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Introduction 

The study of quantum plasmas has grown rapidly in recent 

years due to the fact that, both plasma and quantum effects can 

coexist in nature.  Where that happens, quantum effects are 

excepted to play a significant role on the dynamics of plasmas 

particles.  The much attention on quantum plasma is because of 

the interesting and important applications in micro and 

nanoscale systems [1-3], quantum dots and quantum wires [4], 

dense astrophysical environments [5-6], as well as in laser 

produced plasmas [7].  Making use of fluid description, some 

interesting properties of nonspin and spin quantum plasmas were 

uncovered [8,9]. 

The Schrödinger-Poisson model, the Wigner-Poisson model 

and the quantum hydrodynamic (QHD) model, are the three well 

known mathematical formulations to describe the dynamics of 

quantum plasmas.  The fluid model for plasmas is generalized 

by QHD model while taking into account the macroscopic 

variables only (i.e. the density and fluid velocity, the stress 

tensor and the electrostatic potential).  These models have been 

discussed in detail in Refs. [10,11].  Quantum plasmas obey the 

Fermi-Dirac distribution leading to the Fermi pressure and new 

forces arising due to Bohm potential play a vital role [12]. 

The study of linear and nonlinear ion-acoustic waves has 

received great deal of attention in recent years, due to the 

impressive developments in quantum plasmas [13-15].  Many 

authors have studied the effects of quantum diffraction and 

Fermi pressure on linear and nonlinear electrostatic waves in 

dense electron-positron-ion plasmas [16-17].  It is found that 

Bohm potential leads to the wave dispersion due to quantum 

correlation of density fluctuations associated with wave-like 

nature of the charge carries.  However, both dispersion and 

dissipation may play necessary roles in some quantum plasma 

system.  Such vital roles have been studied in different quantum 

plasma systems for the formation of ion-acoustic shocks (where 

the dissipation is due to kinematic viscosity)  [18-19]. 

Recently, Sahu and Roychoudhury [18] studied the 

properties of quantum ion acoustic shock waves taking into 

account the quantum-mechanical effects for two species plasma 

(electrons and ions) in both planar and nonplanar geometry.  

Since in many astrophysical environments there exists a small 

number of ion along with the electrons and positrons, therefore, 

it is important to study linear and non-linear behaviour of 

plasma waves in electron-positron-ion (e-p-i) plasmas.  It is 

therefore of interest to examine the effects of kinematic viscosity 

as well as the quantum mechanical effects on the formation of 

shock waves instead of solitary wave solution on e-p-i plasmas.  

In this paper, we have considered a three component plasma 

comprising electrons-positrons and ions in planar geometry.  By 

using standard reductive perturbation method, the quantum ion 

acoustic shock waves is described by deformed Korteweg-

deVries Burger’s (dKdVB) equation, where the Burger term 

appears due to the kinematic viscosities of the plasma 

constituents. 

Basic Equations and Quantum Ion Acoustic Shock Solutions  
We have followed exactly the procedure of Sahu and 

Roychoudhury [18] in investigating nonlinear propagation of ion 

acoustic shock waves for a three-species quantum plasma 

system which is made up of electrons, positrons and ions in a 

planar geometry.  We consider the propagation of quantum ion 

acoustic shock waves (QIASWS) in an unmagnetized 

collisonless quantum plasma with electrons, ions and Immobile 

positrons.  The dynamics of QIASWs in our quantum plasma is 

governed by the following set of hydrodynamic equations: 
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ABSTRACT  

We have studied the formation of quantum ion acoustic shock waves (QIASWs) in a three 

component unmagnetized plasma, whose constituents are electrons, ions and immobile 

positrons.  The effects of both the dissipation due to the plasma kinematic viscosities and the 

dispersion caused by the Bohm potential are taken into account.  Employing reductive 

perturbation method, we have obtained the deformed Korteweg-deVries Burger (dKVB) 

equation for quantum ion acoustic shock wave in planar geometry.  From our numerical 

analysis, we have studied the effect of the quantum parameter H and ion kinematic 

viscosities (i0) of the planar dKdVB on different values of the positron concentration P.  
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Where  mun ,,
 are respectively the density (with 

equilibrium value 0n
), velocity and mass for electrons 

 e
, positrons  

 p
 and ions 

 i
;   is the 

Planck’s constant divided by 2;  is the electrostatic wave 

potential; pe is the electron pressure; x and t are respectively the 

space and time variables, and 
 ie 

 are the coefficient of 

electron (ion) kinematic viscosity.  For simplicity, the pressure 

effects for ions are neglected.  At equilibrium the overall charge 

neutrality condition reads  

 6.00 iope nnn 
 

We assume that the ions are cold, and electrons obey the 

following pressure law [10, 20].   
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where  
eFBF mTKV

ee
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   is the electron Fermi 

thermal speed, eFT
 is the particle Fermi termperature given by  

  BeeFB KmnTK
e

,23 32

0

3222 
  is the Boltzmann’s  

constant.  Now introducing the following normalizations: 
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Where 
ie,

 and   menwp 0

2

0 
   is the  - 

particle plasma frequency,  
iFBs mTKc

e
2

  is the 

quantum ion acoustic velocity; we obtain the following 

normalized set of basic equations as; 
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Where  00 ep nnp 
  connected through the charge 

neutrality condition [Eqn. (6)]  
 p


1

1
  and the 

nondimensional quantum parameter  
 

eFBpe TKwH 2
  

(the ratio between the electron Plasmon energy and the electron 

Fermi energy) proportional to quantum diffraction, and 
2

,, spiieie cw 
.  Now, integrating once Eqn. (11) with the 

boundary conditions viz.  
0,1  xnn ee  and 

0
at    will considering the fact that  

1ie mm
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In order to investigate the propagation of QIASWs and to 

derive the required governing equation in our electron-positron-

ion quantum plasma, we stretch the independent variables as  

  ttxT 2
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1
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2

1
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,  while 0i  is a 

finite quantity of the order of unity and the dependent variables 

are expanded as  
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Where =e,i  and    is a small nonzero parameter proportional 

to the amplitude of perturbation.  With respect to the above 

expansion of en
 [Eqn. (15)],  from equation (14) can be 

expanded as 
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       Making use of Eqn (17), we can develop a power series of 

 for the continuity equation (10), momentum equation (12) and 

Poisson’s equation (13) in order to obtain a system of equations 

written as: 
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The zeroth-order terms of the above equations together with 

the assumption that ui1 and ni1 vanishes as  
0

 yields;   
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       Considering the 1
st
 – order terms in equation (18 – 20) and 

making use of equation (21), we have 
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Finally, eliminating all the second order quantities from 

equations (22 – 24), we obtain the modified deformed KdVB 

equation for quantum ion acoustic waves as 
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In the observe of positrons that is setting p=0, the earlier 

result of planar geometry for quantum ion acoustic shock waves 

in electron-ion plasma are completely recovered [18] as 
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Numerical Analysis and Discussions 

Making use of tanh method [21, 22], we obtain the traveling 

solution for the modified deformed KdVB equation (25) as  
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where V is the shock wave velocity and the coefficients a0, a1 

and a2 given as below: 
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       We find that all the coefficients A, and B are modified by 

the inclusion of positron when compared with reference [18].  In 

the absence of the viscosity term equation (25) reduces to the 

usual KdV equation for the propagation of QIASWs, while for 

H=2 (for which p=0) it reduces to a purely Burger’s equation.  

The numerical results of the stationary solution equation (25) are 

presented in the following profiles.  

 
Figure 1: Numerical solution of equation 25 for different 

values of p where io =0.5, V=1, H=1, =-3 

 
Figure 2: Numerical solution of equation 25 for different 

values of p where io =0.5, V=1, H=1.3, =-3 

 
Figure 3: Numerical solution of equation 25 for different 

values of p where io =0.5, V=1, H=1.6, =-3 

 
Figure 4: Numerical solution of equation 25 for different 

values of p where io =0.5, V=1, H=1.9, =-3 

For figures (5-7), we present plots of the numerical solution 

of equation (25) for different values of i0 and fixed values of 

V=1, H=1.5 and =-3.  From figure 5(for i0=0.2), we can see 

that the shock height increases appreciably as the positron 

concentration increases.  While for figure (6) (for i0 =0.4), we 

have observed that for smaller positron concentration (P=0, 

0.15, 0.25) the shape of the developed shock structures are 

closer to each other.  But shock shape for P=0.35 stands out 

from the rest of the plot.  Finally, when i0 is set equal to 0.6 as 

in figure (7), the shock wave height increases with increase 

positron concentration.   
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Figure 5: Numerical solution of equation 25 for different 

values of p where io =0.2, V=1, H=1.5, =-3 

 
Figure 6: Numerical solution of equation 25 for different 

values of p where io =0.4, V=1, H=1.5, =-3 

 
Figure 7: Numerical solution of equation 25 for different 

values of p where io =0.6, V=1, H=1.5, =-3 

Conclusion  

We have investigated the quantum ion acoustic waves in an 

umagnatized three component plasma consisting of electrons, 

positrons and ions.  We have made use of the standard reductive 

perturbation method in deriving the planar geometry dKdVB 

equation.  Both the dissipative (due to kinematic viscosity) and 

dispersive (due to Bohm potential) effects are taken into 

consideration for the formation of QIA shock structures.  It is 

also observed that; the shock structures are also modified by the 

effect of H, i0 and P.  Our numerical, analysis reveals that large 

amplitude shock structure occurs comparatively, at larger values 

of H( 1.3), i0 ( 0.5), P( 0.35).  where as for small 

amplitude, shock structures occur at lower values of H(~1), 

i0(~0.2) and P=(~0.15).  Our quantum plasma model could be 

of interest in astrophysical and laser produced plasmas due to 

the significant modifications of the shock structures. 
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