
N.J.R.Muniraj/ Elixir Adv. Engg. Info. 35 (2011) 2885-2888

2885

Introduction

 The other class of adaptive filtering techniques is known as

Recursive Least Squares (RLS) algorithms. These algorithms

attempt to minimize the cost function as shown in in Equation

(1.1). Where k=1 is the time at which the RLS algorithm

commences and λ is a small positive constant very close to, but,

smaller than 1. With values of λ<1 more importance is given to

the most recent error estimates and thus the more recent input

samples, this results in a scheme that places more emphasis on

recent samples of observed data and tends to forget the past (Jun

Ma et al 2000).

2

1

() ()
n

n k

n

k

n e k

 (1.1)

 Unlike the LMS algorithm and its derivatives, the RLS

algorithm directly considers the values of previous error

estimations. RLS algorithms are known for excellent

performance when working in time varying environments. These

advantages come with the cost of an increased computational

complexity and some stability problems as explained by

Nishikawa and Kiya (2000). The RLS cost function of Equation

(3.43) shows that at a time n, all previous values of the

estimation error since the commencement of the RLS algorithm

are required. Clearly as time progresses the amount of data

required to process this algorithm increases. The fact that

memory and computation capabilities are limited makes the RLS

algorithm a practical impossibility in its purest form (Wei 2002).

However, the derivation still assumes that all data values are

processed. In practice only a finite number of previous values

are considered, this number corresponds to the order of the RLS

FIR filter and the equivalent design architecture of RLS is

shown in Figure 1.1.

Figure 1.1 Design architecture of RLS

 To implement the RLS algorithm, the following steps are

executed in the following order.

1. The filter output is calculated using the filter tap weights from

the previous iteration and the current input vector.

1(1) (1) ()
T

ny n w n x n (1.2)

2. The intermediate gain vector is

1

() (1) ()u n n x n

 (1.3)

1

() ()
() ()T

k n u n
x n u n

 (1.4)

3. The estimation error value is

Tele:

E-mail addresses: njrmuniraj@yahoo.com

 © 2011 Elixir All rights reserved

Backend analysis and implementation of RLS adaptive filter

using VLSI technology
N.J.R.Muniraj

Karpagam Innovation Centre, Karpagam College of Engineering, Coimbatore.

ABSTRACT

The role of electronic equipments in the industry has increased tremendously in recent past.

With new technologies and techniques being considered in other domains, such as

automotive, multimedia communications, mobile applications bring down the cost of the

electronic gadgets. As the cost factor controls the reliability and volume issues, there is a

need for design and development of low cost, reliable technology for industrial applications.

The proposed techniques have been modeled using Verilog HDL and the models have been

verified using test benches with a functional coverage of 95%. The results obtained have

been compared with MATLAB results, which are considered to be a benchmark. The HDL

(Hardware Description Language) code is synthesized using Synopsys Design Compiler

targeting 130-nanometer TSMC (Taiwan Semiconductor Manufacturing Company) library

and target technology. The synthesized netlist obtained for all the adaptive filtering

techniques proposed in this research work is taken through physical design flow consisting

of Floorplanning, Placement and Routing steps. The results obtained at each step are

simulated for the functionality. The final GDSII (Graphical Design Standard II) file is

generated for the proposed techniques.. The floor planning, placement and routing of the

netlist ensures that the overall size for the entire chip does not exceed by 7.2 square

millimeters. The results obtained for adaptive filtering techniques have proven that the

complexities in the industrial applications can be met if the design is implemented on ASIC.

 © 2011 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 8 April 2011;

Received in revised form:

20 May 2011;

Accepted: 27 May 2011;

Keywords

HDL,

TSMC,

LMS,

FIR,

SPICE,

RTL,

Astro,

GDS11,

DRC.

Elixir Adv. Engg. Info. 35 (2011) 2885-2888

Advanced Engineering Informatics

Available online at www.elixirpublishers.com (Elixir International Journal)

N.J.R.Muniraj/ Elixir Adv. Engg. Info. 35 (2011) 2885-2888

2886

 1 1
() () ()n n

e n d n y n
 (1.5)

4. The filter tap weight vector is updated and the gain vector is

 1() (1) () ()
T

nw n w n k n e n (1.6)

5. The inverse matrix is
1 1 1 1() ((1) ()[() (1)])Tn n k n x n n (1.7)

 Each iteration of the RLS algorithm requires 4N
2

multiplication operations and 3N
2

additions. This makes its very

costly to implement, thus LMS based algorithms, while they do

not perform as well, are more favorable for practical situations

(Wei 2002). where, d(n)=desired signal, (n)= forgetting factor,

G(n)=Kalman gain factor, P(n)= inverse of auto correlation

matrix, and the superscript
–1

shows inverse operation as said by

Kalavai and Keshab (1995).

Simulation Results
 Different architectures considered in this research are

modeled using HDL language for hardware implementation. To

verify the HDL results and to make sure that the functional

verification of the models are meeting the requirements, the

results obtained using simulation of HDL codes are cross

verified with MATLAB results, which is used for bench

marking the design (Alexander Poularikas 2006). With known

test inputs applied to MATLAB and HDL, the results obtained

are compared for all possible simulation times. A simulation

time more than 10 time unit is considered to be safe as this gives

the stable results considering all initial conditions. The

ModelSim simulation and MATLAB results are compared at the

20
th

 iterations. Figures 2.1 and 2.2 shows the MATLAB and

ModelSim simulation results at 20
th

 iteration. Here, the expected

output value is 0.2036 and the coefficients values are 1.0439,

0.3869, 0.1557, 0.1214, -0.1888, -0.4204, -0.0379, -0.2333. The

simulation output value is 0.21 and coefficient values are 1.05,

0.39, 0.16, 0.13, -0.019, -0.4, -0.07 and 0.24. MATLAB versus

Hardware implementations may vary because of floating point

precision. The mismatches between the hardware and software

implementations are observed and recorded. Increasing the bit

width of the operands and using rounding techniques minimize

any mismatches observed. This process is performed as long as

the mismatches are within tolerable limits. It is observed that by

increasing the bit width to 12 bits the mismatches are with

tolerable limits of less than 8%, which is far better than the

expected and recommended in the literature.

Figure 2.1 MATLAB results at 20

th
 iteration

Figure 2.2 Simulation report of RLS architecture

HDL models are verified by using test benches, appropriate test

vectors are generated in the test bench for verification. Using the

test vectors 95% of the functional verification is covered.

However, 100% coverage is possible only after the design is

physically implemented (Geoff Bostock 1996). The results found

are meeting the design specifications.

 With functional verification, the design is ready for physical

implementation, the first step in physical implementation is to

use the HDL model developed and convert it into an RTL code

that can be synthesized as explained by Lakshmanan et al

(2002). In this work, the HDL model developed was itself

RTL model; utmost care was taken to develop RTL code

directly. Hence, the RTL model is synthesized using industry

standard EDA tool, called Design Compiler from Synopsys. DC

compiler is tool for synthesis, in this process the RTL model is

converted to gate level netlist. The gate level netlist should be

able to meet area, timing and power requirements. In order to

achieve the required area, timing and power, suitable

constrains are to be specified along with target libraries

consisting of standard cells. Synthesis is a three-phase process

where it starts with translating the RTL code to the gate level

netlist

 The netlist is optimized using the constraints given.

Constraints are two types namely, environmental and

optimization constraints. Optimization constraints include

operating frequency (clock period), input and output delays at

the IOs. Operating temperature, process variations, supply

voltage and wire load models come under Environmental

constraints. The constraints mentioned for the design are

maximum operating frequency 250MHz, total number of gates

not to exceed 200 cells, and power not to exceed more than 10

mW. The Figures 2.3 shows the schematic, which was generated

after synthesizing the RTL code and gives the top-level gate

level netlist obtained after synthesis using Synopsys DC. The

design requires 4 inputs and it produces one error corrected

output.

 Figure 2.3 Synthesized schematic of RLS

architecture

Table 2.1 Chip report of RLS architecture
Parameters RLS report

Slack 0.31

Maximum critical paths 189

Number of ports 130

Number of nets 646

Combinational area in sq micron 1454847.75

Sequential area in sq micron 80672

Total area in sq micron 1872734.62

Total Dynamic Power 208.65 mw

Cell Leakage Power 3.59 mw

 RLS architecture without pipeline requires less cell area,

has 646 total numbers of nets to be routed and consumes 220

mw of power at 1pf capacitance load. With pipeline concepts

being incorporated on the area by 7%, total power by 42% and

congestion of routing inter connect increased by 38% affecting

total die size as shown in Table 2.1. However, these effects are

N.J.R.Muniraj/ Elixir Adv. Engg. Info. 35 (2011) 2885-2888

2887

being suitably reduced to a large extent by adopting optimized

ASIC design methodology extent with proper floorplanning,

placement and routing is being done with the die size of 3*3, the

final chip is shown in Figures 3.52 and 3.53.

Figure 2.4 Final chip of RLS architecture

Conclusion

 Adaptive noise cancellation techniques such as RLS have

been extensively used for noise cancellation techniques with

good performances in this work These techniques have been

extended for use in industrial applications, wherein there is a

need for accuracy, speed, reliability and cost. RLS algorithm has

been realized on ASIC for comparison. The proposed

architectures have been modeled and verified for its

functionality successfully.

 The models have been taken through the entire ASIC flow.

Suitable results obtained at various stages of the ASIC flow

using Synopsys clearly indicates that RLS is slow but optimizes

area and power. The input signal is sampled at 1K samples per

second; has a date rate of 16Kbitsper second when fed through

the proposed hardware produces output at 16Kbitsper second

with latency of 8 clocks and throughput of 1 clock cycle. The

proposed techniques have been modeled using Verilog HDL and

compared with MATLAB results, which are then synthesized

using Synopsys Design Compiler targeting 130-nanometer

TSMC library and target technology.

 The synthesized netlist obtained for all the adaptive filtering

techniques proposed in this research work is taken through

physical design flow consisting of Floorplanning, Placement and

Routing steps. The overall size for the entire chip does not

exceed by 7.2 square millimeters. Constraints such as area,

power and frequency have been used to optimize the design. A

tradeoff between all the three have been identified and

documented.

References

1. Ahmed Elhossini, Shawki Areibi and Robert Dony (2004),

‘An FPGA Implementation of the LMS Adaptive Filter for

Audio Processing’, 16th International Conference on

Microelectronics, Tunis, Tunisia, pp. 67-70.

2. Alexander Poularikas (2006), ‘Adaptive filtering primer with

MATLAB’, Taylor & Francis Publications.

3. ASPT User Manual Version 2.1, www.mathworks.com, 12
th

Oct 2006.

4. Basker J. (2004), ‘Verilog HDL Primer’, BS Publication,

Second Edition.

5. David Smith R. (2000), ‘Verilog styles for synthesis of digital

systems’, Addison-Wesley Longman Publisher. Emmanuel

Ifeachor C. and Barrie Jervis W. (2002), ‘Digital Signal

Processing - A practical approach’, Pearson Education Asia.

6. Eweda (1994), ‘Comparison of RLS, LMS, and Sign

Algorithms for Tracking Randomly Time-Varying Channels’,

IEEE Transactions on Signal Processing, Vol. 42, No. I I.

7. Geizer R.L., Allen P.E. and Strader N.R. (1990), ‘VLSI

Design Techniques for Analog and Digital Circuits’, McGraw

Hill.

8. Geoff Bostock (1996), ‘FPGA’s and Programmable LSI: A

Designer’s Handbook’, Butterworth-Heinemann, 1st Edition.

9. Greenberg J.E. (1998), ‘Modified LMS Algorithms for Speech

Processing with an Adaptive Noise Canceller’, IEEE

Transactions on Speech and Audio Processing, Vol. 6, No. 4.

10. Hachtel G.D. and Somenzi F. (1996), ‘Logic synthesis and

Verification Algorithms’, Springer Publications.

11. Harada A. (1998), ‘A pipelined architecture for LMS

adaptive FIR filter architecture’, IEEE Trans. Signal Process,

Vol. 46, pp. 775-779.

12. Haykin S. (1992), ‘Adaptive Filter Theory’,

EnglewoodCliffs, NJ: Prentice-Hall.

13. Himanshu Bhatnagar (2002), ‘Advanced ASIC Chip

Synthesis Using Synopsys® Design Compiler® Physical

Compiler® and PrimeTime®’, Prentice Hall of India.

14. Jenkins J.H. (1994), ‘Designing with FPGAs and CPLDs’,

Prentice Hall PTR, 1st Edition.

15. Johnson C.R. and Larimore M.G. (1997), ‘Comments on

and addition to an Adaptive Recursive LMS Filter’, Proc. IEEE,

Vol. 65, pp. 1399-1401.

16. Jun Ma, Parhi K.K. and Deprettere F. (2000), ‘Annihilation

- Reordering Look-Ahead Pipelined CORDIC-Based RLS

Adaptive Filters and their Applications to Adaptive Beam

forming’, Proceedings of the IEEE, 1503-587X/00.

17. Khosrow Golshan (2007), ‘Physical Design Essentials: An

ASIC Design Implementation Perspective’, Springer Publishers..

18. Lakshmanan Othman, Ali M. and M.A.M. (2002),

‘Implementation of RLS Adaptive Filter Algorithm Using

MaxPlus II Software Tools’, ICSE2002 Proc, 0-7803-7578-5/02,

IEEE, pp.437-440.

19. Lan-Da Van and Chih-Hong Chang (2002), ‘Pipelined RLS

Adaptive Architecture Using Relaxed Givens Rotations (RGR)’,

Proc. IEEE, 0-7803-7448-7.

20. Lok-Kee Ting and Roger Woods (2005), ‘Virtex FPGA

Implementation of a Pipelined Adaptive LMS Predictor for

Electronic Support Measures Receivers’, IEEE Transactions on

Very Large Scale Integration, Vol. 13, No. 1.

21. Mahesh Godavarti (2005), ‘Partial Update LMS

Algorithms’, IEEE Transactions on Signal Processing, Vol. 53,

No. 7.

22. Mark Gordon Arnold (1999), ‘Verilog Digital Computer

Design’, Prentice Hall PTR, 1st Edition.

23. Mead C. and Convay L. (1999), ‘Introduction to VLSI

Systems’, Addison Wesley Publication.

24. Meyer-Baese U. (2006), ‘Digital Signal Processing with

Field Programmable Gate Arrays’, Second Edition, Springer

International Edition.

25. Miguez-Olivares A. and Recuero-Lopez M. (1996),

‘Development of an Active Noise Controller in the DSP Starter

Kit’, Texas Instruments.

26. Nazzareno Rossetti (2005), ‘Managing Power Electronics:

VLSI and DSP-Driven Computer Systems’, Wiley-IEEE Press.

27. Nishikawa K. and Kiya H. (2000), ‘Fast Implementation

Technique for Improving throughput of RLS Adaptive Filters’,

IEEE Trans, Signal Process, 0-7803-6293-4/00, pp. 3319-3322.

28. Parhi K.K. (1999), ‘VLSI Digital Signal Processing

Systems’, John Wiley & Sons, 1
st
 Edition.

29. Pucknell D.A. (1997), ‘Kamran Eshraghian: Basic VLSI

Design’, Third Edition, Prentice Hall of India.

file:///J:/www.mathworks.com
http://www.amazon.com/Physical-Design-Essentials-Implementation-Perspective/dp/0387366423/ref=sr_1_1?ie=UTF8&s=books&qid=1206541819&sr=1-1
http://www.amazon.com/Physical-Design-Essentials-Implementation-Perspective/dp/0387366423/ref=sr_1_1?ie=UTF8&s=books&qid=1206541819&sr=1-1

N.J.R.Muniraj/ Elixir Adv. Engg. Info. 35 (2011) 2885-2888

2888

30. Rabaey J. (1996), ‘Digital Integrated circuits’, Prentice Hall

of India.

31. Raghunath K.J. and Parhi K.K. (1995), ‘A 100Mhz

pipelined RLS Adaptive Filter’, Proceedings of IEEE Intl.

Symp. on Circuits and Systems, pp. 3187-3190.

32. Raghunath K.J. and Parhi K.K. (1996), ‘Pipelined RLS

Adaptive Filtering Using Scaled Tangent Rotations (STAR)’,

Proceedings of the IEEE, 1053-587X/96.

33. Rajeev Murgai, Robert K., Brayton and Alberto

Sangiovanni-Vincentelli (1995), ‘Logic Synthesis for Field

Programmable Gate Arrays’, Kluwer Academic Publisher.

34. Richard Munden (2004), ‘ASIC and FPGA Verification, A

Guide to Component Modeling’, Elsevier Publications.

35. Samir Panitkar (2003), ‘Verilog HDL’, Pearson Education,

Second Edition.

36. Sankaran S.G. and Louis Beex A.A. (1999a), ‘On ways to

improve adaptive filter performance’, Ph.D. Thesis in Electrical

Engineering, Virginia Polytechnic and State University.

37. Sankaran S.G. and Louis Beex A.A. (1999c), ‘Balanced -

Realization Based Adaptive IIR Filtering’, Proceeding of

International Conference on Acoustics, Speech and Signal

Processing, pp. 1837-1840.

38. Sebastian Smith M.J. (2001), ‘Application-Specific

Integrated Circuits’, Fifth Edition, Pearson Education Inc.

39. Shou-Sheu Lin and Wen-Rong Wu (1996), ‘The ASIC

design of an LMS-Based decision feedback equalizer for TDMA

digital cellular radio’, IEEE Transactions, 0-7803-3692-5, pp.

218-222.

40. Sinead Mullins and Conor Heneghan (2002), ‘Alternative

Least Mean Square Adaptive Filter Architectures for

Implementation on Field Programmable Gate Arrays’, Digital

Signal Processing Group, Department of Electronic and

Electrical Engineering, University College, Dublin.

41. Sumit Roy and John J. Shynk (1990), ‘Analysis of the

Momentum LMS Algorithm’, IEEE Transactions on Acoustics,

Speech and Signal Processing, Vol. 38, No. 12, pp. 2088-2098.

42. Thomas D.E. and Moorby P.R. (1991), ‘The Verilog

Hardware Description Language’, Kluwer Academic Publishers,

1st Edition.

43. Ting L.K. (2006), ‘Algorithms and FPGA implementation

of adaptive LMS based predictors for radar pulse identification’,

Ph.D. dissertation, Queen’s Univ. Belfast. N. Ireland,

www.belfastuniv.com/thesis/thing.pdf.

44. Treichler J.R., Richard Johnson C. and Larimor M.G.

(2001), ‘Theory and design of Adaptive Filters’, Prentice Hall of

India Pvt. Ltd.

45. Veendrick H. (2000), ‘Deep-submicron CMOS ICs - from

basics to ASICs’, Springer Publications.

46. Wai-Kai Chen (2006), ‘The VLSI Hand Book’, Taylor &

Francis Publications.

47. Wang T. and Wang C.L. (1995), ‘Delayed Least Mean

Square Algorithm’, IEEE Electronic Letters, Vol. 35, No. 7.

48. Wayne Wolf (1998), ‘Modern VLSI Design’, Prentice Hall

of India, Second Edition.

49. Wei P.C. (2002), ‘Comparative Tracking Performance of

the LMS and RLS Algorithms for Chirped Narrowband Signal

Recovery’, IEEE Transactions on Signal Processing, Vol. 50,

No. 7.

50. Weste N. and Harris D. (2004), ‘CMOS VLSI Design: A

Circuits and Systems Perspective’, Addison Wesley

Publications.

51. Widrow B. and Stearns S.D. (2002), ‘Adaptive signal

Processing’, Pearson Education, Second Edition.

52. Widrow B., McCool J.M., Larimore M.G. and Johnson C.R.

(1976), ‘Stationary and Non stationary Learning Characteristics

of the LMS’, Proceedings of IEEE, Vol. 64, No. 8, pp. 1151-

1162.

53. Zaknich A. (2003), ‘Principle of adaptive filters and self

learning systems’, Springer Publishers.

http://www.belfastuniv.com/thesis/thing.pdf

