# $K$ - Even Mean Labeling of $C_{n} \cup P_{m}$ 

B. Gayathri and R. Gopi

Department of Mathematics, Periyar E.V.R. College, Tiruchirappalli - 620 023, India.

## ARTICLE INFO

## Article history:

Received: 25 April 2011;
Received in revised form:
16 June 2011;
Accepted: 25 June 2011;

## Keywords

K-even mean labeling,
K-even mean graph.


#### Abstract

Mean labeling of graphs was discussed in [10] and the concept of odd mean labeling was introduced in [9]. k-odd mean labeling and ( $\mathrm{k}, \mathrm{d}$ ) - odd mean labeling are introduced and discussed in [5], [6], [7]. In this paper, we introduce the concept of k-even mean labeling and investigate k-even mean labeling of $C_{n} \cup P_{m}$. AMS (MSC) Subject Classification: 05C78


© 2011 Elixir All rights reserved.

## Introduction

All graphs in this paper are finite, simple and undirected. Terms not defined here are used in the sense of Harary [8]. The symbols $V(G)$ and $E(G)$ will denote the vertex set and edge set of a graph. Labeled graphs serve as useful models for a broad range of applications [1-3].

A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. If the domain of the mapping is the set of vertices (or edges) then the labeling is called a vertex labeling (or an edge labeling).

Graph labeling were first introduced in the late 1960's. Many studies in graph labeling refer to Rosa's research in 1967 [11].

Labeled graphs serve as useful models for a broad range of applications such as X-ray crystallography, radar, coding theory, astronomy, circuit design and communication network addressing. Particularly interesting applications of graph labeling, can be found in [4].

Mean labeling of graphs was discussed in [10] and the concept of odd mean labeling was introduced in [9]. $k$-odd mean labeling and $(k, d)$ - odd mean labeling are introduced and discussed in [5], [6], [7]. In this paper, we introduce the concept of k-even mean labeling and here we investigate the k-even mean labeling of $C_{n} \cup P_{m}$.

Throughout t0068is paper, $k$ denote any positive integer $\geq 1$. For brevity, we use $k$-EML for $k$-even mean labeling.

## Main Results

## Definition: $\boldsymbol{k}$-even mean labeling

A $(p, q)$ graph $G$ is said to have a $k$-even mean labeling if there exists a injection $f: V \rightarrow\{0,1,2, \ldots, 2 k+2(q-1)\}$ such that the induced map $f^{*}: E(G) \rightarrow\{2 k, 2 k+2,2 k+4, \ldots, 2 k+2(q-1)\}$ defined by is a bijection.

$$
f^{*}(u v)= \begin{cases}\frac{f(u)+f(v)}{2} & \text { if } f(u)+f(v) \text { is even } \\ \frac{f(u)+f(v)+1}{2} & \text { if } f(u)+f(v) \text { is odd }\end{cases}
$$

A graph that admits a $k$ - even mean labeling is called a $k-$ even mean graph.

## Theorem

The graph $C_{n} \cup P_{m}(n \geq 4$ and $m \geq 2)$ is a $k$-even mean graph for any $k$ when $\quad n \neq 6$.

## Proof

Let $V\left(C_{n} \cup P_{m}\right)=\left\{v_{i}, 1 \leq i \leq n\right\} \cup\left\{u_{j}, 1 \leq j \leq m\right\}$ and

$$
E\left(C_{n} \cup P_{m}\right)=\left\{e_{i}, 1 \leq i \leq n\right\} \cup\left\{e_{j}^{\prime}, 1 \leq j \leq m-1\right\}(\text { see }
$$

Fig. 2.1)


Fig. 2.1: Ordinary labeling of $C_{n} \cup P_{m}$
First we label the vertices of $C_{n} \cup P_{m}$ as follows:
Define

$$
f: V\left(C_{n} \cup P_{m}\right) \rightarrow\{0,1,2, \ldots, 2 k+2 q-2\} \text { by }
$$

Case (i) $\quad n \equiv 0(\bmod 4)$
For $1 \leq i \leq \frac{n}{2}$,

$$
f\left(v_{i}\right)= \begin{cases}2 k+4 i-5 & \text { if } i \text { is odd } \\ 2 k+4 i-7 & \text { if } i \text { is even }\end{cases}
$$

For $\frac{n+2}{2} \leq i \leq n$,

E-mail addresses: maduraigayathri@gmail.com

$$
f\left(v_{i}\right)= \begin{cases}2 k+4 n-4 i+2 & \text { if } i \text { is odd } \\ 2 k+4 n-4 i+5 & \text { if } i \text { is even }\end{cases}
$$

The vertex labels of $P_{m}$ are
For $1 \leq j \leq m-1$,

$$
\begin{aligned}
f\left(u_{j}\right) & =2 k+2 n+2 j-3 \\
f\left(u_{m}\right) & =2 k+2(n+m-1)-2
\end{aligned}
$$

Then the induced edge labels are

$$
f^{*}\left(e_{i}\right)= \begin{cases}2 k+4 i-4, & 1 \leq i \leq \frac{n}{2} \\ 2 k+4 n-4 i+2, & \frac{n+2}{2} \leq i \leq n\end{cases}
$$

For $1 \leq j \leq m-1$

$$
\begin{aligned}
& f^{*}\left(e_{j}^{\prime}\right)=2 k+2 n+2 j-2 \\
& \quad f^{*}\left(e_{m}^{\prime}\right)=2 \mathrm{k}+2(\mathrm{n}+\mathrm{m}-1)-2
\end{aligned}
$$

2-EML of $C_{4} \cup P_{5}$ is shown in Fig. 2.2.


Fig. 2.2: 2-EML of $\boldsymbol{C}_{\mathbf{4}} \cup \boldsymbol{P}_{5}$
2-OML of $C_{8} \cup P_{8}$ is shown in Fig. 2.3.


Fig. 2.3: 2-OML of $C_{8} \cup P_{8}$
Case (ii) $n \equiv 1,3(\bmod 4)$
For $1 \leq i \leq \frac{n-3}{2}$,
$f\left(v_{i}\right)=2 k+2 i-3$

$$
\begin{aligned}
& f\left(v_{\frac{n-1}{2}}\right)=2 k+n-5 \\
& f\left(v_{\frac{n+1}{2}}\right)=2 k+n-1
\end{aligned}
$$

For $\frac{n+3}{2} \leq i \leq n-1$,
$f\left(v_{i}\right)=2 k+2 i-1$
$f\left(v_{n}\right)=2 k+2 n-2$

$$
\begin{aligned}
& \text { For } 1 \leq j \leq m-1, \\
& \quad f\left(u_{j}\right)=2 k+2 n+2 j-3 \\
& \quad f\left(u_{m}\right)=2 k+2(n+m-1)-2
\end{aligned}
$$

Then the induced edge labels are

$$
f^{*}\left(e_{i}\right)=\left\{\begin{array}{cc}
2 k+2 i-2, & 1 \leq i \leq \frac{n-1}{2} \\
2 k+2 i, & \frac{n+1}{2} \leq i \leq n-1
\end{array}\right.
$$

$$
f^{*}\left(e_{n}\right)=2 k+n-1
$$

For $1 \leq j \leq m-1$

$$
\begin{aligned}
& f^{*}\left(e_{j}^{\prime}\right)=2 k+2 n+2 j-2 \\
& \quad f^{*}\left(e_{m}^{\prime}\right)=2 k+2(m+n-1)-2
\end{aligned}
$$

Therefore,
$f^{*}\left(E\left(C_{n} \cup P_{m}\right) \rightarrow\{2 k, 2 k+2,2 k+4, \ldots, 2 k+2 q-2\}\right.$
So, $f$ is a $k$-even mean labeling and hence, $C_{n} \cup P_{m}, m \geq 2$ and $n \neq 6$ is a $k$-even mean graph for any $k$. 3-EML of $C_{5} \cup P_{4}$ is shown in Fig. 2.4.


Fig. 2.4: 3-EML of $C_{5} \cup P_{4}$
1-EML of $C_{9} \cup P_{3}$ is shown in Fig. 2.5.


Fig. 2.5: 1-EML of $C_{9} \cup P_{3}$
2-EML of $C_{7} \cup P_{6}$ is shown in Fig. 2.6.


Fig. 2.6: 2-EML of $C_{7} \cup P_{6}$
Case (iii) $n \equiv 2(\bmod 4), n>6$
For $1 \leq i \leq \frac{n-4}{2}$,
$f\left(v_{i}\right)=2 k+2 i-3$

$$
\begin{aligned}
f\left(v_{\frac{n-2}{2}}\right) & =2 k+n-6 \\
f\left(v_{\frac{n}{2}}\right) & =2 k+n-2
\end{aligned}
$$

For $\frac{n+2}{2} \leq i \leq n-3$,
$f\left(v_{i}\right)=2 k+2 i-1$

$$
\begin{aligned}
& f\left(v_{n-2}\right)=2 k+2 n-6 \\
& f\left(v_{n-1}\right)=2 k+2 n-2
\end{aligned}
$$

$f\left(v_{n}\right)=2 k+2 n-3$
For $1 \leq j \leq m-1$,

$$
\begin{aligned}
& f\left(u_{j}\right)=2 k+2 n+2 j-3 \\
& f\left(u_{m}\right)=2 k+2(n+m-1)-2
\end{aligned}
$$

Then the induced edge labels are

$$
f^{*}\left(e_{i}\right)=\left\{\begin{array}{cc}
2 k+2 i-2, & 1 \leq i \leq \frac{n-2}{2} \\
2 k+2 i, & \frac{n}{2} \leq i \leq n-1
\end{array}\right.
$$

$f^{*}\left(e_{n}\right)=2 k+n-2$
For $1 \leq j \leq m-1$

$$
\begin{aligned}
& f^{*}\left(e_{j}^{\prime}\right)=2 k+2 n+2 j-2 \\
& \quad f^{*}\left(e_{m}^{\prime}\right)=2 k+2(m+n-1)-2
\end{aligned}
$$

3-EML of $C_{14} \cup P_{5}$ is shown in Fig. 2.7.


Fig. 2.7: 3-EML of $C_{14} \cup P_{5}$

## Theorem

The graph $C_{6} \cup P_{m}, m \geq 2$ is a $k$-even mean graph for any $k$.

## Proof

Let $V\left(C_{6} \cup P_{m}\right)=\left\{v_{i}, 1 \leq i \leq 6\right\} \cup\left\{u_{j}, 1 \leq j \leq m\right\}$ and $E\left(C_{6} \cup P_{m}\right)=\left\{e_{i}, 1 \leq i \leq 5\right\} \cup\left\{e_{n}\right\} \cup\left\{e_{j}^{\prime}, 1 \leq j \leq m-1\right\}$ (see Fig. 2.1)

First we label the vertices of $C_{6} \cup P_{m}$ as follows:
Define $f: V\left(C_{6} \cup P_{m}\right) \rightarrow\{0,1,2, \ldots, 2 k+2 q-2\}$ by
For $1 \leq i \leq 4$,
$f\left(v_{i}\right)=2 k+2 i-3$
$f\left(v_{5}\right)=2 k+11$
$f\left(v_{6}\right)=2 k+12$
Case (i) when $m=2$

$$
\begin{aligned}
& f\left(u_{1}\right)=2 k+9 \\
& f\left(u_{2}\right)=2 k+10
\end{aligned}
$$

Case (ii) when $m>2$

$$
f\left(u_{1}\right)=2 k+7
$$

For $2 \leq i \leq m-1$,

$$
\begin{aligned}
& f\left(u_{i}\right)=2 k+2 i+9 \\
& f\left(u_{m}\right)=2 k+2 m+8
\end{aligned}
$$

Then the induced edge labels are

$$
\begin{aligned}
& f^{*}\left(e_{i}\right)= \begin{cases}2 k+2 i-2, & 1 \leq i \leq 3 \\
2 k+4 i-8, & 4 \leq i \leq 5\end{cases} \\
& f^{*}\left(e_{6}\right)=2 k+6 \\
& f^{*}\left(e_{1}^{\prime}\right)=2 k+10
\end{aligned}
$$

For $2 \leq j \leq m-1$

$$
\begin{aligned}
& f^{*}\left(e_{j}^{\prime}\right)=2 k+2 j+10 \\
& f^{*}\left(e_{m}^{\prime}\right)=2 k+2(m+n-1)-2
\end{aligned}
$$

Therefore,
$f^{*}\left(E\left(C_{6} \cup P_{m}\right) \rightarrow\{2 k, 2 k+2,2 k+4, \ldots, 2 k+2 q-2\}\right.$
So, $f$ is a $k$-even mean labeling and hence $C_{6} \cup P_{m}, m \geq 2$ is a $k$-even mean graph for any $k$.
5-EML of $C_{6} \cup P_{2}$ is shown in Fig. 2.8.


Fig. 2.8: 5-EML of $\boldsymbol{C}_{\mathbf{6}} \cup \boldsymbol{P}_{\mathbf{2}}$
8-EML of $C_{6} \cup P_{7}$ is shown in Fig. 2.9.


Fig. 2.9: 8-EML of $C_{6} \cup P_{7}$

## References

[1] G.S. Bloom, S.W. Colomb, Numbered complete graphs, unusual rulers and assorted applications, Theory and Applications of Graphs - Lecture notes in Math., 642, Springer - Verlag, New York, 1978, 53-65.
[2] G.S. Bloom, S.W. colomb, Applications of Numbered undirected graphs, Proc. IEEE, 65 (1977), $562-570$.
[3] G.S. Bloom, D.F. Hsu, On graceful digraphs and a problem in network addressing, Congressus Numerantium, 35 (1982), 91 $-103$.
[4] A. Gallian, A dynamic survey of graph labeling, Electronic Journal of Combinatorics, 16 (2009), \# DS6.
[5] Gayathri, B. and Amuthavalli, K., $k$-odd mean labeling of crown graphs, International Journal of Mathematics and Computer Science, No.3, 2(2007), 253-259.
[6] Gayathri, B. and Amuthavalli, K., ( $k, d$ )-odd mean labeling of some graphs, Bulletin of Pure and Applied Sciences. Vol.26E, No. 2 (2007), 263-267.
[7] Gayathri, B. and Amuthavalli, K., $k$-odd mean labeling of $\left\langle K_{1, n}: K_{1, m}\right\rangle$, Acta Ciencia Indica, Vol. XXXIVM, No. 2 (2008), 827-834.
[8] F. Harary, Graph Theory, Addison - Wesley, Reading, Massachusetts, 1972.
[9] K. Manickam, M. Marudai, Odd Mean Labelings of Graphs, Bulletin of Pure and Applied Sciences, 25E, No. 1, (2006), 149 - 153.
[10] S. Somasundaram, R. Ponraj, Mean Labelings of graphs, Natl. Academy Science Letter, 26, No. 7-8, (2003), 10 -13.
[11]A. Rosa, On Certain Valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966). Gordon and Breach, N.Y. and Dunod Paris (1967) 349 - 355.

