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Introduction 

 The other class of adaptive filtering techniques is known as 

Recursive Least Squares (RLS) algorithms. These algorithms 

attempt to minimize the cost function as shown in in Equation 

(1.1). Where k=1 is the time at which the RLS algorithm 

commences and λ is a small positive constant very close to, but, 

smaller than 1. With values of λ<1 more importance is given to 

the most recent error estimates and thus the more recent input 

samples, this results in a scheme that places more emphasis on 

recent samples of observed data and tends to forget the past (Jun 

Ma et al 2000). 
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 Unlike the LMS algorithm and its derivatives, the RLS 

algorithm directly considers the values of previous error 

estimations. RLS algorithms are known for excellent 

performance when working in time varying environments. These 

advantages come with the cost of an increased computational 

complexity and some stability problems as explained by 

Nishikawa and Kiya (2000). The RLS cost function of Equation 

(3.43) shows that at a time n, all previous values of the 

estimation error since the commencement of the RLS algorithm 

are required. Clearly as time progresses the amount of data 

required to process this algorithm increases. The fact that 

memory and computation capabilities are limited makes the RLS 

algorithm a practical impossibility in its purest form (Wei 2002). 

However, the derivation still assumes that all data values are 

processed. In practice only a finite number of previous values 

are considered, this number corresponds to the order of the RLS 

FIR filter and the equivalent design architecture of RLS is 

shown in Figure 1.1. 

 
Figure 1.1 Design architecture of RLS 

 To implement the RLS algorithm, the following steps are 

executed in the following order. 

1. The filter output is calculated using the filter tap weights from 

the previous iteration and the current input vector. 
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2. The intermediate gain vector is 
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3. The estimation error value is
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4. The filter tap weight vector is updated and the gain vector is  

  1( ) ( 1) ( ) ( )
T

nw n w n k n e n                        (1.6) 

5. The inverse matrix is 
1 1 1 1( ) ( ( 1) ( )[ ( ) ( 1)])Tn n k n x n n                     (1.7) 

 Each iteration of the RLS algorithm requires 4N
2
 

multiplication operations and 3N
2 

additions. This makes its very 

costly to implement, thus LMS based algorithms, while they do 

not perform as well, are more favorable for practical situations 

(Wei 2002). where, d(n)=desired signal, (n)= forgetting factor, 

G(n)=Kalman gain factor, P(n)= inverse of auto correlation 

matrix, and the superscript 
–1 

shows inverse operation as said by 

Kalavai and Keshab (1995). 

Simulation Results 
 Different architectures considered in this research are 

modeled using HDL language for hardware implementation. To 

verify the HDL results and to make sure that the functional 

verification of the models are meeting the requirements, the 

results obtained using simulation of HDL codes are cross 

verified with MATLAB results, which is used for bench 

marking the design (Alexander Poularikas 2006). With known 

test inputs applied to MATLAB and HDL, the results obtained 

are compared for all possible simulation times. A simulation 

time more than 10 time unit is considered to be safe as this gives 

the stable results considering all initial conditions. The 

ModelSim simulation and MATLAB results are compared at the 

20
th

 iterations. Figures 2.1 and 2.2  shows the MATLAB and 

ModelSim simulation results at 20
th

 iteration. Here, the expected 

output value is 0.2036 and the coefficients values are 1.0439, 

0.3869, 0.1557, 0.1214, -0.1888, -0.4204, -0.0379, -0.2333. The 

simulation output value is 0.21 and coefficient values are 1.05, 

0.39, 0.16, 0.13, -0.019, -0.4, -0.07 and 0.24. MATLAB versus 

Hardware implementations may vary because of floating point 

precision. The mismatches between the hardware and software 

implementations are observed and recorded. Increasing the bit 

width of the operands and using rounding techniques minimize 

any mismatches observed. This process is performed as long as 

the mismatches are within tolerable limits. It is observed that by 

increasing the bit width to 12 bits the mismatches are with 

tolerable limits of less than 8%, which is far better than the 

expected and recommended in the literature. 

 
Figure 2.1 MATLAB results at 20

th
 iteration 

 
Figure 2.2 Simulation report of RLS architecture 

HDL models are verified by using test benches, appropriate test 

vectors are generated in the test bench for verification. Using the 

test vectors 95% of the functional verification is covered. 

However, 100% coverage is possible only after the design is 

physically implemented (Geoff Bostock 1996). The results found 

are meeting the design specifications.  

 With functional verification, the design is ready for physical 

implementation, the first step in physical implementation is to 

use the HDL model developed and convert it into an RTL code 

that can be synthesized as explained by Lakshmanan et al 

(2002). In this work, the HDL model developed was itself 

RTL model; utmost care was taken to develop RTL code 

directly. Hence, the RTL model is synthesized using industry 

standard EDA tool, called Design Compiler from Synopsys. DC 

compiler is tool for synthesis, in this process the RTL model is 

converted to gate level netlist. The gate level netlist should be 

able to meet area, timing and power requirements. In order to 

achieve the required area, timing and power, suitable 

constrains are to be specified along with target libraries 

consisting of standard cells. Synthesis is a three-phase process 

where it starts with translating the RTL code to the gate level 

netlist 

 The netlist is optimized using the constraints given. 

Constraints are two types namely, environmental and 

optimization constraints. Optimization constraints include 

operating frequency (clock period), input and output delays at 

the IOs. Operating temperature, process variations, supply 

voltage and wire load models come under Environmental 

constraints. The constraints mentioned for the design are 

maximum operating frequency 250MHz, total number of gates 

not to exceed 200 cells, and power not to exceed more than 10 

mW. The Figures 2.3 shows the schematic, which was generated 

after synthesizing the RTL code and gives the top-level gate 

level netlist obtained after synthesis using Synopsys DC. The 

design requires 4 inputs and it produces one error corrected 

output. 

 
                     Figure 2.3 Synthesized schematic of RLS 

architecture 

Table 2.1 Chip report of RLS architecture 
Parameters        RLS report 

Slack 0.31 

Maximum critical paths 189 

Number of ports 130 

Number of nets 646 

Combinational area in sq micron 1454847.75 

Sequential area in sq micron 80672 

Total area in sq micron 1872734.62 

Total Dynamic Power 208.65 mw 

Cell Leakage Power 3.59 mw 

 RLS architecture without pipeline requires less cell area, 

has 646 total numbers of nets to be routed and consumes 220 

mw of power at 1pf capacitance load. With pipeline concepts 

being incorporated on the area by 7%, total power by 42% and 

congestion of routing inter connect increased by 38% affecting 

total die size as shown in Table 2.1. However, these effects are 
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being suitably reduced to a large extent by adopting optimized 

ASIC design methodology extent with proper floorplanning, 

placement and routing is being done with the die size of 3*3, the 

final chip is shown in Figures 3.52 and 3.53.  

 
Figure 2.4 Final chip of RLS architecture 

Conclusion 

 Adaptive noise cancellation techniques such as RLS have 

been extensively used for noise cancellation techniques with 

good performances in this work These techniques have been 

extended for use in industrial  applications, wherein there is a 

need for accuracy, speed, reliability and cost. RLS algorithm has 

been realized on ASIC for comparison. The proposed 

architectures have been modeled and verified for its 

functionality successfully.  

 The models have been taken through the entire ASIC flow. 

Suitable results obtained at various stages of the ASIC flow 

using Synopsys clearly indicates that RLS is slow but optimizes 

area and power. The input signal is sampled at 1K samples per 

second; has a date rate of 16Kbitsper second when fed through 

the proposed hardware produces output at 16Kbitsper second 

with latency of 8 clocks and throughput of 1 clock cycle. The 

proposed techniques have been modeled using Verilog HDL and 

compared with MATLAB results, which are then synthesized 

using Synopsys Design Compiler targeting 130-nanometer 

TSMC library and target technology.  

 The synthesized netlist obtained for all the adaptive filtering 

techniques proposed in this research work is taken through 

physical design flow consisting of Floorplanning, Placement and 

Routing steps. The overall size for the entire chip does not 

exceed by 7.2 square millimeters. Constraints such as area, 

power and frequency have been used to optimize the design. A 

tradeoff between all the three have been identified and 

documented. 
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