A density functional approach to pharmaceutical intermediate n-(methyl) phthalimide to yield complete vibrational assignments and HOMO-LUMO

energy gap
T. Karthick ${ }^{1}$, V. Balachandran ${ }^{2}$, S. Perumal ${ }^{3}$ and A. Nataraj ${ }^{4}$
${ }^{1}$ Department of Physics, Vivekanandha College for Women, Tiruchengode, 637205, India
${ }^{2}$ Department of Physics, A Government Arts College, Musiri, Tiruchirappalli, 621201, India
${ }^{3}$ Department of Physics, S.T. Hindu College, Nagarcoil, 629002, India
${ }^{4}$ Department of Physics, Thanthai Hans Roever College, Perambalur, 621212, India.

ARTICLE INFO

Article history:

Received: 17 April 2011;
Received in revised form:
5 July 2011;
Accepted: 15 July 2011;

Keywords

N-(Methyl)phthalimide,
FT-IR spectra,
FT-Raman spectra,
Mullikan atomic charges,
DFT/B3LYP/6-311++G(d,p),
HOMO-LUMO Energy gap.

Abstract

The understanding of optimized molecular geometry, vibrational analysis of the heterocyclic organic compounds plays a vital role in the process of drug discovery. The present work provides geometrical parameters, vibrational assignments for pharmaceutical intermediate N -(Methyl)phthalimide (NMP). Moreover, the present study aims to illustrate how intramolecular interactions appear within the molecule on account of HOMO-LUMO studies. In addition to these, Mullikan's Atomic charges associated with each atom of the stable conformer are also reported. Entire vibrational, geometrical parameters, Mullikan's Atomic charges and HOMO-LUMO Energy gap of NMP were predicted with the aid of B3LYP level of theory with $6-311++G(d, p)$ basis set on a quantum chemical software Gaussian 03W. In view of visual inspection, 51 normal modes of vibrations contributed to NMP were found out. HOMO-LUMO studies provided information about occupied and unoccupied molecular orbitals and intramolecular interactions of NMP. Mullikan's Atomic charge on each atom of NMP shows Charge-stability relations.

© 2011 Elixir All rights reserved.

Introduction

Phthalimide and its derivatives is very important compound in various fields. In pharmaceutical, they are used as an intermediate material.

In medical field, phthalimide analogues are used in the synthesis of antimicrobial activity, androgens and other agents for treating tumor necrosis factor [1]. In medicinal chemistry, phthalimide analogues play a vital role as anti-convulsant, antiinflammatory, analgesic, hypolipidimic and immunomodulatory activities [2].

Certain phthalimide derivatives are used as herbicides and for reducing bacterial contamination. In industry, they are widely used in the production of pesticides, dyes, plastics, high performance ion exchange resins, surfactants.

Because of its wide applications in various fields, Phthalimide and its nitro derivatives have been extensively investigated earlier. V. Krishnakumar et al [1,3] reported the vibrational assignments of N -bromophthalimide and N hydroxyphthalimide, respectively.

Literature survey reveals that to the best of our knowledge no DFT calculations have been performed on account of NMP so far. Therefore, the present work was undertaken.

The main objective of this investigation is to calculate optimized molecular geometry, vibrational frequencies and vibrational assignments associated with N -(Methyl) phthalimide. In addition to these, HOMO-LUMO studies were also performed to enumerate the presence of intramolecular interactions within the molecule. Moreover, Mullikan's charges on each atom of the title molecule were also presented to illustrate charge-stability relations.

Materials and Methods

The sample NMP in the solid form was purchased from the Lancaster Chemical Company, (UK) with a purity of greater than 98% and it was used as such without further purification. The FT-IR spectrum of NMP was recorded in the frequency region $400 \square 4000 \mathrm{~cm}^{-1}$ on a NEXUS 670 spectrophotometer equipped with an MCT detector, a KBr pellet technique. The FT-Raman spectrum of NMP also has been recorded in the frequency region $100 \square 3500 \mathrm{~cm}^{-1}$ on a NEXUS 670 spectrophotometer equipped with Raman module accessory with Nd:YAG laser operating at 1.5 W power continuously with 1064 nm excitation. The entire vibrational assignments and measurements were performed by means of Density Functional B3LYP method combining Becke's three-parameter hybrid functional method [4] with Lee-Yang-Parr's correlation functional (LYP) [5,6] with the standard high level 6$311++G(d, p)$ basis set in Gaussian 03 W Quantum chemical software package [7]. In the calculations, the molecular geometry was optimized by assuming Cs point group symmetry. Charge of each point is taken as zero and the spin multiplicity is taken as one.
Results and Discussion
Molecular Geometry

Figure 1. Optimized Molecular Geometry of NMP

Tele:

E-mail addresses: brsbala@rediffmail.com

The title compound NMP is shown in Figure 1 has 19 atoms which belong to N -Substituted heterocyclic aromatic organic compound. The optimized geometrical parameters of NMP calculated by B3LYP/6-311++G(d,p) level are presented in Table 1. In the six member ring, the average $\mathrm{C}-\mathrm{C}$ bond length is of the range $\sim 1.3935 \AA$. Introduction of substituent in the N substituted phthalimide ring leads to significant variation in charge distribution in the molecule. Consequently, this greatly affects the molecular geometrical parameters of the five member ring. Hence the average $\mathrm{C} \square \mathrm{C}$ bond length in the five member ring observed in the range $\sim 1.4942 \AA$. The average C $\square H$ bond length in the aromatic ring calculated by B3LYP/6-311++G(d,p) is $\sim 1.0837 \AA$ whereas in the methyl group; the average $\mathrm{C} \square \mathrm{H}$ bond length is of $\sim 1.0905 \AA$. $\mathrm{C} \square \mathrm{N}$ bond lengths such as $\mathrm{C} 7 \square \mathrm{~N} 9, \mathrm{C} 8 \square \mathrm{~N} 9$ are found to be equal i.e $1.4028 \AA$. But outside the ring, N9 $\square \mathrm{C} 15$ bond length ($1.4538 \AA$) slightly varies from that of ring $\mathrm{C} \square \mathrm{N}$. Due to high symmetry of the benzene ring, its bond angles and dihedral angles are almost equal. Therefore, the average bond angles corresponding to aromatic $\mathrm{C} \square \mathrm{C} \square \mathrm{H}$ calculated at B3LYP/6-311++G(d,p) is 120.3823°. The substituent does not affect bond angles and dihedral angles of the NMP. Moreover, the dihedral angles of aromatic $\mathrm{C} \square \mathrm{C} \square \mathrm{C} \square \mathrm{H}$ angles are found to be $\sim 180^{\circ}$. In other words, consecutive $\mathrm{C} \square \mathrm{C}$ and $\mathrm{C} \square \mathrm{H}$ bond lengths are co-planar.

Normal Coordinate Analysis

The molecule belongs to Cs point group symmetry and the group theory analysis of NMP indicates that, 51 normal modes of vibrations are distributed among the symmetry species as Ivib $=35 \mathrm{~A}^{\prime}($ In-plane vibrations) +16 A "(Out-of plane vibrations). From the structural point of view of the molecule, 19 In-plane stretching vibrations, 16 in-plane bending vibrations and 16 outof plane bending vibrations are contributed to NMP. Detailed description of the vibration modes can be given by means of normal coordinate analysis (NCA). For this purpose, the full sets of 72 standard internal coordinate [containing 21 redundancies] are defined as given in the Table 2.

Local Symmetry Coordinates

From 72 full sets of internal co-ordinates, a non-redundant set of local symmetry coordinates were constructed by suitable linear combinations of internal coordinates followed by the recommendations of Fogarasi and Pulay [8,9]. The local symmetry co-ordinates corresponding to probable degrees of freedom of NMP were presented in Table 3.

Observed \& Calculated Vibrational Spectra

The experimentally observed FT-IR and FT-Raman spectra of NMP along with the calculated spectra are shown in Figs 2 and 3 , respectively. The calculated spectra were drawn with the aid of origin graphics program. Theoretically calculated IR intensities and Raman activities were taken as an input data for drawing calculated IR and Raman spectra respectively. This shows that, the theoretical computation by density functional B3LYP/6-311++G(d,p) level were good agreement with the experimental spectral data.

CH3 vibrations

For the assignments of CH3 group frequencies one can expect nine fundamentals can be associated with each CH3 group, namely CH 3 ss (symmetric stretching), CH3 as (asymmetric stretching), CH3 ips (in-plane stretching), CH3 ops (out-of-plane stretching), CH3 ipb (in-plane bending), CH3 opb (out-of-plane bending), CH 3 ipr (in-plane rocking), CH 3 opr (out- of- plane rocking) and tCH3 (twisting) modes. The asymmetric stretching and asymmetric deformation modes of the methyl group are expected to be depolarized for $\mathrm{A} \square$ symmetry
species [10]. The $\mathrm{C} \square \mathrm{H}$ stretching in CH 3 occurs at lower frequencies than those of the aromatic ring $3000-2900 \mathrm{~cm}-1$ [11-14]. In the present investigation, the asymmetric and symmetric stretching vibrations are observed in the ranges 2988-2881 cm-1 at FT-Raman spectrum. The theoretically computed value by B3LYP/6-311++G(d,p) method at $3085 \mathrm{~cm}-$ 1 (see mode no: 6 in Table 4) assigned to CH3 asymmetric stretching vibration is over estimated by $\sim 85 \mathrm{~cm}-1$ when compared to the literature as well as recorded spectrum.

Fig. 2 Observed and calculated IR
Fig. 3 Observed and calculated Raman
For methyl substituted benzene derivatives, the asymmetric and symmetric bending vibrations of methyl group normally appear in the regions $1400 \square 1370 \mathrm{~cm}-1$ [15]. The bands observed at 1414 and $1394 \mathrm{~cm}-1$ in the FT-Raman spectrum were attributed to asymmetric and symmetric deformations of methyl group respectively. The theoretically computed values of 1470 and $1454 \mathrm{~cm}-1$ (see mode no: 15,16 in Table 4) by B3LYP/6-311++G(d,p) method. The computed results are also in good agreement with the literature as well as recorded spectrum.

Generally aromatic compounds [16] display a methyl rock ($\square \mathrm{CH} 3$) in the neighbourhood of $1045 \mathrm{~cm}-1$. The second rock in the region $970 \pm 70 \mathrm{~cm}-1$ is more difficult to find among $\mathrm{C} \square \mathrm{H}$ out of plane deformations. For the title compound, ($\square \mathrm{CH} 3$) mode is calculated at $1099 \mathrm{~cm}-1$ and ($\delta \mathrm{CH} 3$) mode calculated at $1035 \mathrm{~cm}-1$. The weak band observed at $1084 \mathrm{~cm}-1$ in the FT-IR is identified as ($\square \mathrm{CH} 3$) mode. The strong peak at $1014 \mathrm{~cm}-1$ in the FT-Raman spectrum is identified as ($\delta \mathrm{CH} 3$) mode. The assignment of the band at $108 \mathrm{~cm}-1$ in the Raman is attributed to Butterfly motion. The experimental counterpart belongs to Butterfly and twisting ($\tau \mathrm{CH} 3$) modes are possible only in far IR spectra.

$\mathrm{C}=\mathrm{O}$ vibrations

If a compound contains a carbonyl group, the absorption generally among the strongest presents [17]. Accordingly the FT-Raman bands observed at 1759 and $1719 \mathrm{~cm}-1$ in the title compound have been assigned to $\mathrm{C}=\mathrm{O}$ stretching modes of vibrations. The assignments of $\mathrm{C}=\mathrm{O}$ in-plane and out-of-plane bending vibrations are strongly coupled with the ring torsion modes also and the vibrations made in this study were given in Table 4 and the tabulated values are supported by the literature [18-20].

$\mathbf{C} \square \mathbf{N}$ vibrations

The identification of $\mathrm{C} \square \mathrm{N}$ stretching vibration is a rather difficult task since there are problems in identifying these frequencies from other vibrations in FT-Raman. In the present work, the band observed at $1380,1359 \mathrm{~cm}-1$ in the FT-IR and $1385,1365 \mathrm{~cm}-1$ in the FT-Raman have been assigned to $\mathrm{C} \square \mathrm{N}$
stretching vibration. The theoretically computed value of $\mathrm{C} \square \mathrm{N}$ stretching vibrations at $1400,1382 \mathrm{~cm}-1$ is in excellent agreement with experimental observation. The band at $290 \mathrm{~cm}-1$ in the FT-Raman is assigned to $\mathrm{C} \square \mathrm{N}$ out-of-plane bending vibration.

$\mathbf{C} \square \mathbf{C}$ vibrations

In our title molecule, there are six equivalent $\mathrm{C} \square \mathrm{C}$ bonds in the ring 1 possesses six $\mathrm{C} \square \mathrm{C}$ stretching vibrations. However, due to high symmetry of benzene, many modes of vibrations are infrared inactive [21]. In general, the bands around 1650 to 1350 $\mathrm{cm}-1$ in benzene derivatives are assigned to skeletal stretching $\mathrm{C} \square \mathrm{C}$ bands. The bands observed at 1432, $1594 \mathrm{~cm}-1$ in FT-IR spectrum and $1609,1582,1468,1433$ in FT-Raman spectrum of N -(Methyl) phthalimide is identified as $\mathrm{C} \square \mathrm{C}$ stretching vibrations. The theoretically predicted $\mathrm{C} \square \mathrm{C}$ stretching vibrations by B3LYP/6-311++G(d,p) method are 1647, 1625, $1496,1484 \mathrm{~cm}-1$ corresponding to the mode no: $10,11,13,14$ as listed in Table 4. The $\mathrm{C} \square \mathrm{C}$ aromatic stretch [22] known as semi circle stretching observed at $1609 \mathrm{~cm}-1$ in FT Raman and 1594 $\mathrm{cm}-1$ in FT-IR spectrum.

$\mathbf{C} \square \mathbf{H}$ vibrations

The hetero aromatic structure displays the presence of $\mathrm{C} \square \mathrm{H}$ stretching vibrations in the region $3100 \square 3000 \mathrm{~cm}-1$ which is the characteristic region for the ready identification of $\mathrm{C} \square \mathrm{H}$ stretching vibrations [11]. In this region, the bands are not affected appreciably by the nature of substituent. In the present study, these bands observed at $3022-3083 \mathrm{~cm}-1$ in the FTRaman spectrum have been assigned as aromatic $\mathrm{C} \square \mathrm{H}$ stretching vibrations. The recorded values are also in good agreement with the literature.

The aromatic $\mathrm{C} \square \mathrm{H}$ in-plane bending modes of benzene and its derivatives are observed in the region $1300 \square 1000 \mathrm{~cm}-1$ [11]. In the present work the bands corresponding to the aromatic $\mathrm{C} \square \mathrm{H}$ in-plane bending modes observed at $1249,1183 \mathrm{~cm}-1$ in FT-IR whereas in FT-Raman the same modes observed in the region $1315 \square 1170 \mathrm{~cm}-1$. The theoretically computed B3LYP/6$311++G(d, p)$ method at $1310-1189 \mathrm{~cm}-1$ shows good agreement with the recorded data. The $\mathrm{C} \square \mathrm{H}$ out of plane deformation modes of benzene $[23,24]$ are expected to occur in the region $1000 \square 600 \mathrm{~cm}-1$. Hence, in the present study these bands observed at $977,908,871,799 \mathrm{~cm}-1$ (see mode no: $30,31,32,34$ in Table 4) by B3LYP/6-311++G(d,p) method show excellent correlation with recorded FT-IR and FT-Raman bands.

HOMO-LUMO Energy gap

The Figure 4 shows that the orbitals from HOMO $\square 2$ to LUMO +2 of NMP are well localized within the phthalimide ring, but all the LUMO surfaces have no amplitude [25] on methyl group linked to five member ring. In HOMO and HOMO $\square 1$, the orbital has higher amplitude in $\mathrm{C} 7=\mathrm{O} 14$ and $\mathrm{C} 8=\mathrm{O} 19$. In $\mathrm{HOMO} \square 2$, the orbitals have well localized on methyl group of NMP. In other words, each valence electron in H16, H17, H18 highly delocalized or coupled with C15 of the methyl group. The rest of the valence electron in C15 is delocalized on N9 in HOMO $\square 1$ orbital as shown in Figure 4(c). The presence of intramolecular charge transfer from donor to acceptor group within molecule can identify by finding the coexistence of IR and Raman activity [26]. It is also observed that in our title molecule the bands at $3096,1713,1432,1380,1249$, 1183 and $603 \mathrm{~cm}-1$ in FT-IR spectrum have their counterparts in FT-Raman at 3083, 1719, 1433, 1385, 1252, 1187 and $604 \mathrm{~cm}-1$ show that the relative intensities in IR and Raman are comparable resulting from the electron cloud movement through single-double bond π conjugated path from donor to acceptor
groups. The analysis of wave function indicates that the electron absorption corresponds to the transition from the ground state to the first exited state and is mainly described by one-electron excitation from the Highest Occupied Molecular Orbital (HOMO) to the Lowest Unoccupied Molecular Orbital (LUMO). The HOMO, LUMO energies of NMP has been calculated at B3LYP/6-311++G(d,p) level is presented in Table 5. The energy gap presented in Table 6 reflects the chemical activity of the molecule. HOMO represents the ability to donate an electron and LUMO represents the ability to accept an electron. Among the six subsequent exited states calculated, the strongest transitions appear between HOMO \rightarrow LUMO orbitals. The numerical value of energy gap between HOMO-LUMO orbitals calculated at B3LYP level is $\square 0.18393 \mathrm{a} . \mathrm{u}$. The energy gaps for other possible energy transitions are presented in Table 6.

(a) Mapped surface of HOMO (b) Mapped surface of LUMO

(c) Mapped surface of HOMO $\square 1$
(d) Mapped surface of LUMO+1

(e) Mapped surface of HOMO \square

2 (f) Mapped surface of LUMO+2
Fig 4. Selected molecular orbital contours of NMP from HOMO 2 to LUMO+2

Other Molecular Properties

In addition to the vibrational assignments, several thermodynamic parameters are also calculated [27] on the basis of vibrational analysis at B3LYP/6-311++G(d,p).

The calculated thermodynamic properties are presented in the Table 7.

The self consistent field (SCF) energy, zero point vibrational energies (ZPVE), rotational constants, dipole moment and entropy $\operatorname{SVib}(\mathrm{T})$ are calculated to the extent of accuracy and the variations in the ZPVEs seem to be insignificant. The total energies and change in total entropy of N -(Methyl) phthalimide at room temperature are only marginal.

Mullikan's Atomic Charges

The values of the Mullikan's atomic charges [28] on each atom of the title compound were also obtained with the help of B3LYP level of the theory incorporating $6-311++G(d, p)$ basis set. The Mullikan's atomic charges on each atom of the title compound are presented in Table 8. Moreover, Mullikan's atomic charges of NMP were found to be equal. This shows that, there is no correlation between charge and Stability of the molecule.

Conclusion

The normal mode frequencies and corresponding vibrational assignments of the title compound were theoretically performed using B3LYP/6-311++G(d,p) level in Gaussian 03W software package. The computed normal mode frequencies were compared with those observed experimentally. The vibrational frequency analysis of the N -(Methyl) phthalimide by B3LYP method agrees satisfactorily with experimental results. During the present investigation, few of the experimental observations were found to be in disagreement with the computed data. However, the vibrational assignments made during the present investigation can be put on a greater confidence level because these are visualized in three dimensions using a Gauss view program. The calculated HOMO-LUMO energies showed that charge transfer occur with the molecule and strongest energy transition (EHOMO \square ELUMO $=\square 0.18393 \mathrm{a} . \mathrm{u}$) takes place between HOMO-LUMO orbitals. The Mullikan's atomic charge studies showed that, there is no correlation between charge and stability of the molecule. In addition, thermodynamic functions of NMP were also presented.

Acknowledgements

The authors are thankful to the ACIC, St. Joseph's College, Tiruchirappalli and Central Electro Chemical Research Institute (CECRI), Karaikudi, Tamilnadu, India, for providing spectral measurements.

References

[1]V.Krishnakumar, V. Balachandran, and T. Chithambarathanu, Spectrochim. Acta Part A 2005, 62, 918.
[2]U. Sharma, P. Kumar, N. Kumar, and B. Singh, Mini Rev. Med. Chem. 2010, 10(8), 678-704.
[3]V. Krishnakumar, M. Sivasubramanian, and T. Muthunatesan, J. Raman Spectrosc. 2009, 40, 987.
[4] A. D. Becke, Density-Functional Thermochemistry: the Role of Exact Exchange, J. Chem. Phys. 1993, 98, 5648-5652.
[5] C. Lee, W. Yang, G. R. Parr, Development of the ColleSalvetti Correlation-Energy Formula into a Functional of the Electron Density, Phys. Rev. B 1998, 37, 785-791.
[6] B. Miehlich, A. Savin, H. Stoll, H. Preuss, Results Obtained with the Correlation Energy Density Functionals of Becke and Lee, Yang and Parr, Chem. Phys. Lett. 1989, 157, 200-206.
[7] M. J. Frisch, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austn, R Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Gaussian 03, Revision B.01, Pittsburgh PA, New york , 2003.
[8] G. Fogarasi, X. Zhou, P. W. Taylor, and P. Pulay, J. Am. Chem. Soc. 1992,114, 8191.
[9] G. Fogarasi, P. Pulay, and J. R. Durig (Eds), Vibrational Spectra and Structure, Elsevier; Amsterdam, 1985, 14, 125.
[10] V. Krishnakumar, and V. Balachandran, Spectrochim. Acta Part A 2005, 61(8), 1811.
[11] G. Socrates, Infrared Characteristic Group Frequencies, Wiley: New York, 1980.
[12] G. Varasanyi, Vibrational Spectra of Benzene Derivatives, Academic Press, New York, 1969.
[13] F. R. Dollish, W. G. Fately, and F. F. Bantley, Characteristics of Raman Frequencies of Organic Compounds, Wiley, New York, 1974.
[14] T. Shimanounchi, Y. Kakiuti, and I. Gamo, J. chem. Phys. 1956, 25, 1245.
[15] G. Varasanyi, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, Vol. I \& II, Academic Kiaclo, Budapest, 1973.
[16] N. P. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York, 1994. [17] D. N. Sathyanarayana, Vibrational Spectroscopy - Theory and Applications, New Age International, New Delhi, India, 2004.
[18] W. D. Biowman, T. G. Spiro, J. Chem. Phys. 1980, 73, 5482.
[19] G. Socrates, Infrared and Raman Characteristic Group Frequencies, Tables and charts, Wiley Chichester, 2001.
[20] R. John Xavier, V. Balachandran, M. Arivazhagan, and G. Illango, Indian J. Pure \& Appl. Phys, 2010, 48, 245.
[21] N. Sundaraganesan, C. Meganathan, B. Dominic Joshua, P. Mani, and A. Jayaprakash, Spectrochim. Acta Part A 2008, 71, 1134.
[22] N. Sundaraganesan, S. IIakiamani, H. Saleem, and S. Mohan, Indian J. Pure \& Appl phys, 2004, 42, 585.
[23] N. Sundaraganesan, B. Dominic Joshua, C. Meganathan, and S. Sebastian, Indian J. Chem, 2008, 47A, 821.
[24] G. Varasanyi, Acta Chim, Hung, 1966, 50, 225.
[25] Mama Nsangou, Nejm-Eddine Jaidane, and Zohra Ben Lakhdar Internet Elect. J. Mol. Design 2006, 5, 89-101
[26]E. Kavitha, N. Sundaraganesan, and S. Sebastian, Indian J. Pure \& Appl. Phys, 2010, 48, 20-30.
[27] S. Seshadri, S.Gunasekaran, S. Muthu, S.Kumaresan, and R.Arulbalaji, J. Raman Spectrosc. 2007, 38, 1523-1531.
[28] V.K. Rastogi, M.A. Palafox, L. Mittal, N.Peica, W. Kiefer, K. Lang, and P. Ohja, J. Raman Spectrosc. 2007, 38, 1227-1241.

Table 1. Optimized bond lengths, bond angles and dihedral angles of NMP based on
B3LYP/6311++G(d,p)

Parameters ${ }^{\text {a }}$	Bond length(A)	Parameters ${ }^{\text {a }}$	Bond angle(${ }^{\circ}$)	Parameters ${ }^{\text {a }}$	Dihedral angle (${ }^{0}$)
$\mathrm{C}_{1}-\mathrm{C}_{2}$	1.3939	$\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{C}_{6}$	121.5291	$\mathrm{C}_{6}-\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$	-0.0004
$\mathrm{C}_{1}-\mathrm{C}_{6}$	1.3850	$\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{C}_{7}$	108.2490	$\mathrm{C}_{6}-\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{8}$	179.9682
$\mathrm{C}_{1}-\mathrm{C}_{7}$	1.4942	$\mathrm{C}_{6}-\mathrm{C}_{1}-\mathrm{C}_{7}$	130.2219	$\mathrm{C}_{7}-\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$	-179.996
$\mathrm{C}_{2}-\mathrm{C}_{3}$	1.3850	$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$	121.5291	$\mathrm{C}_{7}-\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{8}$	-0.001
$\mathrm{C}_{2}-\mathrm{C}_{8}$	1.4942	$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{8}$	108.2491	$\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{C}_{6}-\mathrm{C}_{5}$	0.0312
$\mathrm{C}_{3}-\mathrm{C}_{4}$	1.3994	$\mathrm{C}_{3}-\mathrm{C}_{2}-\mathrm{C}_{8}$	130.2218	$\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{C}_{6}-\mathrm{H}_{13}$	-179.97
$\mathrm{C}_{3}-\mathrm{H}_{10}$	1.0834	$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$	117.4031	$\mathrm{C}_{7}-\mathrm{C}_{1}-\mathrm{C}_{6}-\mathrm{C}_{5}$	179.9928
$\mathrm{C}_{4}-\mathrm{C}_{5}$	1.3981	$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}_{10}$	120.9915	$\mathrm{C}_{7}-\mathrm{C}_{1}-\mathrm{C}_{6}-\mathrm{H}_{13}$	-0.0084
$\mathrm{C}_{4}-\mathrm{H}_{11}$	1.084	$\mathrm{C}_{4}-\mathrm{C}_{3}-\mathrm{H}_{10}$	121.6054	$\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{C}_{7}-\mathrm{N}_{9}$	0.1406
$\mathrm{C}_{5}-\mathrm{C}_{6}$	1.3994	$\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}$	121.0678	$\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{C}_{7}-\mathrm{O}_{14}$	179.9226
$\mathrm{C}_{5}-\mathrm{H}_{12}$	1.0840	$\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{H}_{11}$	119.5721	$\mathrm{C}_{6}-\mathrm{C}_{1}-\mathrm{C}_{7}-\mathrm{N}_{9}$	-179.825
$\mathrm{C}_{6}-\mathrm{H}_{13}$	1.0834	$\mathrm{C}_{5}-\mathrm{C}_{4}-\mathrm{H}_{11}$	119.3601	$\mathrm{C}_{6}-\mathrm{C}_{1}-\mathrm{C}_{7}-\mathrm{O}_{14}$	-0.043
$\mathrm{C}_{7}-\mathrm{N}_{9}$	1.4028	$\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}$	121.0678	$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$	-0.0306
$\mathrm{C}_{7}-\mathrm{O}_{14}$	1.2092	$\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{H}_{12}$	119.3601	$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}_{10}$	179.9699
$\mathrm{C}_{8}-\mathrm{N}_{9}$	1.4028	$\mathrm{C}_{6}-\mathrm{C}_{5}-\mathrm{H}_{12}$	119.5721	$\mathrm{C}_{8}-\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$	-179.9916
$\mathrm{C}_{8}-\mathrm{O}_{19}$	1.2092	$\mathrm{C}_{1}-\mathrm{C}_{6}-\mathrm{C}_{5}$	117.4031	$\mathrm{C}_{8}-\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}_{10}$	0.0089
$\mathrm{N}_{9}-\mathrm{C}_{15}$	1.4538	$\mathrm{C}_{1}-\mathrm{C}_{6}-\mathrm{H}_{13}$	120.9916	$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{8}-\mathrm{N}_{9}$	-0.139
$\mathrm{C}_{15}-\mathrm{H}_{16}$	1.0931	$\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}_{13}$	121.6053	$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{8}-\mathrm{O}_{19}$	-179.9241
$\mathrm{C}_{15}-\mathrm{H}_{17}$	1.0892	$\mathrm{C}_{1}-\mathrm{C}_{7}-\mathrm{N}_{9}$	105.6138	$\mathrm{C}_{3}-\mathrm{C}_{2}-\mathrm{C}_{8}-\mathrm{N}_{9}$	179.826
$\mathrm{C}_{15}-\mathrm{H}_{18}$	1.0892	$\mathrm{C}_{1}-\mathrm{C}_{7}-\mathrm{O}_{14}$	129.1102	$\mathrm{C}_{3}-\mathrm{C}_{2}-\mathrm{C}_{8}-\mathrm{O}_{19}$	0.0408
		$\mathrm{N}_{9}-\mathrm{C}_{7}-\mathrm{O}_{14}$	125.2756	$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}$	0.0306
		$\mathrm{C}_{2}-\mathrm{C}_{8}-\mathrm{N}_{9}$	105.6138	$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{H}_{11}$	-179.9599
		$\mathrm{C}_{2}-\mathrm{C}_{8}-\mathrm{O}_{19}$	129.1093	$\mathrm{H}_{10}-\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}$	-179.9698
		$\mathrm{N}_{9}-\mathrm{C}_{8}-\mathrm{O}_{19}$	125.2765	$\mathrm{H}_{10}-\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{H}_{11}$	0.0406
		$\mathrm{C}_{7}-\mathrm{N}_{9}-\mathrm{C}_{8}$	112.2738	$\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}$	0.0
		$\mathrm{C}_{7}-\mathrm{N}_{9}-\mathrm{C}_{15}$	123.8606	$\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{H}_{12}$	-179.9893
		$\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{C}_{15}$	123.8617	$\mathrm{H}_{11}-\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}$	179.9895
		$\mathrm{N}_{9}-\mathrm{C}_{15}-\mathrm{H}_{16}$	111.0850	$\mathrm{H}_{11}-\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{H}_{12}$	0.0002
		$\mathrm{N}_{9}-\mathrm{C}_{15}-\mathrm{H}_{17}$	108.6724	$\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{C}_{1}$	-0.0308
		$\mathrm{N}_{9}-\mathrm{C}_{15}-\mathrm{H}_{18}$	108.6750	$\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{C}_{13}$	179.9704
		$\mathrm{H}_{16}-\mathrm{C}_{15}-\mathrm{H}_{17}$	108.9905	$\mathrm{H}_{12}-\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{C}_{1}$	179.9585
		$\mathrm{H}_{16}-\mathrm{C}_{15}-\mathrm{H}_{18}$	108.9896	$\mathrm{H}_{12}-\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}_{13}$	-0.0403
		$\mathrm{H}_{17}-\mathrm{C}_{15}-\mathrm{H}_{18}$	110.4272	$\mathrm{C}_{1}-\mathrm{C}_{7}-\mathrm{N}_{9}-\mathrm{C}_{15}$	-179.5391
				$\mathrm{O}_{14}-\mathrm{C}_{7}-\mathrm{N}_{9}-\mathrm{C}_{8}$	179.9686
				$\mathrm{O}_{14}-\mathrm{C}_{7}-\mathrm{N}_{9}-\mathrm{C}_{15}$	0.6681
				$\mathrm{C}_{2}-\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{C}_{7}$	0.238
				$\mathrm{C}_{2}-\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{C}_{15}$	179.5385
				$\mathrm{O}_{19}-\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{C}_{7}$	-179.9662
				$\mathrm{O}_{19}-\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{C}_{15}$	-0.6657
				$\mathrm{C}_{7}-\mathrm{N}_{9}-\mathrm{C}_{15}-\mathrm{H}_{16}$	89.5866
				$\mathrm{C}_{7}-\mathrm{N}_{9}-\mathrm{C}_{15}-\mathrm{H}_{17}$	-150.5166
				$\mathrm{C}_{7}-\mathrm{N}_{9}-\mathrm{C}_{15}-\mathrm{H}_{18}$	-30.3109
				$\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{C}_{15}-\mathrm{H}_{16}$	-89.6339
				$\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{C}_{15}-\mathrm{H}_{17}$	30.2629
				$\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{C}_{15}-\mathrm{H}_{18}$	150.4686

${ }^{\mathrm{a}}$ For numbering of atom refer Figure 1.

Table 2. Definition of internal coordinates of NMP

$\begin{gathered} \text { Internal } \\ \text { co-ordinates } \end{gathered}$	Symbol	Type	Definition ${ }^{\text {a }}$
In-plane Stretching			
1-4	r_{i}	C-H (Aromatic)	$\mathrm{C}_{3}-\mathrm{H}_{10}, \mathrm{C}_{4}-\mathrm{H}_{11}, \mathrm{C}_{5}-\mathrm{H}_{12}{ }^{\prime} \mathrm{C}_{6}-\mathrm{H}_{13}$
5-6	R_{i}	$\mathrm{C}=\mathrm{O}$	$\mathrm{C}_{7}-\mathrm{O}_{14}, \mathrm{C}_{8}-\mathrm{O}_{19}$
7-9	t_{i}	C-N	$\mathrm{C}_{8}-\mathrm{N}_{9}, \mathrm{C}_{7}-\mathrm{N}_{9}, \mathrm{C}_{15}-\mathrm{N}_{9}$
10-12	r_{i}	C-H (Methyl)	$\mathrm{C}_{15}-\mathrm{H}_{16}, \mathrm{C}_{15}-\mathrm{H}_{17}, \mathrm{C}_{15}-\mathrm{H}_{18}$
13-20	P_{i}	C-C (Aromatic)	$\mathrm{C}_{1}-\mathrm{C}_{2}, \mathrm{C}_{2}-\mathrm{C}_{3}, \mathrm{C}_{3}-\mathrm{C}_{4}, \mathrm{C}_{4}-\mathrm{C}_{5}, \mathrm{C}_{5}-\mathrm{C}_{6}, \mathrm{C}_{6}-\mathrm{C}_{1}, \mathrm{C}_{1}-\mathrm{C}_{7}, \mathrm{C}_{2}-\mathrm{C}_{8}$.
In-plane Bending			
21-28	δ_{i}	C-C-H	$\begin{aligned} & \mathrm{C}_{1}-\mathrm{C}_{6}-\mathrm{H}_{13}, \mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}_{13}, \mathrm{C}_{6}-\mathrm{C}_{5}-\mathrm{H}_{12}, \mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{H}_{12}, \\ & \mathrm{C}_{5}-\mathrm{C}_{4}-\mathrm{H}_{11}, \mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{H}_{11}, \mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}_{10}, \mathrm{C}_{4}-\mathrm{C}_{3}-\mathrm{H}_{10} . \end{aligned}$
29-32	ρ_{i}	$\mathrm{C}(\mathrm{N})$-C-O	$\mathrm{C}_{1}-\mathrm{C}_{7}-\mathrm{O}_{14}, \mathrm{~N}_{9}-\mathrm{C}_{7}-\mathrm{O}_{14}, \mathrm{C}_{2}-\mathrm{C}_{8}-\mathrm{O}_{19}, \mathrm{~N}_{9}-\mathrm{C}_{8}-\mathrm{O}_{19}$.
33-38	β_{i}	t (Ring 1)	$\begin{aligned} & \mathrm{C}_{6}-\mathrm{C}_{1}-\mathrm{C}_{2}, \mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}, \mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}, \\ & \mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}, \mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}, \mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{C}_{1} . \end{aligned}$
39-43	β_{i}	t (Ring 2)	$\begin{aligned} & \mathrm{C}_{7}-\mathrm{C}_{1}-\mathrm{C}_{2}, \mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{8}, \mathrm{C}_{2}-\mathrm{C}_{8}-\mathrm{N}_{9}, \\ & \mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{C}_{7}, \mathrm{~N}_{9}-\mathrm{C}_{7}-\mathrm{C}_{1} . \end{aligned}$
44-45	$\lambda_{\text {i }}$	$\mathrm{C}-\mathrm{N}-\mathrm{C}$	$\mathrm{C}_{7}-\mathrm{N}_{9}-\mathrm{C}_{15}, \mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{C}_{15}$
46-48	σ_{i}	$\mathrm{N}-\mathrm{C}-\mathrm{H}$	$\mathrm{N}_{9}-\mathrm{C}_{15}-\mathrm{H}_{16}, \mathrm{~N}_{9}-\mathrm{C}_{15}-\mathrm{H}_{17}, \mathrm{~N}_{9}-\mathrm{C}_{15}-\mathrm{H}_{18}$.
49-51	$\alpha_{\text {i }}$	$\mathrm{H}-\mathrm{C}-\mathrm{H}$	$\mathrm{H}_{16}-\mathrm{C}_{15}-\mathrm{H}_{17}, \mathrm{H}_{17}-\mathrm{C}_{15}-\mathrm{H}_{18}, \mathrm{H}_{16}-\mathrm{C}_{15}-\mathrm{H}_{18}$.
Out-of plane Bending			
52-55	ω_{i}	$\mathrm{Cara}_{\mathrm{ar}}-\mathrm{H}$	$\mathrm{H}_{10}-\mathrm{C}_{3}-\mathrm{C}_{2}-\mathrm{C}_{4}, \mathrm{H}_{11}-\mathrm{C}_{4}-\mathrm{C}_{3}-\mathrm{C}_{5}, \mathrm{H}_{12}-\mathrm{C}_{5}-\mathrm{C}_{4}-\mathrm{C}_{6}, \mathrm{H}_{13}-\mathrm{C}_{6}-\mathrm{C}_{5}-\mathrm{C}_{1}$.
56-57	ω_{i}	$\mathrm{Cara}_{\mathrm{ar}}-\mathrm{O}$	$\mathrm{O}_{14}-\mathrm{C}_{7}-\mathrm{C}_{1}-\mathrm{N}_{9}, \mathrm{O}_{19}-\mathrm{C}_{8}-\mathrm{C}_{2}-\mathrm{N}_{9}$.
58	ω_{i}	$\mathrm{C}-\mathrm{N}$	$\mathrm{C}_{15}-\mathrm{N}_{9}-\mathrm{C}_{7}-\mathrm{C}_{8}$.
59	τ_{i}	$\mathrm{t}(\mathrm{N})-\mathrm{CH}_{3}$	$\left(\mathrm{C}_{7}, \mathrm{C}_{8}\right)-\mathrm{N}_{9}-\mathrm{C}_{15}-\left(\mathrm{H}_{16}, \mathrm{H}_{17}, \mathrm{H}_{18}\right)$.
60-65	τ_{i}	t (Ring1)	$\begin{aligned} & \mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}, \mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}, \mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}, \\ & \mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{C}_{1}, \mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{C}_{1}-\mathrm{C}_{2}, \mathrm{C}_{6}-\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3} . \end{aligned}$
66-70	τ_{i}	t(Ring2)	$\begin{aligned} & \mathrm{C}_{1}-\mathrm{C}_{7}-\mathrm{N}_{9}-\mathrm{C}_{8}, \mathrm{C}_{7}-\mathrm{N}_{9}-\mathrm{C}_{8}-\mathrm{C}_{2}, \mathrm{~N}_{9}-\mathrm{C}_{8}-\mathrm{C}_{2}-\mathrm{C}_{1}, \\ & \mathrm{C}_{8}-\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{C}_{7}, \mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{C}_{7}-\mathrm{N}_{9} . \end{aligned}$
71-72	τ_{i}	Butterfly	$\mathrm{C}_{6}-\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{8}, \mathrm{C}_{7}-\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$.

${ }^{\mathrm{a}}$ For numbering of atom refer Figure 1.

Table 3. Definition of local symmetry coordinates for NMP

Possible local symmetric coordinates	Type	Definition ${ }^{\text {a }}$
1-4	$\mathrm{CH}_{\text {ar }}$	$\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{r}_{3}, \boldsymbol{r}_{4}$.
5-6	CO	$\boldsymbol{R}_{5}, \boldsymbol{R}_{6}$ 。
7-9	CN	$\boldsymbol{t}_{7}, \boldsymbol{t}_{8}, \boldsymbol{t}_{9}$.
10	$\mathrm{CH}_{3}(\mathrm{ss})$	$\left(r_{1}+r_{2}+r_{3}\right) / \sqrt{3}$
11	$\mathrm{CH}_{3}(\mathrm{ips})$	$\left(2 r_{10}-r_{11}-r_{12}\right) / \sqrt{6}$
12	CH_{3} (ops)	$\left(\boldsymbol{r}_{11}-\boldsymbol{r}_{12}\right) / \sqrt{2}$
13-20	$\mathrm{CC}_{\mathrm{ar}}$	$\boldsymbol{P}_{13}, \boldsymbol{P}_{14}, \boldsymbol{P}_{15}, \boldsymbol{P}_{16}, \boldsymbol{P}_{17}, \boldsymbol{P}_{18}, \boldsymbol{P}_{19}, \boldsymbol{P}_{20}$.
21-24	bCH	$\left(\boldsymbol{\delta}_{21}-\boldsymbol{\delta}_{22}\right) / \sqrt{2}, \quad\left(\boldsymbol{\delta}_{23}-\boldsymbol{\delta}_{24}\right) / \sqrt{2}, \quad\left(\boldsymbol{\delta}_{25}-\boldsymbol{\delta}_{26}\right) / \sqrt{2},$
25-26	bCO	$\left(\rho_{29}-\rho_{31}\right) / \sqrt{2}, \quad\left(\rho_{30}-\rho_{32}\right) / \sqrt{2}$.
27	Ring 1	$\left(\beta_{33}-\beta_{34}+\beta_{35}-\beta_{36}+\beta_{37}-\beta_{38}\right) / \sqrt{6}$
28	Ring 2	$\left(-\beta_{33}-\beta_{34}+2 \beta_{35}-\beta_{36}+\beta_{37}-2 \beta_{38}\right) / \sqrt{12}$
29	Ring 3	$\left(\beta_{33}-\beta_{34}-\beta_{36}-\beta_{37}\right) / 2$
30	Ring 4	$\beta_{39}+a\left(\beta_{40}+\beta_{43}\right)+b\left(\beta_{41}+\beta_{42}\right)$
31	Ring 5	$(a-b)\left(\beta_{39}-\beta_{42}\right)+(1-a)\left(\beta_{40}-\beta_{41}\right)$
32	bCN	$\left(\lambda_{44}-\lambda_{45}\right) / \sqrt{2}$
33	$\mathrm{CH}_{3} \mathrm{sb}$	$\left(-\sigma_{46}-\sigma_{47}-\sigma_{48}+\sigma_{49}+\sigma_{50}+\sigma_{51}\right) / \sqrt{6}$
34	$\mathrm{CH}_{3} \mathrm{ipb}$	$\left(-\alpha_{49}-\alpha_{50}+2 \alpha_{51}\right) / \sqrt{6}$
35	CH_{3} opb	$\left(\alpha_{49}-\alpha_{50}\right) / \sqrt{2}$
36	$\mathrm{CH}_{3} \mathrm{ipr}$	$\left(2 \sigma_{46}-\sigma_{47}-\sigma_{48}\right) / \sqrt{6}$
37	CH_{3} opr	$\left(\sigma_{47}-\sigma_{48}\right) / \sqrt{2}$
38-41	$\omega \mathrm{CH}$	$\omega_{52}, \omega_{53}, \omega_{54}, \omega_{55}$.
42-43	$\omega \mathrm{CO}$	ω_{56}, ω_{57}.
44	$\omega \mathrm{CN}$	ω_{58}.
45	$\tau \mathrm{CH}_{3}$	τ_{59}.
46	t Ring 1	$\left(\tau_{60}-\tau_{61}+\tau_{62}-\tau_{63}+\tau_{64}+\tau_{65}\right) / \sqrt{6}$
47	t Ring2	$\left(\tau_{60}-\tau_{61}+\tau_{63}-\tau_{65}\right) / 2$
48	t Ring3	$\left(-\tau_{60}+2 \tau_{61}-\tau_{62}-\tau_{63}+2 \tau_{64}-\tau_{65}\right) / \sqrt{12}$
49	t Ring4	$b\left(\tau_{66}+\tau_{70}\right)+a\left(\tau_{67}+\tau_{69}\right)+\tau_{68}$
50	t Ring5	$(a-b)\left(\tau_{70}-\tau_{66}\right)+(1-a)\left(\tau_{69}-\tau_{67}\right)$
51	Butterfly	$\left(\tau_{71}-\tau_{72}\right) / \sqrt{2}$

[^0]Table 4. Comparison of experimental and theoretical frequencies of \mathbf{N}-(Methyl) phthalimide along with their theoretical reduced masses and force constants

Mode	Symmetry species	Observed frequency $\left(\mathrm{cm}^{-1}\right)$		Calculated frequency (cm^{-1})	Reduced mass (amu	Force constants (mdyne/A)	Vibrational assignments ${ }^{\text {a }}$
		IR	Raman				
1	A'	3096	3083	3200	1.097	6.617	${ }^{2} \mathrm{CH}_{\text {ar }}$
2	A^{\prime}	-	3063	3197	1.094	6.586	${ }^{\text {vCH }}$ ar
3	A^{\prime}	-	3039	3185	1.091	6.520	$\mathrm{vCH}_{\text {ar }}$
4	A^{\prime}	-	3022	3173	1.087	6.446	$\mathrm{vCH}_{\text {ar }}$
5	A^{\prime}	-	2988	3151	1.106	6.469	$v_{\text {as }} \mathrm{CH}$ in CH_{3}
6	A"	-	2958	3085	1.096	6.263	$v_{\text {as }} \mathrm{CH}$ in CH_{3}
7	A^{\prime}	-	2881	3044	1.039	5.671	$v_{s} \mathrm{CH}$ in CH_{3}
8	A^{\prime}	-	1759	1824	12.256	24.014	vC=O
9	A^{\prime}	1713	1719	1770	12.802	23.620	$v \mathrm{C}=\mathrm{O}$
10	A^{\prime}		1609	1647	6.919	11.058	vCC
11	A^{\prime}	1594	-	1625	7.168	11.424	vCC
12	A^{\prime}	-	1532	1514	1.049	1.417	$\mathrm{\beta CH}_{3}$
13	A^{\prime}	-	1468	1496	2.388	3.149	vCC
14	A^{\prime}	1432	1433	1484	1.954	2.569	vCC
15	$\mathrm{A}^{\prime \prime}$	-	1414	1470	1.291	1.689	$\gamma \mathrm{CH}_{3}$
16	A^{\prime}	-	1394	1454	1.324	1.648	$\mathrm{\beta CH}_{3}$
17	A^{\prime}	1380	1385	1400	3.806	4.393	vCN
18	A^{\prime}	1359	1365	1382	6.507	7.320	vCN
19	A^{\prime}	-	1315	1310	1.597	1.616	$\beta \mathrm{CH}$
20	A^{\prime}	1249	1252	1270	2.516	2.390	$\beta \mathrm{CH}$
21	A^{\prime}	1183	1187	1211	3.754	3.243	$\beta \mathrm{CH}$
22	A^{\prime}	-	1170	1189	1.157	1.795	$\beta \mathrm{CH}$
23	A^{\prime}	-	1157	1181	1.176	0.966	vCC
24	A^{\prime}	-	-	1149	1.306	1.015	vCC
25	A^{\prime}	1084	-	1099	2.447	1.740	$\sigma \mathrm{CH}_{3}$
26	A"	-	1014	1035	2.008	1.267	$\delta \mathrm{CH}_{3}$
27	A^{\prime}	1006	-	1012	2.520	1.522	vCC
28	A^{\prime}	-	-	1009	1.321	0.793	vCC
29	A^{\prime}	-	965	982	1.399	0.796	vCN
30	$A^{\prime \prime}$	-	-	977	6.909	3.882	$\gamma \mathrm{CH}$
31	A"	-	858	908	1.354	0.658	$\gamma \mathrm{CH}$
32	A"	762	796	871	4.926	2.204	$\gamma \mathrm{CH}$
33	A^{\prime}	-	-	801	1.917	0.726	$\beta \mathrm{CN}$
34	A"	-	-	799	6.374	2.396	$\gamma \mathrm{CH}$
35	A^{\prime}	-	709	727	2.356	0.734	β Ring1
36	A^{\prime}	714	-	718	6.460	1.964	β Ring2
37	A^{\prime}	-	-	709	6.500	1.925	β Ring3
38	A^{\prime}	603	604	680	4.961	1.352	β Ring4
39	A^{\prime}	-	-	610	10.965	2.406	$\beta \mathrm{CO}$
40	$A^{\prime \prime}$	527	-	537	7.235	1.230	$\gamma \mathrm{CO}$
41	A"	470	472	477	5.639	0.757	$\gamma \mathrm{CO}$
42	A^{\prime}	-	-	465	4.889	0.622	β Ring 5
43	$\mathrm{A}^{\prime \prime}$	-	52	415	3.095	0.314	τ Ring1
44	A^{\prime}	-	352	352	11.351	0.826	$\beta \mathrm{CO}$
45	A"	-	290	278	3.867	0.177	$\gamma \mathrm{CN}$
46	A"	-	239	236	4.385	0.144	τ Ring2
47	A"		171	233	4.950	0.158	τ Ring3
48	$A^{\prime \prime}$	-	131	154	10.578	0.147	τ Ring4
49	A"	-	115	137	5.006	0.056	τ Ring 5
50	A"	-	108	108	3.575	0.025	Butterfly
51	$\mathrm{A}^{\prime \prime}$	-	-	29	1.021	0.003	$\tau \mathrm{CH}_{3}$

${ }^{a} v_{\mathrm{s}}$, symmetry stretching; v_{as}, anti-symmetic stretching; β, In-plane bending;
γ, Out-of-plane bending; σ, In-plane rock; δ, Out-of-plane rock; τ, torsion.

Table 5 HOMO, LUMO energies of NMP

S.No	Molecular Orbitals	Energy a.u
1.	HOMO	-0.27913
2.	HOMO-1	-0.28308
3.	HOMO-2	-0.28997
4.	LUMO+2	-0.01396
5.	LUMO+1	-0.05693
6.	LUMO	-0.09520

Table 6. Selected HOMO-LUMO energy gap

S.No	Energy transitions	Energy gap a.u
1.	HOMO \rightarrow LUMO	-0.18393
2.	HOMO-1 \rightarrow LUMO	-0.18788
3.	HOMO-2 \rightarrow LUMO	-0.19477
4.	HOMO \rightarrow LUMO+1	-0.22220
5.	HOMO-1 \rightarrow LUMO+1	-0.22615
6.	HOMO-2 \rightarrow LUMO+1	-0.23304
7.	HOMO \rightarrow LUMO+2	-0.26517
8.	HOMO $-1 \rightarrow$ LUMO+2	-0.26912
9.	HOMO- $-\rightarrow$ LUMO +2	-0.27601

Table 7. Thermodynamic properties of N-(Methyl) phthalimide.

Parameter	$\mathrm{B} 3 \mathrm{LYP} / 6-311 \mathrm{G}++(\mathrm{d}, \mathrm{p})$
Self Consistent Field energy	$-552.55965 \mathrm{a} . \mathrm{u}$
Zero point vibrational energy	$89.80434(\mathrm{Kcal} / \mathrm{Mol})$
Rotational constants	1.73207 GHz
	0.86367 GHz
	0.57839 GHz
Entropy	$92.751 \mathrm{Cal} / \mathrm{Mol-Kelvin}$
Specific heat capacity at constant volume	$34.485 \mathrm{Cal} / \mathrm{Mol-Kelvin}$
Translational energy	$41.139 \mathrm{Cal} / \mathrm{Mol-Kelvin}$
Rotational energy	$30.297 \mathrm{Cal} / \mathrm{Mol-Kelvin}$
Vibrational energy	$21.315 \mathrm{Cal} / \mathrm{Mol-Kelvin}$
Dipole moment	2.4023 debye

Table 8. Atomic charges on each atom of NMP

S.No	Atom	B3LYP/6-311G++(d,p)
1.	C_{1}	0.661206
2.	C_{2}	0.661202
3.	C_{3}	-0.604069
4.	C_{4}	-0.177594
5.	C_{5}	-0.177510
6.	C_{6}	-0.604092
7.	C_{7}	-0.074142
8.	C_{8}	-0.073931
9.	$\mathrm{~N}_{9}$	-0.000273
10.	H_{10}	0.190851
11.	H_{11}	0.178403
12.	H_{12}	0.178403
13.	H_{13}	0.190849
14.	O_{14}	-0.312071
15.	C_{15}	-0.288152
16.	H_{16}	0.193415
17.	H_{17}	0.184793
18.	H_{18}	0.184789
19.	O_{19}	-0.312078

[^0]: ${ }^{\mathrm{a}}$ For numbering of atom refer Figure 1.

