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Introduction 

The analysis of thermally induced vibration of cylindrical 

panel is common place in the design of structures, atomic 

reactors, steam turbines , supersonic aircraft, and other devices 

operating at elevated temperature. In the field of  nondestructive  

evaluation, laser-generated  waves have attracted great attention 

owing to their potential application to noncontact and 

nondestructive evaluation of sheet materials. The high velocities 

of modern aircraft give rise to aerodynamic heating, which 

produces intense thermal stresses, reducing the strength of the 

aircraft structure. In the nuclear field, the extremely high 

temperatures and temperature gradients originating inside 

nuclear reactors influence their design and operations. 

Moreover, it is well recognized that the investigation of the 

thermal effects on elastic wave propagation has bearing on many 

seismological application. This  study may be used in 

applications involving nondestructive testing (NDT), qualitative 

nondestructive evaluation (QNDE) of large diameter pipes and 

health monitoring of other ailing infrastructures in addition to 

check and verify the validity of FEM and BEM for such 

problems. 

The theory of thermo elasticity is well established by 

Nowacki [1]. Lord and Shulman [2] and Green and Lindsay [3] 

modified the Fourier law and constitutive relations, so as to get 

hyperbolic equation for heat conduction by taking into account 

the time needed for acceleration of heat flow and relaxation of 

stresses. A special feature of the Green–Lindsay model is that it 

does not violate the classical Fourier's heat conduction law. 

Vibration of functionally graded multilayered orthotropic 

cylindrical panel under thermo mechanical load was analyzed by 

X.Wang et.al [4]. Hallam and Ollerton [5] investigated the 

thermal stresses and deflections that occurred in a composite 

cylinder due to a uniform rise in temperature, experimentally 

and theoretically and compared the obtained results by a special 

application of the frozen stress technique of photoelasticity. 

Noda [6] have studied the thermal-induced interfacial cracking 

of magneto electro elastic materials under uniform heat flow. 

Chen et al [7] analyzed the point temperature solution for a 

pennay-shapped crack in an infinite transversely isotropic 

thermo-piezo-elastic medium subjected to a concentrated 

thermal load applied arbitrarily at the crack surface using the 

generalized potential theory. Banerjee and Pao [8] investigated 

the propagation of plane harmonic waves in infinitely extended 

anisotropic solids by taking into account the thermal relaxation 

time. Dhaliwal and Sherief [9] extended the generalized thermo 

elasticity to anisotropic elastic bodies. Chadwick [10] studied 

the propagation of plane harmonic waves in homogenous 

anisotropic heat conducting solids. Sharma and Sidhu[11] 

studied the propagation of plane harmonic thermo elastic wave 

in homogenous transversely isotropic, cubic crystals and 

anisotropic materials in the context of generalized thermo 

elasticity. Sharma[12] investigated the three dimensional 

vibration analysis of a transversely isotropic thermo elastic 

cylindrical panel. The application of powerful numerical tools 

like finite element or boundary element methods to these 

problems is also becoming important. Prevost and Tao [13] 

carried out an authentic finite element analysis of problems 

including relaxation effects.  

Eslami and Vahedi [14] applied the Galerkin finite element 

to the coupled thermoelasticity problem in beams. Huang and 

Tauchert [15]derived the analytical solution for cross-ply 

laminated cylindrical panels with finite length subjected to 

mechanical and thermal loads using the extended power series 

method. 

In this paper, the three dimensional wave propagation in a 

homogeneous isotropic generalized thermo elastic cylindrical 

panel is discussed using the linear three-dimensional theory of 

elasticity. The frequency equations are obtained using the 

boundary conditions. A modified Bessel functions with complex 

argument is directly used to analyze the frequency equations by 

fixing the length to mean radius ratio and are studied 

numerically for the material Zinc. The computed non-

dimensional frequencies are plotted in the form of dispersion 

curves.
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The Governing equations 

Consider a cylindrical panel as shown in Fig.1 of length L 

having inner and outer radius a and b with thickness h. The 

angle subtended by the cylindrical panel, which is known as 

center angle, is denoted by α. The deformation of the cylindrical 

panel in the direction r, θ, z are defined by u, v and w. The 

cylindrical panel is assumed to be homogenous, isotropic and 

linearly elastic with Young’s modulus E, poisson ratio ν   and 

density ρ in an undisturbed state. 

 
Fig.1 Geometry of the problem 

In cylindrical coordinate the three dimensional stress 

equation of motion, strain displacement relation and heat 

conduction in the absence of body force for a linearly elastic 

medium are 
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Where u, v, w are displacements along radial, 

circumferential and axial directions respectively. 

, , , , ,rr zz r z rz         are the stress components, 

, , , , ,rr zz rzr ze e e e e e   are strain components, T is the 

temperature change about the equilibrium temperature T0, ρ  is 

the mass density ,β1 is the thermal stress coefficient , t  is the 

relaxation time ,CV  is specific heat capacity ,    is the 

generalized thermo elastic constant , K is the thermal 

conductivity, λ and  µ are the Lame’s constants.     

 Substituting the Eqns (3) and Eqns (2) in Eqn(1),gives the 

following three dimensional equation of  motion and heat 

conduction are obtained as follows: 
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Where k=K/ρCv  , τ is the generalized thermo elasticity , the 

comma in the subscripts denotes the partial differential equation 

with respect to  the variables. 

To uncouple the Eqns (4), the displacement potential  u,v,w 

along the radial,circumferencial and axial directions are assumed 

following [12]as  follows
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Using Eqns (5) in Eqns (1), we find that   T,,   satisfies the 

equations. 
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Eqn (6d) in    gives a purely transverse wave , which  is 

not affected by temperature. This wave is polarized in planes 

perpendicular to the z-axis. We assume that the disturbance is 

time harmonic through the factor e
i t

. 

Solution to the problem 

The Eqns (6) is coupled partial differential equations of the 

three displacement components. To uncouple Eqns(6),we can 

write three displacement functions which satisfies the simply 

supported boundary conditions followed by Sharma [12] 
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( , , , ) ( )sin( )sin( / ) i tr z t r m z n e        

( , , , ) ( , , , )sin( )sin( / ) i tT r z t T r z t m z n e       

By introducing the dimensionless quantities: 
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We obtain the system of Eqns (6) as  
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panel. 

Re writing Eq.(9), results in the following equation. 
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Eqn (10), on simplification  reduces to the following differential 

equation: 
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The solution of Eqn (11) are
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Eqn (9a) is a Bessel equation with its possible solutions are 
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Boundary conditions and Frequency equation 

In this section we shall derive the secular equation for the 

three dimensional vibrations cylindrical panel subjected to 

traction free boundary conditions at the upper and lower surfaces 
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The frequency equation is obtained as 
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


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 

 
 
 

   

    
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 
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2 2

17 1 1 1 1 1 1

1 1

1 1
1 1 1 1 1 1(2 ) ( ( ) ( 1) ( ) / ( 1) ( ) / ( )E t t t t t t

k k
J k J k J k J k

t t
   

 
      

   
   
   

        

 21 1 1 11 1 1 12 ( / ) ( ) ( 1) ( )E t t tJ J          

 23 1 1 12 1 2 22 ( / ) ( ) ( 1) ( )E t t tJ J        
 

 25 1 1 13 1 3 32 ( / ) ( ) ( 1) ( )E t t tJ J        
 

2

1 1 1 1 1 1

2 2
27 1 1 1 1 1 1( ) ( ) 2 ( 1) ( ) / / ( )E t t t t t tk R J k J k k J k       

 31 1 1 1 1 1 1 1 1(1 ) / ( ) ( )LE t d t J t J t       
 

 33 2 1 2 1 2 1 2 1(1 ) / ( ) ( )LE t d t J t J t       
 

 35 3 1 3 1 2 1 3 1(1 ) / ( ) ( )LE t d t J t J t       
 

37 1 1 1( / ) ( )LE t t J k t 
 

 

 

43 2 1 2 1 2 1 2 1[( / ) ( ) ( ) ( )]E e t J t J t     
 

45 3 1 3 1 3 1 3 1[( / ) ( ) ( ) ( )]E e t J t J t     
 

47 0E 
 

In which  *

1 1 2t a R t    , *

2 1 2t b R t  
 

and 

*t b a R   is the thickness -to-mean radius ratio of the panel. 

Obviously  2,4,6,8ijE j   can obtained by just replacing 

modified Bessel function of the first kind in  1,3,5,7ijE i 
 

with the ones of the second kind, respectively, while 

 5,6,7,8ijE i  can be obtained by just replacing 1t  
in 

 1,2,3,4ijE i   with 2t  .
 

Numerical results and discussion 

 The frequency Eqn (19) is numerically solved for Zinc 

material. For the purpose of numerical computation we consider 

the closed circular cylindrical shell with the center angle 

2   and the integer n must be even since the   shell 

vibrates in   circumferential full    wave. 

The frequency equation for a closed cylindrical shell can be 

obtained by setting  1,2,3.....l l   where l is the 

circumferential wave number in Eqns(20). The material 

properties of a Zinc material is taken from[12] 

 3 37.14 10 kgm   ,  

0 * 11 1

0 1 1296 , 1, 1, 0.0221 5.01 10 secT K K        

 11 20.508 10 Nm    , 
11 20.385 10 Nm   , 

 2 1 13.9 10 deg , 0.3VC Jkg      
A dispersion curve is drawn between the non-dimensional 

axial wave number versus   dimensionless frequency with and 

without thermal effect for the different thickness parameters 

t*=0.01,0.1,0.25,0.5 for the circumferential wave number 1   

is shown in Fig.2 and Fig.3 respectively. From the Figs.2 and 3, 

it is observed that the non-dimensional frequency increases 

rapidly to become linear for 0.8Lt  and quite dispersive for 

0.8Lt  for all value of t*.On comparison, the trends of 

variation of non dimensional frequency in thermo elastic shell is 

similar to that in elastic shell as can be observed from Fig.2 and 

Fig.3, but there is a significant modifications in their magnitude 

due to thermal effect at all values of t*with tL. when the 

thickness of the cylindrical panel is increased, the dimensionless 

frequency is decreases . This is the proper physical behavior of a 

cylindrical panel with respect to its thickness. 
 

 

 
Conclusion 

The three dimensional wave propagation analysis of a 

homogenous isotropic generalized thermo elastic cylindrical 

panel subjected to simply supported boundary conditions has 

been considered for this paper. For this problem, the governing 

equations of three dimensional linear elasticity have been 

employed and solved by modified Bessel function with complex 

argument. The effect of the axial wave number on the natural 

frequencies with and without thermal field of a closed Zinc 

cylindrical shell is investigated and the results are presented as 

dispersion curves. 
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