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Introduction  

Chaos control is a new field in explorations of chaotic 

motions and it is crucial in applications of chaos. Until now, 

many different techniques and methods have been proposed to 

achieve chaos control, such as OGY method, impulsive control 

method, differential geometric method and linear state space 

feedback etc. In practice, there exist many examples of 

impulsive control systems (see [1–3]). Recently, impulsive 

control has been widely used to stabilize and synchronize 

chaotic systems (see [4–14]). In 1963, Lorenz found the first 

chaotic attractor in a simple three-dimensional autonomous 

system. So far there are many researchers who studied the chaos 

theory. During the last decades dynamic chaos theory has been 

deeply studied and applied to many fields extensively, such as 

secure communications, optical system, biology and so forth. 

The stabilization and synchronization of a class chaotic systems 

called Lorenz systems, Xie et al. in [10] and Sun et al. in [11] 

derived some sufficient conditions for the stabilization and 

synchronization of Lorenz systems via impulsive control with 

varying impulsive intervals. In 1999, Chen and Ueta found a 

similar but nonequivalent chaotic attractor [15], which is known 

to be the dual of the Lorenz system, over the last three years, 

there are some detailed investigations and studies of the Chen 

system [16–19]. Recently, Lu et al. [20] reported a new chaotic 

attractor, which bridged the gap between the Lorenz system and 

Chen system [21]. In the following we will call it Lu system. It 

is a typical transition system; Lu system has been analyzed in 

papers [22–24]. But few result of stabilization and 

synchronization for Lu system by using impulsive control. 

Lu’s system is described by  
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where , ,x y z  are state variables, , ,a b c  are positive constants. 

The objective of this paper is as follow. We investigate 

adaptive synchronization for Lu’s system when the parameters 

of the drive system are fully unknown and different with those 

of the response system. 

Synchronization of the Lu’s system  

Consider two nonlinear systems:  

( , )                                              (*)

( , ) ( , , )                            (**)

x f t x

y g t y u t x y



 

&

&
 

Where , , , [ , ],n r n nx y f g C       

[ , ],  1,r n n nu C r         is the set of non-negative 

real numbers. Assume that (*) is the drive system, (**) is the 

response system, and ( , , )u t x y  is the control vector. 

Definition2.1. Response system and drive system are said to be 

synchronic if for any initial conditions 
0 0( ), ( ) ,nx t y t   

lim ( ) ( ) 0.
t

x t y t
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In this section, we consider adaptive synchronization Lu’s 

systems. This approach can synchronize the chaotic systems 

when the parameters of the drive system are fully unknown and 

different with those of the response system. Assume that there 

are two Lu’s systems such that the drive system (with the 

subscript 1) is to control the response system (with the subscript 

2). The drive and response system are given, respectively, by  
.
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where the parameters , ,a b c  are unknown or uncertain, and. 
.
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where 1 1 1, ,a b c  are parameters of the response system which 

need to be estimated, and  
T

1 2 3, ,u u u u  is the controller we 

introduced in (2.2). We choose

Tele:  

E-mail addresses: kreangkri@mju.ac.th 

         © 2011 Elixir All rights reserved 

Stabilization and synchronization for lu system 
Manlika Ratchagit and Kreangkri Ratchagit 

Department of Mathematics and Statistics, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand. 

 
ABSTRACT  

In this paper, we study Lu’s system, and we study the stability of equilibrium point of Lu’s 

system. Then, we study chaos synchronization of Lu’s system by using adaptive control 

methods.                                                                                                               

                                                                                                             © 2011 Elixir All rights reserved. 
 

ARTICLE INFO    

Article  history:  

Received: 18 May 2011; 

Received in revised form: 

8 July 2011; 

Accepted: 18 July 2011;

 
Keywords  

Lu’s system, 

Synchronization,  

Adaptive control. 

 

 

Elixir Appl. Math. 36 (2011) 3535-3537 

Applied Mathematics 

Available online at www.elixirpublishers.com (Elixir International Journal) 

 



Manlika Ratchagit et al./ Elixir Appl. Math. 36 (2011) 3535-3537 
 

3536 

1 1 2 1

2 2 2 1

3 3 2 1

( )

( )

( )

x

y

z

u k e a x x

u k e c y y

u k e b z z

  

  

  

                     (2.3)                                                         

where , ,x y ze e e  are the error states which are defined as follows: 
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where 
1 2 3, , 0k k k   and , ,    are positive real constants. 

Theorem 2.1. Let 
1 2 3, , 0k k k   be properly chosen so that the 

following matrix inequality holds, 
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or 
1 2 3, ,k k k  can be chosen so that the following inequalities 

holds,  

(i) 
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(ii) 2
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(iii) 2
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Then the two Lu’s system (2.1) and (2.2) can be synchronized 

under the adaptive controls (2.3) and (2.4). 

Proof. It is easy to see from (2.1) and (2.2) that the error system 

is 
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Let 
1 1 1, , .a b ce a a e b b e c c       Choose the Lyapunov 

function as follows: 
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Then the differentiation of V  along trajectories of (2.6) is 
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 and P  is as in (2.5). Since ( )V t  is 

positive definite and ( )V t&  is negative semidefinite, it follows 

that 
1 1 1, , , , , .x y ze e e a b c L  From ( ) ,TV t e Pe &  we can easily 

show that the square of , ,x y ze e e  are integrable with respect to t, 

namely, 
2, , .x y ze e e L  From (2.6), for any initial conditions, we 

have ( ), ( ), ( ) .x y ze t e t e t L& & &  By the well-known Barbalat’s 

Lemma, we conclude that ( , , ) (0,0,0)x y ze e e   as .t   

Therefore, in the closed-loop system, 

2 1 2 1 2 1( ) ( ), ( ) ( ), ( ) ( )x t x t y t y t z t z t    as .t   This 

implies that the two Lu’s systems have synchronized under the 

adaptive controls (2.3) and (2.4).                           

Numerical Simulations 

The numerical simulations are carried out using the Fourth-

order Runge-Kutta method. The initial states are 

1 1 1(0) 0.5, (0) 0.5, (0) 0.5      x y z  for the drive system and 

2 2 2(0) 0.2, (0) 0.2, (0) 0.2     x y z  for the response system. 

The parameters of the drive system are 5, 10, 5.  a b c  The 

control parameters are chosen as follows 
1 2 35, 10, 20   k k k  

which satisfy (2.5). Choose 0.5.       The initial values of 

the parameters 
1 1 1, ,a b c  are all chosen to be 0. As shown in Fig. 

1, the response system synchronizes with the drive system. The 

changing parameters of 
1 1 1, ,a b c  are shown in Fig. 2-4. 

 
Figure 1: Synchronization error   for system (2.1) and (2.2) 

with time t 

 
Figure 2: Changing parameter 

1a  of the system (2.2) with 

time t. 

 

Figure 3: Changing parameter 
1b  of the system (2.2) with 

time t 

 
Figure 4: Changing parameter 

1c  of the system (2.2) with 

time t.
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Conclusions   

In this paper, we give sufficient conditions for stability of 

equilibrium points of synchronization of two Lu’s systems using 

adaptive control which control the chaotic behavior of Lu’s 

system to its equilibrium points. Numerical Simulations are also 

given to verify results we obtained. 
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