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Introduction 

Groundwater is the main source of irrigation in arid and 

semi-arid regions in the world. Crop production in arid zones 

consumes large quantities of water. While the production of 1 kg 

of grain in a temperate zone takes less than 0.5 m3 of water, 

1.5–2.5 m3 is normal in a arid zone (Smedema and Shiati 2002). 

Groundwater is, however, the main and more reliable resource 

of irrigation. Both over-exploitation from aquifers to address the 

irrigation needs, and drought events have caused severe decrease 

of water Table level in many areas. Where groundwater is used 

for irrigation, aquifers are also being depleted at an alarming 

rate. In Iran, the current groundwater abstraction exceeds the 

safe yields by some 15–20% and water Tables in some irrigated 

areas are falling at 0.5–1.0 m/year (Shiati 1999). The situation is 

equally alarming in some parts of the Indo-Gangetic plains in 

India, the North China Plain and in the south-west of the USA 

(Smedema and Shiati 2002). In Iran that is located in arid to 

semi-arid region of the world, about 95% of fresh water is 

allocated for agriculture, out of which 80% is supplied through 

groundwater. So, it is clearly concluded that groundwater is the 

vital component for sustainable agriculture. In recent years, 

many fertile and agricultural plains suffered from 0.5 to 15 m 

water Table level drop, in which many wells are now out of use. 

Monitoring the groundwater level using observation wells is 

the major source of information on the effects of hydrologic 

stresses on groundwater systems. Water level data collected over 

periods of days to months are useful for such purposes; however, 

data collected over years to decades are required to address the 

long term effects of aquifer development and to compile a 

hydrologic record that defines water level fluctuations (Alley 

and Taylor 2001). Understanding the behavior of the 

groundwater body and its long term trends are essential for 

making any management decision in a given watershed 

(Reghunath et al. 2005). Therefore, having a deep knowledge 

and insight on the groundwater system seems necessary for 

optimum exploitation of water. 

The recently large variations of groundwater levels over 

years in many parts of Iran, suggest a precise and detailed study 

to be undertaken to elucidate the behavior of groundwater level 

fluctuations. A very useful tool for analyzing such processes is 

geostatistics (Ahmadi and Sedghamiz 2007; Rouhani and 

Wackernagel 1990). Reghunath et al. (2005) and Kumar et al. 

(2005) have emphasized the use of Geostatistics for better 

management and conservation of water resources and 

sustainable development of any area. Theodossiou and 

Latinopoulos (2006) worked on spatial analysis on groundwater 

level of 31 wells using kriging. They used the kriging method 

aiming at the evaluation and optimization of the groundwater 

level observation networks and the improvement of the quality 

rather than the quantity of the obtained data. Ahmadi and 

Sedghamiz (2007) used the kriging method to evaluate the 

spatial and temporal variations of groundwater level of 39 

observation wells. They showed that groundwater level 

variations have strong spatial and temporal structure. 

Groundwater can affect water quality in many regions 

because of its salinity. Irrigation by saline water causes salt 

accumulation and reduces water infiltration in clay soils and 

decrease soil productivity. Soils may be saline, alkaline or 

saline-alkaline on which incorrect management of applied water 

may intensely decrease plant yield. In many managements is 

necessary to know the spatial and temporal behaviors of 

groundwater. 

Water quality measured according to Sodium Adsorption 

Ratio (SAR) and CL amounts and their diffusion and their effect 

upon agricultural soils and plants. Available sodium in irrigation 

causes soil dispersion and soil destruction and decrease plant 

yield. So it is important to measure CL and Na in irrigation 

water for suitable management and yield maximization. 
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 ABSTRACT  

Today in water and soil sciences, many attentions have been arisen on Geostatistical 

methods to estimate spatial parameter using some data (kriging) or using auxiliary variables 

(cokriging). The quality of ground water for agriculture is very important, however its 

measurement is time consuming and expensive. Therefore, finding solution to estimate such 

parameters from easily measurable parameters is essential. In this study, two estimation 

models (spatial and regression models) were used to estimate SAR
1
 and CL

1
 in Tehran 

region using Geostatistic theory and spatial parameter concept. In this regard, ArcGIS 

software was used to estimate these parameters. Multi-parameter estimate of cokriging was 

applied using water salinity as an auxiliary variable. In addition, different estimation 

methods, cokriging, kriging and regression models, were compared and evaluated by 

RMSE
1
 statistic index. The results of this study showed that cokriging method with high 

correlations coefficient and with Gaussian Semivariogram is more precise than kriging and 

the selected regression models in estimating SAR and CL. 
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Considering hard measurement of SAR in laboratory and simple 

measurement of electrical conductivity (EC), then estimation of 

SAR according to EC is very important. Kriging is a technique 

of making optimal, unbiased estimates of regionalized variables 

at unsampled  locations using the structural properties of the 

semi variogram and the initial set of data values (David; 1977). 

In this study, both the kriging and cokriging methods were 

applied to investigate their precision in mapping SAR and CL in 

ground water. So it may be possible to gain a clear picture of 

aquifer behavior across the study area, which leads to an 

efficient management and conservation of the current 

groundwater resources. Detailed description of the methods and 

required data will be presented in the next sections. 

Material and methods 

Study area 

The study area is Tehran-Karaj plain which is located in the 

middle of Tehran province, northern Iran; between 35° 6′–35° 

56′ north and 50° 42′–51° 41′ east, with an elevation about 1,250 

m above sea level and includes an area about 4830 square 

kilometers (Fig. 1). Groundwater resources in this region consist 

of 18175 wells (4021 deep wells, 11434 semi deep wells, and 

2720 shallow wells), 608 springs, and 619 usual gully systems. 

This research was accomplished in Tehran-Karaj region with an 

area equal to 1663.5 square kilometers (Tehran Regional Water 

Organization 1998). 

 
Fig1: The location of the study area (hatched area 

includes the study area) 

Data availability 

In this research, samples provided from 120 wells which 

their spatial distribution was showed in Figure2. Geographical 

altitude and longitude was measured with Global positioning 

system (GPS). In the next step, any sample in plastic containers 

was carried to laboratory and chemical analysis was performed 

on these samples. Measured chemical parameters included SAR, 

Cl and EC. In order to evaluate salinity distribution in this 

region, ArcGIS program and cokriging and kriging methods 

were selected due to high performance of these techniques to 

estimate salinity. Regressional model fitted using SPSS 

program. Shape of case study and point spatial distribution are 

showed in Figure1. 

 
Fig 2 Geographical locations of the observation wells 

In order to extend and to generalize point information by 

attention to measured points need to models which predict 

spatial and temporal behaviors in places which were not 

measured. Regressional models in classic statistics science were 

not suitable for estimation of points which were not measured 

because of these models considered the point absolute effect. 

But In Geostatistical models the prediction is based on land 

topography structures. Geostatistical estimation is a process that 

determines some parameters with unknown value but with given 

coordinate using measured values of the same parameter.  

Theoretical basis 

The theoretical basis of geostatistics has been fully 

described by several authors (Webster and Oliver 2001; 

Goovaerts 1997; Kitanidis 1997; Isaaks and Srivastava 1989). 

The main tool in Geostatistics is semi-variogram, which 

expresses the spatial dependence between neighboring 

observations. The Semi-variogram, γ(h), can be defined as one-

half the variance of the differences between the attribute values 

at all points separated by a distance h, as follows: 

 
Fig 3 Data histogram of Cl and SAR after and before of 

normalization 

 
Where Z(x) indicates the magnitude of variable, and N (h) 

is the total number of pairs of attributes that are separated by a 

distance h. However, for simplicity, for the remaining of the 

text, the term variogram will be used instead of semi-variogram. 

Prior to the geostatistical estimation, we require a model 

that enables us to compute a variogram value for any possible 

sampling interval. The most commonly used models are 

Spherical, Exponential, Gaussian, and Pure nugget effect (Isaaks 

and Srivastava 1989).  

The adequacy and validity of the developed variogram 

model was tested satisfactorily by a technique called cross-

validation. The idea of cross-validation consists of removing a 

datum at a time from the data set and re-estimating this value 

from remaining data using different variogram models. 

Interpolated and actual values are compared, and the model that 

yields the most accurate predictions is retained (Isaaks and 

Srivastava 1989; Goovaerts 1997; Leuangthong et al. 2004). 

Crossing plot of the estimate vs. the true value shows the 

correlation coefficient (R2). The most appropriate variogram 

was chosen based on the highest correlation coefficient by a trial 
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and error procedure (Ahmadi and Sedghamiz 2007). 

Leuangthong et al. (2004) reported that the variograms obtained 

through cross-validation satisfy the minimum acceptance criteria 

for geostatistical analysis. 

 
Fig 4. fitted empirical and computational semi-variogram 

for SAR 

Kriging technique is an exact interpolation estimator used to 

find the best linear unbiased estimate. The best linear unbiased 

estimator must have minimum variance of estimation error. 

Detailed discussions of kriging methods and their descriptions 

can be found in Goovaerts (1997). The general equation of 

kriging estimator is: 

 

 
In order to achieve unbiased estimations in kriging, the 

following set of equations should be solved simultaneously. 

where Z*(xp) is the kriged value at location Xp, Z(xi) is the 

known value at location Xi, λi is the weight associated with the 

data, μ is the Lagrange multiplier, and γ(Xi, Xj) is the value of 

Variogram corresponding to a vector with origin in xi and 

extremity in xj. The general form of Cokriging equations are: 

 
Where u and v are the primary and covariate (secondary) 

variables, respectively.  

In the cokriging method, u and v are cross-correlated and 

the covariate contributes to the estimation of the primary 

variable.  

Generally, measuring the covariate is simpler than 

measuring the primary variable. For cokriging analysis, the cross 

semi-variogram (or cross-variogram) should be determined in 

prior. Provided that there are points where both u and v have 

been measured, the semi cross-variogram is estimated by: 

   )()()()(
)(2

1
)(

)(

1

hxZxZhxZxZ
hN

h iviV

hN

i

iuiu  


       (5) 

 
Fig 5. fitted empirical and computational semi-variogram 

for CL 

 
Fig 6. correlation coefficients SAR with auxiliary variable 

EC 

 
Fig 7. correlation coefficients CL with auxiliary variable EC 

For investigation the relationship between CL and SAR 

with EC in classic statistics, we used correlation analysis with 

Pearson method to select the best model between CL and SAR 

(EC  and SAR considered as independent variable) and between 

EC and CL (EC and CL considered as independent 

variable).Various models (linear, quadratic, cubic, exponential, 

logistic, logarithm models) fitted by using SPSS program. After 

selection of the best model between CL and SAR by using EC, 

obtained equations were tested by real data which were not used 

in calibration process (these data are 20 percents). In order to 

evaluate cokriging and kriging methods, (RMSE) of the models 

were calculated using this equation: 

 



n

1i

2

ii ]/n)Z(x)(xẐ[RMSE

         
(6)                                                                       

Where Z (xi) is estimated value at Xi and n is the number of 

measured point. 

In this research, in any step one measured point was deleted 

and this deleted point was estimated using the remained points 

and this work repeated for all the measured points. Finally for 

any measured point exists one estimated point. In order to 

evaluate selected regression equation for CL and SAR 

estimation uses these parameters. 
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Result and discussion  

Some statistical parameter such as average, standard 

deviation, minimum, maximum, variation coefficient, skewness, 

kurtosis and variation distance are in Table 1.  

For data analysis, histogram of any investigated variables 

obtained (Fig.3). Considering histograms, due to high skewness 

of two variables (CL and SAR), all the data should be 

normalized. After normalization, the histograms were obtained 

and showed in Fig.3 (right part of Fig3). 

 
Fig.8. estimation the value of groundwater SAR associated 

with the classic statistics methods (Cubic models) 

 
Fig.9. estimation the value of groundwater CL associated 

with the classic statistics methods (Cubic models) 

For evaluation of spatially variable correlation by using 

software GS+, semi-variogram was used to analyze data. Semi-

variogram can determinate some parameters such as spatial 

structure, variable correlation radius, data static trait, variable 

resembling and trend.  

In order to evaluate semi-variogram of two investigated 

variables (CL and SAR), initially semi-variogram of any 

variable depicted using GS+. Suitable model on empirical semi-

variogram selected by error value (RSS) and the ratio of Cn/ 

(Cn+C) (which should be less than 0.5). Variogram parameters 

are gathered in Table2. Based on RSS and C0/ (C0+C) values, 

Gaussian model is suitable for two variable and select for data.  

Figures 4 and 5 showed that with any increase of distance, 

the variance value increases. Then spatial correlation between 

SAR and CL is suitable.  

The some chemical parameters affected by environmental 

factors. Cokriging model can use these factors for estimation of 

main variable. Correlation coefficients between SAR and EC, 

CL and EC are 77% and 75%, respectively.  Accordingly, 

cokriging model used of EC parameter as auxiliary variable 

parameter for estimation of main variables SAR and CL. The 

results showed the cokriging method has high performance for 

estimation of variables.  

Classic statistics 

Fitted models for SAR and EC data showed meaningful and 

positive correlation in the level of 1% (Table 3). 

Based on Table 4, cubic, quadratic and linear models have 

high correlation coefficient. Because of simple justification of 

linear model, this model selected for estimation of SAR from EC 

parameter. 

287.1EC005.0SAR       (7)                                                          

Where: EC (mmohs/cm), SAR: (meq/lit)                                                                                         

Figure 8 illustrates the observed values in comparison to 

predicted values of SAR for linear model estimation. 

According to Table 4, cubic, quadratic models have high 

correlation coefficient. Because of simple justification of 

quadratic model, this model selected for estimation of CL from 

EC parameter. 

024.0EC001.0EC1011.1CL 26       (8)                                                               

Where: EC (mmohs/cm)¬, CL (meq/lit) 

Figure 9 illustrates the observed values in comparison to 

predicted values of CL for quadratic model estimation. 

Evaluation of Geostatistical and classic statistics 

In order to check the accuracy of the geostatistical and 

classic statistics methods, we estimated the SAR and CL of the 

known points by geostatistical (Kriging and Cokriging) and 

classic statistics methods. Root Mean Square Error (RMSE) was 

used to evaluate the precision. 

Based on Table 5, classic statistics method has shown low 

performance in comparison with geostatistical methods 

(RMSE=18.46, 101.49 for estimation of SAR and CL, 

respectively). Geostatistical methods consider the quantity and 

spatial position of a parameter whereas classic statistics methods 

consider the quantity of a parameter only. 

In geostatistical method, while the calculated RMSE values 

for SAR and CL in kriging was 3.15 and 3.89; the calculated 

RMSE in cokriging were 3.07 and 3.82, respectively. Moreover, 

t test (α=0.05) revealed that there was no significant difference 

between the estimated values of the two methods against the real 

measurements of SAR and CL. It is obvious that cokriging has 

resulted in more accurate estimation of SAR and CL than 

kriging, though; there is a slight difference between the kriging 

and cokriging estimations of Li. However, the calculated RMSE 

values are acceptable for kriging and cokriging. It again 

emphasized the unbiasedness of the kriging and cokriging 

estimations (Leuangthong et al. 2004; Sepaskhah et al. 2005; 

Ahmadi and Niazi Ardekani 2006; Ahmadi and Sedghamiz 

2007). 

Conclusion 

In this research, groundwater chemical parameters were 

estimated using water salinity data. Results of two Geostatistical 

methods (cokriging and kriging) have nearly the same precision 

for estimation of SAR and Cl and these models have high 

performance in comparison with classic statistics.  

In order to evaluate semi-variograms, initially 

semivariograms of any variable was depicted by GS+. Suitable 

models for empirical semi-variograms were selected. Based on 

RSS and Cn/ (Cn+C) values, Gaussian model is suitable for two 

variables. Same chemical parameters affected by environmental 

factors.  

Cokriging model can use these factors for estimation of 

main variable and results showed the Cokriging model has high 

performance for estimation of variables (correlation coefficients 

between SAR and EC, CL and EC are 77% and 75%, 

respectively).  

Finally, results showed that Geostatistical precision to 

estimate spatial variable in comparison with classic statistics 

method.
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Table 1. value of obtained statistical parameter 
variable mean minimum maximum Coefficient variation Std deviation skewness kortusis Range 

SAR 3.32 0.288 23.99 0.99 3.31 2.52 10.57 23.7 

CL 5.45 0.12 37.44 1.89 4.3 2.77 7.44 37.22 

 

Table 2. Properties of the fitted variograms for each variable based on cross validation in CL and 

SAR 

variable model Nugget Sill Range effective C0/(C0+C) R2 RSS 

SAR Spherical 4.8 26.75 163300 0.179 0.931 0.132 

CL Gaussian 3.4 307.7 30596 0.043 0.934 0.341 

 



Gobad Rostami et al./ Elixir Agriculture 36 (2011) 3204-3209 
 

3209 

 
Table 3. fitted models and related parameters for estimation SAR using EC 

model 

Sig R2 

Model parameters 

constant b1 b2 b3 

Linear 0.000 0.907 -1.287 0.005   

Logarithmic 0.000 0.672 -28.89 4.871   

Universe 0.000 0.311 6.208 -2021.2   

Polynomial- 2 0.000 0.912 -.679 0.003 3.25-07 -1.29-10 

Polynomial- 3 0.000 0.912 -0.404 0.003 1.04-06  

Power 0.000 0.769 0 1.372   

Exponential 0.000 0.641 0.605 0.001   

Logistic 0.000 0.641 1.653 0.999   

 

Table.4. fitted models and related parameters for estimation CL using EC 

model Sig R2 

Model parameters 

constant b1 b2 b3 

Linear 0.000 0.903 -2.062 0.006   

Logarithmic 0.000 0.592 -32.881 5.484   

Universe 0.000 0.243 6.375 -2150.88   

Polynomial- 2 0.000 0.945 0.024 0.001 1.11-06 -5.12-10 

Polynomial- 3 0.000 0.95 1.114 -.002 3.94-06  

Power 0.000 0.75 0.00 1.346   

Exponential 0.000 0.701 0.525 0.001   

Logistic 0.000 0.701 1.906 0.999   

 

Table.5.The measured RMSE in performance evaluation of statistical and geostatistical 

methods in estimation of SAR and CL parameters 

Classic statistics Kriging Cokriging 

Estimation method 
parameter 

18.46 3.15 3.07 SAR 

101.49 3.89 3.82 CL 

 


