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Introduction 

The article presents a model for investigating the diagnosis 

of a rotating beam (blade). Numerous cases of mechanical 

failures caused by fatigue crack are presented in the literature. In 

1970, metallurgical examination revealed that a fatigue crack 

found in a rotating turbine blade in an electric power generator 

was the major cause of failures [1]. 

In the literature, little existing work about crack assessment 

of rotating beams. In [2], the author developed a theory on 

vibration of cracked shafts and included an extension to cracked 

beams and turbine blades. Lee [3] used a microphone as a non-

contact sensor and established the utility of chirp-z transform as 

a signal processing tool to estimate the vibration modal 

frequencies. Moreover, the author built a neural network 

empirical model relating the estimated vibration mode 

frequencies and the crack size. A significant limitation of this 

model is that it does not have much generality due to its 

dependence on run-to-fail data of a beam with specific material 

properties and geometry that adds to the experimental cost. 

Lee’s experimental data is used in this paper to verify the results 

of the developed model. Batayneh [4] presents an embedded 

modeling for diagnosis and prognosis of a rotating beam. 

In [5], [6], and [7], the authors presented empirical vibration 

models for man-made notch beam. Unlike a real crack, man-

made notch does not “breath”. Bachschmid et. al, [8] described 

the breathing of a crack in a rotating horizontal shaft. Doyle [9] 

and Rizos et. al. [10] investigated analytically and 

experimentally the effect of man-made notches on the beam’s 

natural frequencies. However, generalization of such models to 

an actual crack is not straightforward because of crack 

breathing. In this study, the breathing effect is taken into 

consideration when developing the finite element model for the 

rotating beam.  

Researchers proposed various techniques to monitor a 

defect in a structure by watching changes in some secondary 

phenomenon [11]. Such phenomena include the characteristic 

vibration signature or the global/local properties of natural 

frequencies and mode shapes of the structure. Most analytical, 

numerical, and experimental papers related to vibration analysis 

of a cracked structure are well described in the two survey 

papers [12] and [2]. The presence of a crack in a structure 

weakens it and increases its local flexibility, which is a function 

of the crack geometry and the stress intensity factor [13] and 

[14]. Due to the increase in the local flexibility, the local 

stiffness decreases. Since natural frequencies of the structure are 

proportional to the local stiffness, the natural frequencies 

decrease by crack growth. Rizos et al. [10] and Doyle [9] 

showed that the change amplitude in natural frequency depends 

on the location and geometry of the crack.  

Cawley and Adams [15] and [16] used the change in the 

natural frequencies to estimate the location and depth of a crack. 

Chondros and Dimarogonas [13] used the first three vibration 

mode frequencies to calculate the crack location. The authors 

developed monographs for calculating the depth of the crack at 

different conditions of the beam. Rizos et al. [10] used changes 

of the natural frequencies of a cantilever beam to determine the 

crack location and size. Narkis [5] experimentally verified the 

results of Rizos et al.’s. Moreover, the author developed finite 

element calculations for the same case. Kim and Stubbs [17] 

presented a practical method to non-destructively locating and 

estimating the size of a crack using changes in natural 

frequencies of a structure. Lin [18] used an analytical transfer 

matrix method to solve the direct and inverse problems of 

simply supported beams with an open crack modeled as a 

rotational spring with sectional flexibility connecting two 

beams.   

In the literature, not enough experimental data on the 

frequency shift of a structure due to growth of a fatigue crack 

are available. For instance, most of the simulation results of 

models developed for cantilever beams have been compared 

with the results from Wendtland’s experiment [19]. In 

Wendtland’s experiments, different shapes of geometry and 

Tele:  

E-mail addresses: batayw@just.edu.jo 

         © 2011 Elixir All rights reserved 

Estimating the size of a crack in a rotating beam using embedded modeling 
Wafa M. Batayneh

1,*
 and C. James Li

2 

1
Mechanical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan 

 
2
Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8

th
 St., Troy NY, 12180, USA. 

 

 

ABSTRACT  

This paper presents an embedded modeling approach for estimating the crack size in a 

rotating beam by predicting the vibrations of the cracked beam. The model embeds a non-

linear switching function into a finite element model of the beam to characterize the effect of 

crack breathing on the local stiffness of the beam. Solving the model enables the prediction 

of the vibrations of the cracked beam and the evaluation of the modal frequencies of the 

vibrating signal using Chirp-z transform. Inputs to the model include the vibrations of the 

un-cracked beam to calibrate the model at the beginning, i.e., no need for run-to-fail tests. 

The model is validated and refined utilizing experimental data. 

                                                                                                  © 2011 Elixir All rights reserved. 
 

ARTICLE INFO    

Article  history:  

Received: 24 May 2011; 

Received in revised form: 

8 July 2011; 

Accepted: 18 July 2011;

 
Keywords  

Diagnosis, Rotating Beam,  

Chirp-z Transform,  

Modal Frequencies,  

Crack,  

Embedded Model,  

Finite Element (FE). 

 

Elixir Mech. Engg. 36 (2011) 3606-3611 

Mechanical Engineering 

Available online at www.elixirpublishers.com (Elixir International Journal) 

 



Wafa M.Batayneh et al./ Elixir Mech. Engg. 36 (2011) 3606-3611 
 

3607 

different types of boundary conditions were used to investigate 

changes in the natural frequency of a beam. However, 

Wendtland used a machined slot instead of a real crack. On the 

other hand, Gomez and Silva [20] and [21] and Silva and Gomez 

[22] used real cracks to study the frequency changes at various 

crack sizes and crack locations. In their experiments, the authors 

used the free-free beam to eliminate the possible damping 

effects caused by the boundary conditions. 

In this article, we employ embedded modeling to predict the 

cracked beam vibration at different crack sizes. Utilizing 

predicted vibrations, we estimate modal frequencies using chirp-

z Transform.  Subsequently, a curve fitting is developed to 

establish relationships between the vibration mode frequencies 

and the crack size. The theoretical relationships are then used to 

estimate the crack size from empirical modal frequencies 

observed from the real beam. The proposed model uses the 

modal frequencies as opposed to directly adjusting crack size in 

the beam model to match its responses to that of the real beam. 

Proposed Method 

The article builds on the embedded modeling method 

presented in Fan [23] to predict vibrations in a cracked beam. 

The proposed model accounts for the crack breathing 

phenomena in diagnosing the size of the crack in the rotating 

beam. The model assumes symmetric crack propagation for low 

speed applications. Hence, centrifugal forces are minimal and 

are neglected in the study. A summary of the embedded 

modeling method presented in [23] follows. 

Embedded Modeling Method  

Assume that the dynamics of a real system are described by 

)h(  s
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
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                           (1)  

 Where x is the n-dimensional system state vector, f is the 

force function; s is the m-dimensional vector of the system’s 

physical variables measured by transducers; and h is the function 

relating the state vector x and the measurable vector s. The 

model of the real system takes the following form 
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 Where, the circumflex stands for approximation, and θ is 

the p-dimensional vector of partially unknown model 

parameters.  

One can show that the model output ŝ  will approach the 

real system’s output s  if F̂  approaches F  provided that the 

initial error is small. Therefore, the objective is to find F̂  that 

minimizes the difference between the system and the model 

outputs. Where, the total error E is given by 

)(     
2

1

or      )(    
2

1

1

0

discreteeeE

continuousdteeE

M

i

i

T

i

t

t

Tf











         (3)                                                           

 Where, sse ˆ , )(ˆ)( isisei  , M  is the number of 

samples, and ot  and ft  define the interval. Equation (3) 

represents the objective function that can be minimized using 

non-linear programming or by an iterative procedure starting 

from an initial guess 
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Where, 

KG   is the gradient of E at (
0

0, xk ); 
KR  is a 

positive-definite square matrix and   defines the step size. The 

product 
kKGR  determines the search direction. Different 

KR  

matrices yield different gradient based updating schemes, such 

as steepest descent and Newton’s method, each with a different 

set of efficiencies, robustness characteristics, and computational 

cost.  This study used the Levenberg-Marquardt method for its 

robustness. To obtain
KG , one takes the derivative of E with 

respect to θ, which yields  
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Note from Equation 5 that the gradient G is calculated from 

the error e and the pm  Jacobian matrix that contains the 

partial derivative of the approximated output ŝ with respect to 

parameters θ.  The Jacobian is denoted as J  hereinafter. Taking 

the derivative of ŝ with respect to θ yields J  as 
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However, the partial derivative of x̂ with respect to θ is not 

readily available.  In order to obtain it, one must solve the 

sensitivity equation, which in this case, is the derivative of the 

model (Equation 2), with respect to θ.   
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Where   /x̂ , xF̂  and F̂   are the partial derivative 

of F̂ with respect to x and θ, respectively. The solution to 

Equation 7 is the needed  /x̂  which has an initial value as a 

zero matrix since the initial condition,   00
ˆˆ xtx  , does not 

depend on the parameters of the model. 

Formulating an Embedded Model for a Beam 

In engineering dynamics, a beam with one end fixed is 

approximated using a lumped-mass system as: 

  f(t)z - zKzM 0                                   (8)                                                                                              

where M  and K  represent the mass and stiffness 

matrices, respectively; f(t) represents the forcing function; z  

represents the generalized deflection vector and 0z  represents 

the deflection vector due to an initial bow in the beam. Since the 

stiffness matrix; K  is the only term in Equation 8 that is a 

function of the area moment of inertia, it will be the only term 

affected by the presence of a crack in the beam. To reflect the 

dependency of stiffness matrix on various factors, it will be 

designated with a prime.  Consequently, Equation 8 becomes: 

  f(t)z-zK'zM 0                               (9)                                                                                          

Fitting Equation 9 to the state space form of Equation 2 

yields the following set of equations 
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Where, z  x x;z  x x;z-z   x 121201
  . The 

reduction in the stiffness can be expressed as: 

K -K   K'                                                            (11)                                                                           

Where K  is the stiffness reduction matrix, which is found 

to be a complicated matrix function of the change in the moment 

of Inertia ( I ) due to the presence of the crack. If the change in 

the moment of inertia occurs, then the vibration of the beam will 

be modified, which would allow one to observe such change via 

the vibrations of the beam. Consequently, the purpose of the 

crack detection diagnostics would be to determine if there is an 

abnormality in the vibration of the signal obtained from the 

beam, and consequently the modal frequencies of the vibration 

signal and if so, determine the size of the crack based on the 

change in the modal frequencies of the vibrational signal.  

Simulation Study 

This study embeds a stiffness reduction function into a 

regular Finite Element (FE) beam model so that it can be used to 

describe the behavior of a cracked beam. The presence of a 

crack in the beam causes a reduction in its local stiffness, which 

can be denoted as K .  

However, K  is not a constant value, it depends on the 

configuration of the beam. As the beam vibrates, the crack 

experiences the so called “breathing effect,” which is the cyclic 

switching between open (under tensile stress) and closed (under 

compressive stress) and the transition between the two. When 

the crack is closed, there is no stiffness reduction, even with the 

presence of the crack i.e. 0K . When the crack is fully 

open, the stiffness reduction matrix ( K ) approaches its 

maximum value corresponding to the crack size.  

In the transitional stage, the stiffness reduction matrix will 

assume a value between zero and the maximum value that 

depends on the vibration of the crack at that moment and the 

slope of the beam’s vibration at the crack point. From the slop of 

the beam’s vibration one can tell whether the crack is closed or 

open and from the vibration of the beam one can tell the amount 

of opening.  

For the beam used in this study, the crack is most likely to 

occur in the root of the beam, because of the stress concentration 

in that region.  

To this end, a Finite Element Model (FEM) of the beam is 

developed where the beam is divided into several segments, or 

elements.  

The root element has a smaller length than the other 

elements because of the presence of the crack. Furthermore, the 

stiffness reduction matrix is embedded in the FEM of the beam 

to take the crack breathing effect into consideration. Each 

element’s mode shape is approximated using a cubic equation to 

ensure the continuity of the deflection and the slope at the nodes 

of the model.  

The stiffness reduction matrix is the difference between the 

stiffness matrix of the crack-free beam and the stiffness matrix 

of the cracked beam. The stiffness matrix for an element on the 

beam can be expressed as: 
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Where E  represents the modulus of elasticity of the beam, 

which is constant regardless of the presence of the crack; 
eL  

represents the length of the element, which is constant when 

chosen for each element of the beam; matrix A  is constant for 

any element regardless of the presence of the crack; and 
)(eI  

represents the area moment of inertia of an element and it is the 

only term in the stiffness matrix equation that is affected by the 

size of the crack. Therefore, the stiffness reduction matrices can 

be written as: 

AIEk ee )()(                                                (13)            (13) 

Where 
)(eI  is the reduction of area moment of inertia.  

The beam considered in this study is a simple beam with a 

rectangular cross section. Consequently, its area moment of 

inertia can be calculated as: 
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Where m  represent the mass density per length of the 

beam;   represent the density of the beam
3/ mkg ; L  

represent the length of the beam element and t  represents the 

thickness of the beam. Equation 14 can be rewritten with 

normalized variables.  Let’s define 
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Substitute back into equation 13 yields: 
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e
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The crack size in this study is defined as the percentage of 

the remaining thickness of the beam in the presence of a crack to 

the total thickness of the beam. For a rectangular cross sectional 

beam (Figure1) the crack size is calculated as:  

100
'


t

t
a                               (17)                                                                    

Where a  is the size of the crack, t  is the remaining 

thickness of the beam due to the presence of the crack, and t is 

the thickness of the uncracked beam.  

 
Figure 1: Cross-Sectional Area of a Rectangular Beam 
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 Now let newold II ,  be the old and new area moments of 

inertia respectively. The old area moment of inertia is the area 

moment of inertia of the beam when there is no crack on it. The 

new area moment of inertia is the area moment of inertia of the 

beam when there is a crack. These two terms can be represented 

as: 
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 By substituting t and t’ back into Equation 17, the crack size 

of the beam with rectangular cross section becomes: 
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 As shown in Equation 19, the crack size equal to the square 

root of the new area moment of inertia divided by the old area 

moment of inertia. A similar procedure can be followed to 

derive the relationship between the crack size and the area 

moment of inertia for beams of different cross sectional shapes. 

Equation 19 illustrates the crack model used in this article. Now 

a relation between the crack size, a, and the stiffness reduction 

matrix when the crack is fully open can be derived using 

Equations 19, 11 and 12. The relation is as follows: 
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 Equation 20 represents a nonlinear stiffness reduction 

matrix that is embedded into the finite element beam model 

when the crack is fully open. One should take into consideration 

the state of the crack when evaluating the stiffness reduction 

matrix (whether it is fully closed, fully open or partially open). 

The value of the stiffness reduction matrix when the crack is 

partially open depends on the vibration of the crack point and 

the slope of the vibration signal of the beam at the crack point at 

that moment. The stiffness reduction matrix is nonlinearly 

related to the amount of opening of the crack due to breathing. 

From the literature, previous studies ignore the breathing effect. 

This unknown nonlinear function depends on many factors 

including eccentricity, gravity, and the varying flow forces 

acting on the blade. In this study, we assume that the crack 

opens/closes gradually in a linear manner until it reaches its 

maximum/minimum value when it is fully open/close half way 

through the cycle. Next section presents the results of applying 

this model into a rotating beam. 

Crack Size Estimation and Experimental Results 

First an FEM for the beam is developed. The model embeds 

a non-linear switching function into a regular FEM of the beam 

to characterize the effect on local stiffness due to crack 

breathing.  In this model, the crack is assumed to be in the root 

element of the beam. Solving such a model enables the 

prediction of vibration of the cracked beam at different crack 

sizes, and consequently enables the evaluation of the modal 

frequencies using Chirp z transform. Once the model is 

validated and refined as appropriate, it will be used to estimate 

the crack size. Input to the model is limited to the vibration of 

the uncracked beam to calibrate the model at the beginning, i.e., 

no need for run-to-fail tests. This approach is considered indirect 

because it uses modal frequencies and does not try to find the 

crack size that minimizes the discrepancies between beam 

vibrations predicted by the model and measured by the 

transducer. 

The model is validated using the experimental results done 

by Lee [3]. Lee used a microphone as a non-contact sensor to 

pick up the acoustic signal excited by a rectangular cross 

sectional beam with the dimensions shown in figure 2. is made 

of 6061-T6 aluminum and its dimension is 2mm thick, 2.3mm 

wide and 109mm long from the center of the mounting hole. The 

beam is mounted to the shaft, its free-vibrating length is 102mm. 

Its density is 2700kg/m
3
 and Young’s modulus is 68.9510

9
 Pa. 

He then established the utility of chirp-z transform as a signal 

processing tool to estimate the vibration mode frequencies, and 

built a neural network empirical model relating the estimated 

vibration mode frequencies and the crack size. 
 
 

109mm 

9mm 
2.3mm 

2mm 
 

Figure 2: Dimension of the Beam Used in Fatigue Test (Lee, 

2003) 

Figure 3 illustrates a schematic view of the rotating beam 

fatigue experimental setup designed by Lee [3]. The 

experimental setup consists of a shaft driven by a DC motor 

(No. 3) through a belt. A rotating beam (No. 1) is clamped to the 

flat area near the middle of the shaft. Once every rotation, the 

beam hits the Teflon tip of an impulse hammer (No. 2) that 

measures the impact force. The impact excites beam vibration 

that results in crack initiation and propagation in the beam. The 

location of the crack is controled by the V-notch used to initiate 

the crack. A condenser microphone (No. 4) is placed nearby to 

pick up the pressure wave excited by the vibration of the beam. 

The output voltage of the condenser microphone is proportional 

to the sound wave pressure intensity. The output is amplified 

and then digitized by a PC-based data acquisition system (No. 

5). A counter (No. 9) keeps an accurate count of the number of 

impacts by using a reflective optic sensor (No. 7) that produces 

one pulse per revolution.  

 
Figure 3: The experimental setup presented in [3] 

 The nominal beam’s length is assumed to be the length of 

the beam from the center of the mounting hole to the tip of the 

beam. However, a calibration scheme was developed to 
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minimize the discrepancy between the vibration measured from 

the real beam and predicted by the model for the crack-free case 

by adjusting the effective length of the model beam. The output 

of the finite element model represents the model beam’s 

response, which was then processed by the signal processing 

technique to evaluate the mode frequencies of the beam. This 

process is repeated for different crack sizes in order to collect 

information about the mode frequencies for a wide range of 

crack sizes. Subsequently, the relation between both the first and 

second mode frequencies and the crack sizes are developed 

using a curve fitting technique. Chirp-z transform is used in this 

study to extract the beam’s modal frequencies from its vibrating 

signals. The chirp-z transform algorithm is a means by which 

one can determine samples of the z-transform equally spaced 

along a contour in the z-plane. Strictly speaking, the Discrete 

Fourier-transform (DFT) finds these samples along the unit 

circle, while the chirp-z transform algorithm finds samples along 

a general contour, which could be part of the unit circle [25]. 

One of the advantages of the chirp-z transform over DFT is that 

a user can specify the range of frequency he/she is interested in. 

 The beam modeling yields two curves of modal frequency 

versus crack size, one for each mode. Having two mode 

frequencies estimated from the signal of the actual beam, one 

has to determine the crack size using the two theoretical curves 

of mode frequencies vs. crack size predicted by the FEM 

embedded model. The general idea is to find the crack size that 

minimizes the discrepancies between the theoretical mode 

frequencies and those of the actual beam. It can be posted as a 

simple optimization problem having an objective function of 

weighted sum of the two discrepancies.  Equal weights are used 

in this study. 

 To validate the proposed rotating beam crack diagnostic 

algorithm, a cracked rotating beam was simulated and 

theoretical mode frequencies were predicted over a range of 

crack sizes. The results are illustrated in Figure 4 along with 

empirical mode frequencies identified from vibro-acoustic 

signals of four real cracked beams collected by Lee [3] in four 

run-to-fail tests. The root mean square (RMS) for Test #1 was 

found to be 0.029mm, with an average crack size error of 4.89%. 

The root mean square for Test #2 was found to be 0.03mm, with 

an average crack size error of 3.7%. The root mean square for 

Test #3 was found to be 0.018mm, with an average error in 

crack size of 2.51%. Finally, the root mean square for Test #4 

was found to be 0.041mm, with an average crack size error of 

5.88%.  

 

 
Figure 4: Crack size results from the developed model 

compared to the four test results 

Summary and Conclusions 

 An embedded model that predicts the vibration of a cracked 

beam by considering the crack-breathing phenomenon was 

developed.  

 The crack-breathing phenomenon was included by 

embedding a non-linear switching stiffness function in an FEM 

beam model to characterize the local stiffness variation 

associated with crack breathing.  

 A calibration scheme was developed to minimize the 

discrepancy between the vibration measured from the real beam 

and predicted by the model for the crack-free case by adjusting 

the effective length of the model beam. The model was then 

used to simulate vibration under various crack sizes.   

 Natural frequencies of both the first and second modes were 

then estimated from the vibrations using chirp-z transform.  Two 

curves of natural frequency versus crack size were then fitted 

from the natural frequencies of the 1st and 2nd modes 

respectively.  

 A diagnostic scheme was then established using the two 

curves and natural frequencies estimated from microphone 

measurements. The diagnosis model was evaluated using 

experimental data from four run-to-fail tests performed in the 

literature. Generally speaking, the crack sizes were estimated 

with good accuracy, i.e., a maximal error below 6%. 
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