, and Non-

HTML Time. n) HTTP Raw URL: This is the URL in which

scripting on the page enhances content navigation.

The web metrics can also be classified using the web quality

model. Ramler et al. [RAM02] defined a cube structure in which

three basic aspects when testing a web site. Another cube was

also proposed by Ruiz [RUI03] which composed of the aspects

taken for the evaluation of web site quality, features, life-cycle

processes and quality aspects, which can be considered

orthogonal. The model was reviewed by basing the features

dimension on aspects relevant to the web found in the literature

[CAL04]. Using this version of WQM, web metrics were

classified.

Architecture of Web Metrics

The architecture of Web Metrics uses an intermediate

abstraction layer to decouple language parsing from metrics

extraction process.

A set of intuitive relations is generated that a separate

analyzer uses as an input to compute metrics. Relations are

described among language entities, such as classes, interfaces,

methods and attributes. The metrics can be calculated directly by

performing SQL queries.

 The architecture consists of three main components (Figure

below) 1) Parser: In this each parser contains a grammar parser,

a symbol table, and supporting classes. Syntax of a particular

language can be recognized by the grammar parser and is

written in JavaCC. JavaCC is a tool that generates parsers source

code in Java, given grammar as an input. It uses a top down

LL(k) parsing algorithm [AHO86].

The symbol table and all supporting classes are written in

Java. The Common Interface module is shared among all parsers

and it provides a standard API to report relations on the

database. 2) Database: It stores the relation set which represents

the source code. The implementation is based on the open source

DBMS MySQL 3) Analyzer: It calculates the metrics querying

the relation set with the SQL language.

Each metric is a class which implements the Measure

interface. This is implemented according to the Strategy design

pattern [GAM95] by the way in which the analyzer calculates

each metric.

New metrics can be developed by adding a new class

implementing this interface. Metrics calculated are reported

through an XML file.

This file can be transformed with XSLT into any kind of

report. The XML file is transformed into a simple HTML page

including the following metrics: CK Metrics Suite, LOC and

McCabe Cyclomatic Complexity average per method.

Rakesh Kumar et al./ Elixir Adv. Engg. Info. 34 (2011) 2557-2564

2563

Figure Architecture overview

Conclusion

In this paper the main concepts of software measurement is

highlighted. Many metrics with different language paradigms

have been invented in software industry as stated. Most of these

have been defined and then tested only in a limited environment.

Subsequent attempts should be carried out to test or use the

metrics. The impact of implementing a web metric measurement

tool on a website along the following two components should be

established: programming code and website performance. While

the former deals with the amount of programming effort it

would take to integrate the code to run a web metric

measurement tool with existing website code, the latter focuses

on website performance issues that might arise from running a

data collection tool on a website.

References

1. [ALB83] Albrecht A.J. & J. Gaffney, “Software function,

source lines of code and development effort prediction”, IEEE

Trans. on Software Engg, SE:9, Vol. 6, 1983, pp 639:648.

2. [AHO86] Aho A.V., R. Sethi, J.D. Ullman “Compilers:

Principles, Techniques and Tools,” Addison-Wesley, 1986.

3. [ABR94] Abreu F.B. & R. Carapuca, “Candidate Metrics for

Object Oriented Software within a Taxonomy Framework”,

Journal of Systems and Software, Vol. 26, No. 1, 1994.

4. [ABR95] Abreu F.B., Miguel Afonso Goulão & Rita Esteves :

“Toward the Design Quality Evaluation of Object-Oriented

Software Systems”, act as de 5th International Conference on

Software Quality, Austin, Texas, EUA, Outubro, 1995,

pp.44:57.

5. [ABR96] Abreu, Fernando B, Rita, E., Miguel, G. : “The

Design of Eiffel Program: Quantitative Evaluation Using the

MOOD metrics”, Proceeding of TOOLS‟96 USA, Santa

Barbara, California, July 1996

6. [ABR01] Abreu F.B.: “Using OCL to Formalize Object-

Oriented Metrics Definition”, Report ES007/01 of the S/W

Engg. Group, INESC, Portugal, 2001.

7. [BOY93] Boyd N., “Building object–oriented frameworks”,

The Smalltalk report, Volume 3(1), 1993, pp 1:16.

8. [BAS96] Basili V., L.C. Braind, W.L. Melo, “A Validation of

Object-Oriented Design Metrics as Quality Indicators”, IEEE

Trans. on S/W Engg, SE:22, Vol. 10, 1996.

9. [BRI96] Briand L.C., John W. Daly, and Jurgen Wust: “A

Unified Framework for Coupling Measurement in Object-

Oriented Systems.” Fraunhofer Institute for Experimental

Software Engineering. Kaiserslautern, Germany. 1996.

10. [BEL99] Bellin D., M. Tyagi, M. Tyler, “Object Oriented

Metrics: An Overview”, Web Publication, 1999.

11. [BRI99] Briand L.C., John W. Daly, and Jurgen Wust. “A

unified framework for coupling measurement in object-oriented

systems.” IEEE Transactions on Software Engineering, 25(1),

Jan./Feb. 1999, 91–121.

12. [CON86] Conte S., H. Dunsmore, and V.Shen, "Software

Engineering Metrics And Models, 1ST edition.",

Benjamin/Cummings, Menlo Park, CA. , 1986.

13. [CHI91] Chidamber S.R., Chris F. Kemerer, “Towards A

Metrics Suite For Object Oriented Design,” OOPSLA‟91, 1991,

pp. 197:211.

14. [CHI93] Chidamber S.R., Chris F. Kemerer, “A Metrics

Suite For Object Oriented Design,” M.I.T. Sloan School of

Management, 1993.

15. [CHI94] Chidamber S.R. and C.F. Kamerer, “A metrics

Suite for Object-Oriented Design.” IEEE Trans. S/W Engg, vol.

SE:20, no.6, 1994, pp. 476:493.

16. [CAL04] Calero, C. , Ruiz, J., and Piattini, M. “ A Web

Metrics Survey Using WQM, “ Proceedings ICWE04, LNCS

3140, Springer: Verlag Heidelberg, July 2004, pp.147:160.

17. [DEM86] DeMarco, Tom, Controlling Software Projects,

Yourdon Press, New York, 1986.

18. [DRE89] Dreger J.B., “Function point analysis”, Prentice-

Hall, 1989.

19. [DAV97] Davis C. & J. Bansiya, “Using QMOOD++ for

object-oriented metrics”, Dr. Dobb‟s Journal, December 1997.

20. [DEM98] DeMarco, Tom and Boehm, Barry W.

“Controlling Software Projects: Management, Measurement,

and Estimates”, Prentice Hall PTR/Sun Microsystems Press,

March 1998, pp. 80:91.

21. [FEN96] Fenton N. & S.L. Pfleeger, “Software Metrics: A

Rigorous and practical approach”. International Thomson

Computer Press, 1996.

22. [FEN97] Fenton N. & S.L. Pfleeger, “Software Metrics: A

Rigorous & Practical Approach”, Second edition, 1997,

International Thomson Computer Press.

23. [GAM95] Gamma E., R. Helm, R. Johnson, and J.

Vlissides. “Design Patterns: Elements of Reusable Object-

Oriented Software”. Addison-Wesley, 1995.

24. [HOU] Houari A. Sahraoui, Robert Godin, Thierry Miceli:

“Can Metrics Help Bridging the Gap Between the Improvement

of OO Design Quality and Its Automation?”

http://www.iro.umontreal.ca/~sahraouh/papers/ICSM00.pdf

25. [HAL77] Halstead M.H., "Elements of Software Science, 1st

edition", Elsevier North-Holland, ISBN: 0444002057, 1977.

26. [HEN81] Henry S. & D. Kafura, “Software structure

metrics based on information flow”, IEEE Trans. on S/W Engg.,

SE:7, Vol. 5, 1981, pp. 510:518.

27. [HAR98] Harrison R., S.J.Counsell, and R.V.Nithi, “An

Evaluation of MOOD set of Object Oriented Software Metrics”.

IEEE Trans. Software Engineering, vol. SE:24, no.6, June 1998,

pp. 491:496.

28. [KOL93] Kolewe R., “Metrics in Object-Oriented Design

and Programming”, Software Development, October 1993.

29. [LOR91] Lorenz M., “Real world reuse”, Journal of

object–oriented programming. Volume 6, 1991.

30. [LOR94] Lorenz, Mark & Kidd Jeff: “Object-Oriented

Software Metrics”, Prentice Hall, 1994.

31. [MYE74] Myers, G., Stevens, W., and Constantine, L.,

"Structured Design," IBM Systems Journal, vol. 13, 1974, pp.

60:73.

32. [CAB76] McCabe. A Complexity Measure. IEEE

Transactions on Software Engineering, Vol. Se:2, No. 4,

December 1976, pp. 308:320

33. [MIL88] Mills, Everald E. Software Metrics, SEI

Curriculum Module SEI: CM:12:1.1, Carnegie Mellon

University.

Rakesh Kumar et al./ Elixir Adv. Engg. Info. 34 (2011) 2557-2564

2564

34. [MOR88] Morris K.L., “Metrics for Object-Oriented

Software Development Environments”, Master thesis, M.I.T.,

1988.

35. [MOL93] Moller, Handbuch der Informatik, R.Oldenbourg

Verlag, “A high level description of useful metrics and their use

within the development process with startup guidelines and

examples”.

36. [CAB94] McCabe & Associates, McCabe “Object Oriented

Tool User’s Instructions”, 1994.

37. [MIS03] Misra & Bhavsar: “Relationships Between Selected

Software Measures and Latent Bug-Density: Guidelines for

Improving Quality.” Springer-Verlag 2003. [ROS97]

Rosenberg, Linda H., “Metrics for Object Oriented

Environments”, EFAITP/AIE Third Annual Software Metrics

Conference, December, 1997.

38. [RAM02] Ramler, R., Weippl, E., Winterer, M., Schwinger,

W. and Altmann, J., “A quality-driven approach to web

testing”, Ibero-american Conference on Web Engineering,

ICWE 2002, Santa Fe, Vol. 1, 2002, pp. 81:95.

39. [RUI03] Ruiz, J., Calero, C. and Piattini, M., “A three-

dimensional web quality model”, Proceedings of the

International Conference on Web Engineering (ICWE 2003),

LNCS 2722, 2003,pp. 384:5.

40. [SOM92] Sommerville, Ian, “Software Engineering,”

Addison-Wesley Publishing Company, 1992.

41. [SHE95] Shepperd M., N. Churcher,: Comments on “A

metrics suite for object-oriented design’’. IEEE Trans on S/W

Engineering 21, 1995, pp. 263:265.

42. [TAI84] Tai K., “A Program Complexity Metric Based on

Data Flow Information in Control Graphs,” Proc. 7th Int‟l

Conf. Software Eng., IEEE Press, 1984, pp. 239:248.

43. [WES92] West M., “An investigation of C++ metrics to

improve C++ project estimation”, IBM internal paper, 1992.

44. [WHI97] Whitney R.: Course material. CS 696: “Advanced

OO.” Docs 6 & 8, Metrics. Spring Semester, 1997. San Diego

State University.

45. http://www.eli.sdsu.edu/courses/spring97/cs696/notes/metri

cs/metrics.html,http://www.eli.sdsu.edu/courses/spring97/cs696/

notes/metrics2/metrics2.html

About the authors:

Dr. Rakesh Kumar received his PhD in Computer Science

and M.C.A from Kurukshetra University, Kurukshetra, Haryana.

He is currently Reader at the Department of Computer Science

& Applications, Kurukshetra University. His current research

focuses on programming languages, information retrieval

systems, software engineering, and Artificial Intelligence.

Ms. Gurvinder Kaur is Lecturer in Computer Science at

Guru Nanak Khalsa Institute of Technology and Management

Studies, Yamuna Nagar. She has done her postgraduates degrees

in Master of Science (M. Sc.) in Information Technology,

Master of Computer Applications (M.C.A) from the Maharishi

Dayanand University Rohtak and M.Phil (Computer Science)

from Madurai Kamaraj University. At present she is pursuing

PhD in Computer Science from Kurukshetra University.

