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Introduction 

In order to describe the flow behavior of any fluid, we have 

to solve the Navier-Stokes equations arising in fluid flow. The 

Importance of Navier-Stokes equations comes from their wide 

applicability for different kind of fluid now, ranging from thin 

film to large scale atmospheric, even cosmic flows. However, 

Navier- Stokes equations are highly non-linear in nature and 

hence we face difficulties in solving them exactly. The full set of 

general solution of Navier-Stokes equations has not been found 

and is an open problem till the date. In order to overcome this 

difficulty one adopt transformations, inverse or semi- inverse 

method for the reformulation of equations in solvable form. 

Following the Martin's formulation[1], some researchers[3, 4] 

have used hodograph transformation[2] in order to linearized the 

system of governing equations and successfully got some exact 

solutions. Some authors[5, 6] have used inverse method [7] 

where some a priory condition is assumed about the flow 

variables and have found some exact solutions. 

The above said solutions have been found for the flow of 

fluid with constant viscosity. But in many situations in the fluid 

flow, where the pressure and temperature gradients are high or 

in case of electrically conducting fluid flow where the magnetic 

field plays dominant role, the viscosity is no longer constant[8, 

9, 10]. So In order to study fluid nows in such situations, we 

have to consider the viscosity of fluid as a variable, which gives 

rise the corresponding Navier-Stokes equations in more 

complicated form. The exact solution of Navier-Stokes 

equations for the fluid of variable viscosity are rare and very few 

work has been done in this aspect. As for the analytical solution 

is concern, Martin's approach, where system of equations are 

reformulated in curvilinear coordinates, was previously 

employed by Naeem[18] in the compressible fluid of constant 

viscosity. This work was extended by Naeem and Nadeem[15] 

for incompressible fluid of variable viscosity. Naeem[14], 

utilizing one parameter group of transformation, transformed the 

governing equations of an incompressible fluid with variable 

viscosity into a system of ordinary differential equation and 

successfully got some exact solutions. Moreover, exact solutions 

of the steady plane incompressible fluid flow with variable 

viscosity, employing transformation of variables[11] and von-

mises variables[16] have been obtained. Recently Naeem and 

Jamil[17], by defining a one dimensional transformed variable 

  );sincos( yx , convert the governing 

equations into simple ordinary differential equations and have 

got a class of exact solutions to flow of fluid of variable 

viscosity for which the vorticity function is proportional to the 

stream function perturbed by a uniform stream parrellel to X-

axis. Further, Jamil and Khan[19], using the same technique, 

extend this work by taking electrically conducting fluid of 

variable viscosity under the presence of transverse magnetic 

field and considering the vorticity distribution proportional to 

the stream function perturbed by a uniform stream, U(x + y); 

where U is a real constant, inclined to the X-axis. 

Nomenclature 

Latin Symbols 

u, v non-dimensional velocity component 

H non-dimensional transverse components of the 

magnetic field vector H 

p non-dimensional pressure 

Re          Reynolds number 

RH  magnetic pressure number 

R          magnetic Reynolds number 

J generalized energy function 

L, M, N, Z, H , G, P      functions 

x, y                                variables 

K, U, m, n                     real constants 

A1( ), ..., A9( )        real constants dependent on the parameter 

0 , and    

B1( ), ..., B9( )        real constants dependent on the parameter 

0 , and    

Greek symbols 

 non-dimensional viscosity of the fluid
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           stream function 

               vorticity function 

        non dimensional. stream functions 

 ,,,
  

one dimensional parametric variables 

Subscripts 

yyxxzyx ,,,,    differentiation with respect to Cartesian 

coordinates x and y. 

 ,,,    differentiation with respect to @ and r/. 

Superscripts  

dimensional quantities 

In the present analysis we have extended the work of Jamil 

and Khan[19] to find some exact solutions of governing 

equations of the flow of electrically conducting non- Newtonian 

fluid of variable viscosity under the presence of transverse 

magnetic field by considering the vorticity distribution 

proportional to the stream function perturbed by a generalized 

quadratic  stream, ),)()(()sincos( 22 yBxAxyU    

where A( ), B( ) are parametric constants depending on the 

parameter 6 as defined above and a is an other real parameter. 

Equations of Motion 

The non-dimensional equation of steady plane flow of an 

incompressible non-Newtonian electrically conducting fluid of 

variable viscosity under the presence of transverse magnetic 

field following Jamil and Khan[19] are 
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 With magnetic diffusion equation as  
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Where H is the transverse component of magnetic field and 

2

2H
RpP H , the modified fluid pressure. Further for non-

dimensionalisation we have used the scaling parameters L, U0,  

0 and 
2

0U as reference length, velocity, viscosity and 

pressure. Using these scaling parameters we have defined the 

following non-dimensional quantities  

L

x
x

'
 , 

L

y
y

'
 , 

0

'

U

u
u  , 

0

'

U

v
v  , 

0

'




  , 2

0

'

U

p
p


 , 

0

0



 LU
Re  , 3

2

01

L

U
We 


 , 3

2

02

L

U




       (5)

 Symbols in the above equations have there usual meaning 

and are listed in the Nomenclature. Now, equation (1) implies 

the existence of stream function  as  

xy vu   , .    (6) 

Using (6) in the above equations we get 
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Now we let 

))sincos(( 22 ByAxxyUKyyxx   .(11) 

Again from equation (10) and (11) we have 

 K
     (12)

 

Where  
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Now using (12) and (13), equations (7) (8) becomes 
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Solution  

 In this section we find exact solutions of governing 

equations. Using equations (11) and (13) we have  
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 )(22 BAK    (19) 

Now we seek the solution of the above equation of the form 

 )(),( Nyx     (20) 
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   ),sincos( yx . (21) 

Using (21) (20) in equation (19) we have 
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Now for solution of above equation we have two cases 

Case (I) : 0,2  nnK  

Case (II) : 0,2  mmK  

Now considering the case I we have the solution of (22) as  
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again using (13) and (26) we have the stream function as under : 
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Now on solving (29) and using (3) we get viscosity as  
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where A7 ( ) and A6 ( ) are parametric constants. Using (9), 
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 where A8 ( ) and A9 ( ) are parametric constants. Finally 

using (21) and (28) we have viscosity and magnetic field in 

cartisian coordinates.  

Case (II) : 0,2  mmK  

considering this case, solving equation (22) and then using (20), 

we have the solution for stream function as  
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Again using (39) and (13), we have the stream function as 
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where B12 ( ) and B13 ( ) are arbitrary constants depending on 

parameter  . 

Result and Discussion 

  Stream lines patterns have been obtained for two different 

cases 
2nK  and

2mK  . In the analysis we observe that 

when quadratic perturbation term, Ax
2
 + By

2
 dominates over 

linear perturbation term )sincos(  xyU  then stream 

lines are hyperbolic in nature and there exist stagnation point, 

Figure 1 and 2. 

Figure 1: Stream line pattern for 

Cyxy
x

yx |
3

4

2

3

2

1
cos3

2

1

2

1

2

3 2

2
































 
Figure 2: Stream line pattern for 
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If linear perturbation term )sincos(  xyU   

dominates over quadratic term (Ax
2
 + By

2
) then       straight lines 

obtained are of wavy nature including some closed graphs, 

Figure 3,4,5 and 6. 

Figure 3: Stream line pattern for 
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Figure 4: Stream line pattern for 
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Figure 5: Stream line pattern for 
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Moreover for the solution in the case (II) when 
2mK   

where the exponential terms dominates over all other perturbed 

terms resulting no wavy solution and hence there are stream line 

patterns of hyperbolic nature including some closed curves 

shown in Figure 7,8 and 9. 

Figure 6: Stream line pattern for 
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Figure 7: Stream line pattern for 
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Figure 8: Stream line pattern for 
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Figure 9: Stream line pattern for 
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At last we have shown some viscosity variation in three 

dimensional surface graphs shown in Figure 10,11,12 and 13, 

which shows there are considerable variation of viscosity in the 

flow field corresponding to the considered kinematical condition 

for the vorticity. Our solutions are not easily observable in 

laboratory because they involve singularities and stagnation 

points, however they can be realized in hydrodynamic 

instabilities leading to turbulence. These solutions are also used 

to check the accuracy of numerical simulation and provide 

possible starting points for further analysis of the governing 

equations for non-Newtonian fluid containing pose intriguing 

questions of linear and nonlinear stability. 

Figure 10: Viscosity variation for 
3

,
3





  Re = 100, U 

= 0.1, V = 1 corresponding to the solution in case I 

Figure 11: Viscosity variation for 
6

,
6





  Re = 100, U 

= 1, V = 1 corresponding to the solution in case I 

Figure 12: Viscosity variation for 
3

,
6





  Re = 100, U 

=10, V = 1 corresponding to the solution in case II 

Figure 13: Viscosity variation for 
3

,
6





  Re = 100, U 

=1, V = 1 corresponding to the solution in case II 

Concluding Remark 

In this paper we have taken the vorticity distribution 

proportional to the stream function perturbed by the more 

general quadratic stream and obtained the exact solutions of 

equations of motion of a finitely conducting incompressible 

fluid of variable viscosity under the presence of transverse 

magnetic field. Transformation of variables has been used to 

find the solutions in terms of one dimensional variable, 

depending on the single parameter . Moreover, by means of 

graphs, we have presented stream line patterns and variation of 

viscosity corresponding to the various solutions. Further, we can 

get more exact solutions by taking different values of parameters 

 , U and V. If we set A = B   = We 

for
4


  , the result of Jamil and Khan [19] becomes the 

particular case of our result and this assures the correctedness of 

our calculations. 
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