
Shrutakeerti Behura et al./ Elixir Adv. Engg. Info. 35 (2011) 2934-2936

2934

Introduction

It is a common approach to build and maintain a regression

test suite while developing and evolving a software system.

Regression test suites are an important artifact of the software-

development process and, just like other artifacts, must be

maintained throughout the lifetime of a software product. In

particular, testers often add to such suites test cases that exercise

new behaviors or target newly-discovered faults. As a result,

during maintenance, test suites tend to grow in size, to the point

that they may become too large to be run in their entirety. In

some scenario, the size of a test suite is not an issue. This is the

case, for instance, when all test cases can be run quickly and in a

completely automated way. In other scenarios, however, having

too many test cases to run can make regression testing

impractical. For example, for a test suite that requires human

intervention (e.g., to check the outcome of the tests cases or

setup some machinery), executing all test cases could be

prohibitively expensive. Another example is the case of

cooperative environments where developers run automated

regression test suites before committing their changes to a

repository. In these cases, reducing the number of test cases to

rerun may result in early availability of updated code and

improve the overall efficiency of the development process.

Test Suite Reduction Problem

The first formal definition of test suite reduction problem

introduced in 1993 by Harrold et al. [3] as follows:

Given. {t1, t2,…, tm} is test suite T from m test cases and

{r1, r2,…, rn} is set of test requirements that must be satisfied in

order to provide desirable coverage of the program entities and

each subsets {T1, T2,…, Tn} from T are related to one of ris

such that each test case tj belonging to Ti satisfies ri. problem.

Find minimal test suite T' from T which satisfies all ris covered

by original suite T.

Literature Survey

The test-suite prioritization algorithm [1] created by James

A. Jones et al., bases its contribution computation on MC/DC

pairs (a pair of truth vectors) and utilizes an additional approach

that recomputes the contribution of test cases after each test case

is selected. However, instead of the test-case evaluation being

based on the uniqueness of program-entity coverage, this

algorithm uses a simpler evaluation based on additional MC/DC

pairs covered.

The results of studies in this paper [3] are encouraging in

that Xue-ying et al. have shown the potential for substantial test-

suite size reduction and cost reduction, and genetic algorithm is

more effective than Greedy algorithm both in size and cost

reduction. Given a test suite TS = {t1, t2…tn} consisting of the

test case and the sequence of blocks of a tested program

BS= {b1, b2…bk} ，we have a positive cost, cj assigned to

each test case measuring the amount of resources its execution

needs. A positive weight, wi is assigned to each block, which

represents the relative importance of bi with respect to the

correct behavior of program or to the regression testing. For

example, we can assign bigger weight to the modified blocks or

modification affected blocks of the new version program.

Let T be an arbitrary set of the test cases, T⊂TS. The cost of this

test set is defined as the sum of the costs of the test cases that

belong to T: c(T)=Σt_T C(t).

Let cov(T) denote the coverage of the test set T,

cov(T)=Σt_T wt.Cov(t).

Shin Yoo et al. shows that Pareto efficient multiobjective

optimization to the problem of test suite minimization [4]

described the benefits of Pareto efficient multi-objective

optimization, and presented an empirical study that investigated

the relative effectiveness of two algorithms for Pareto efficient

multiobjective test suite minimization. Primary contribution of

this paper is as follows.

1. The paper introduces a multi-objective formulation of the

regression test suite minimisation problem and instantiates this

with two versions: A two-objective formulation that caters for

coverage and cost and a three-objective formulation that caters

for coverage, cost and fault-history. The formulations facilitate a

theoretical treatment of the optimality of the greedy algorithm

and make it possible to establish a relationship between the

multi-objective problems of test case prioritisation and test suite

minimisation.

Tele:

E-mail addresses: shrutakeerti.behura@gmail.com

ambikapmishra@iter.ac.in

 © 2011 Elixir All rights reserved

Theoritical study of test suite reduction techniques
Shrutakeerti Behura and Ambika Prasad Mishra

CSE Department, SOA University, I.T.E.R., Bhubaneswar, India.

ABSTRACT

As the software undergoes changes, new test cases are added to the existing one.In this way

test suite size grows. Test suites should be maintained through out. The Test-Suite

Minimization technique aims at reducing the test suite using various techniques such as

genetic algorithm, test case prioritization & selection technique based on some of the

coverage criteria. This technique should let testers to compute an optimal minimal test suite

that satisfies those criteria keeping an eye to maximize coverage and fault detection

capability with minimal running time and setup cost.

 © 2011 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 13 April 2011;

Received in revised form:

21 May 2011;

Accepted: 28 May 2011;

Keywords

Test Suite Reduction,

Genetic algorithm,

Prioritization,

Redundancy.

Elixir Adv. Engg. Info. 35 (2011) 2934-2936

Advanced Engineering Informatics

Available online at www.elixirpublishers.com (Elixir International Journal)

Shrutakeerti Behura et al./ Elixir Adv. Engg. Info. 35 (2011) 2934-2936

2935

2. The paper presents two algorithms for solving the two and

three objective instances of the test suite minimisation problem:

a re-formulation of the single-objective greedy algorithm, and a

hybrid variant of NSGA-II of Deb et al. (1917), which we call

HNSGA-II. The hybrid nature of HNSGA-II is based on the

known fact that the greedy algorithm produces a good

approximation to the set-cover problem, which forms the basis

of the test suite minimisation problem.

3. The paper presents the results for these algorithms, when

applied to the two-objective version of the problem using, as

subjects, five non-trivial real world programs from Software

architecture Infrastructure Repository, SIR (Do et al., 2005).

The results confirm the theoretical analysis, revealing cases

where the search based algorithms out-perform the greedy

approach. More importantly, the results show that the hybrid

approach is capable of filling in large gaps in the Pareto fronts

approximated by the greedy algorithm.

4. The paper also presents results from an empirical study of the

algorithms applied to the three-objective formulation of the

problem. These results also show that the hybrid approaches can

out-perform the greedy approach.

A. Askarunisa et al. implemented the greedy approach [5]

that selects the next set (test case) that maximizes the ratio of

additional requirement coverage to cost, until no sets provide

any additional requirement coverage.

Fig 1 – The Architecture of Test Suite Reduction Using

Selective Redundancy

Cost-benefit analysis [6][7] by B.Galeebathullah at al.

influences on fault detection effectiveness based on code

coverage. To further investigate this issue we performed

experiments in which we examined the costs and benefits of

reducing test suites of various sizes for several programs and

investigated factors that iduence those costs and benefits.

 Removing those test cases which are redundant with respect

to some specific criteria preserves test suite’s adequacy [8] is

done by Saeed Parsa et al. This algorithm greedily selects an

optimum test case into the reduced suite until all testing

requirements are satisfied. An optimum test case should satisfy

two objectives simultaneously. First, it must satisfy the

maximum number of unmarked requirements.

Second, it must have the minimum overlap in requirements

coverage with other test cases. The first objective attempts to

select effective test cases in fault detection. The second one

attempts to remove redundancy from the test suite and selects

unique test cases in terms of requirements coverage. The

proposed algorithm has two main features: First, it achieves

significant suite size reduction and improves their fault detection

effectiveness compared to other approaches. Second, the

reduction process is based on the information of each program

which can be obtained easily and accurately.

The technique presented by Praveen Ranjan Srivastava et al.

implemented a new regression test suite prioritization algorithm

[2][9] that prioritizes the test cases with the goal of maximizing

the number of faults that are likely to be found during the

constrained execution. The algorithm is as follows. Input: Test

suite T, number of faults detected by a test case f, and cost to run

each test case Tcost.

Output: Prioritized Test suite T’.

1: begin

2: set T’ empty

3: for each test case t ε T do

4: calculate average faults found per minute as f/Tcost

5: end for

6: sort T in descending order based on the on the value of each

test case

7: let T’ be T

8: end

 Lilly Raamesh sows the knowledge mining system [10]

reduces the size of test suite by comparing with original test

cases. Data mining sits at the interface between statistics,

computer science, artificial intelligence, machine learning,

database management and data visualization. It is the process of

identifying valid, novel, potentially useful, and ultimately

comprehensible knowledge from data that is used to help by

crucial decision-making. The search for an optimal solution in

the test case generation problem has a great computational cost

and for this reason these techniques try to obtain near optimal

solutions.

Conclusions

Due to the computational complexity of multi-objective

minimization, however, most existing techniques target a much

simpler version of the problem: generating a test suite that

achieves the same coverage as the original test suite with the

minimal number of test cases. Previous research has shown, for

instance, that the error-revealing power of a minimized test suite

can be considerably less than that of the original test suite. In

this hybridized approach we will club genetic algorithm with test

case prioritization and removing redundant test cases to reduce

the number of test cases. But we have to check error detection

capability. The whole work will be carried out by using

MATLAB (GA tool).The challenge has to be met to minimize

test suite and maximize error detection capability.

References

1. James A. Jones and Mary Jean Harrold, Member, IEEE

Computer Society. “Test-Suite Reduction and Prioritization for

Modified Condition/Decision Coverage” IEEE Transactions on

Software Engineering, vol. 29, No. 3, March 2003.

2. Dennis Jeffrey, Neelam Gupta Department of Computer

Science, The University of Arizona, Tucson, AZ 85721, USA.

“Experiments with test case prioritization using relevant

slices”.The Journal of Systems and Software 81 (2008) 196–

221.www.elsevier.com/locate/jss

3. Xue-ying, Hangzhou, Bin-kui Sheng,Cheng-qing .“A Genetic

Algorithm for Test-Suite Reduction”. IEEE Transactions On

Software Engineering

4. Shin Yoo , Mark Harman, “Using hybrid algorithm for Pareto

efficient multi-objective test suite minimization”. The Journal of

Systems and Software 83 (2010) 689–701. A. Askarunisa, S.

Mohamed Shiraz, N.Ramraj.”Test Suite Minimization using

Selective Redundancy”. MASAUM Journal of Computing

Vol.1 No.1 August 2009.

Shrutakeerti Behura et al./ Elixir Adv. Engg. Info. 35 (2011) 2934-2936

2936

5. B.Galeebathullah. “A Novel Approach for Controlling a Size

of a Test Suite with Simple Technique”. (IJCSE) International

Journal on Computer Science and Engineering , Vol. 02, No. 03,

2010, 614-618

6. Gregg Rothermel, Mary Jean Harroldt, Jeffery von Ronne,

Christie Hang. “Experiments to Assess the Cost-Benefits of

Test-Suite Reduction”. University of Nebraska-Lincoln,

Computer Science and Engineering Technical Report # TR-

UNL-CSE-1999-002; issued 12/1/1999

7. Saeed Parsa and Alireza Khalilian. “On the Optimization

Approach towards Test Suite Minimization”. International

Journal of Software Engineering and Its Applications Vol. 4,

No. 1, January 2010

8. Praveen Ranjan Srivastava. “Test Case Prioritization”.

Journal of Theoretical and Applied Information Technology.

9. Lilly Raamesh. “Knowledge Mining of Test Case System”.

Lilly Raamesh et al. / International Journal on Computer Science

and Engineering Vol.2(1), 2009, 69-73.

