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Introduction 

All graphs in this paper are finite, simple and undirected.  

Terms not defined here are used in the sense of Harary [8].  The 

symbols V(G) and E(G) will denote the vertex set and edge set 

of a graph.  Labeled graphs serve as useful models for a broad 

range of applications [1-3]. 

A graph labeling is an assignment of integers to the vertices 

or edges or both subject to certain conditions.  If the domain of 

the mapping is the set of vertices (or edges) then the labeling is 

called a vertex labeling (or an edge labeling). 

Graph labeling were first introduced in the late 1960’s.  

Many studies in graph labeling refer to Rosa’s research in 1967 

[11]. 

Labeled graphs serve as useful models for a broad range of 

applications such as X-ray crystallography, radar, coding theory, 

astronomy, circuit design and communication network 

addressing. Particularly interesting applications of graph 

labeling, can be found in [4]. 

Mean labeling of graphs was discussed in [10] and the 

concept of odd mean labeling was introduced in [9]. k-odd mean 

labeling and (k, d) – odd mean labeling are introduced and 

discussed in [5], [6], [7].  In this paper, we introduce the concept 

of k-even mean labeling and here we investigate the k-even 

mean labeling of Cn  Pm. 

Throughout t0068is paper, k denote any positive integer  1.  

For brevity, we use k-EML for k-even mean labeling. 

Main Results 

Definition:   k-even mean labeling 

 A (p, q) graph G is said to have a k-even mean labeling 

if there exists a injection f : V  {0, 1, 2, ..., 2k + 2(q-1)} such 

that the induced map  

f 
*
 : E(G)  {2k, 2k + 2, 2k + 4, ..., 2k + 2(q – 1)} defined by is 

a bijection. 

 f 
*
(uv) = 

( ) ( )
         if  ( ) ( ) is even

2

( ) ( ) 1
   if  ( ) ( ) is odd

2

f u f v
f u f v

f u f v
f u f v














 


 

 A graph that admits a k – even mean labeling is called a k – 

even mean graph. 

Theorem 

The graph n mC P  (n ≥ 4 and m ≥ 2) is a k-even mean 

graph for any k when          n ≠ 6. 

Proof 

Let ( ) { , 1 } { , 1 }n m i jV C P v i n u j m        and     

   '( ) { , 1 } { , 1 1}n m i jE C P e i n e j m        (see 

Fig. 2.1) 

 
Fig. 2.1:   Ordinary labeling of 

n mC P  

First we label the vertices of Cn  Pm as follows: 

Define 

: ( ) {0, 1, 2, . . . , 2 2 2}n mf V C P k q    by 

Case (i)   n ≡ 0 (mod 4) 

For 1
2

n
i  , 

2 4 5 if is odd

( )

2 4 7 if is even

i

k i i

f v

k i i

 
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2 4 4 2 if is odd

( )

2 4 4 5 if is even

i

k n i i

f v

k n i i

  


 
   

 

The vertex labels of Pm are  

For 1 1j m   , 

                     ( ) 2 2 2 3jf u k n j     

                    ( ) 2 2( 1) 2mf u k n m      

Then the induced edge labels are 

*

2 4 4, 1
2

( )

2
2 4 4 2,

2

i

n
k i i

f e

n
k n i i n


   


 
 
     


 

For 1 1j m    

                     

* '( )  2 2 2 2jf e k n j   
 

  

* '( )mf e
  = 2k + 2(n + m – 1) – 2 

2-EML of C4  P5 is shown in Fig. 2.2.  

 
Fig. 2.2:   2-EML of C4  P5 

2-OML of 8 8C P  is shown in Fig. 2.3. 

 
Fig. 2.3:   2-OML of C8  P8 

Case (ii)   n ≡ 1, 3 (mod 4) 
3

For  1 ,
2

n
i


 

 
( ) 2 2 3if v k i    

                 
1

2

2 5nf v k n

 
   

 

 

                 
1

2

2 1nf v k n

 
   

 

 

3
For  1,

2

n
i n


  

 
( ) 2 2 1if v k i    

( ) 2 2 2nf v k n  
 

For 1  j  m – 1, 

                     ( ) 2 2 2 3jf u k n j     

                    ( ) 2 2( 1) 2mf u k n m      

Then the induced edge labels are 

*

1
2 2 2, 1

2
( )

1
2 2 , 1

2

i

n
k i i

f e

n
k i i n


   


 
 

   


 

*( ) 2 1nf e k n    

For 1  j  m – 1 

                     * '( )  2 2 2 2jf e k n j     

  
* '( )mf e

  = 2k + 2(m + n – 1) – 2 

Therefore, 
*( ( ) {2 , 2 2, 2 4, . . . , 2 2 2}n mf E C P k k k k q       

So, f is a k-even mean labeling and hence, Cn  Pm, m ≥ 2 

and n ≠ 6 is a k-even mean graph for any k. 3-EML of 
5 4C P  

is shown in Fig. 2.4. 

 

Fig. 2.4:   3-EML of 5 4C P
 

1-EML of 9 3C P
 is shown in Fig. 2.5. 

 

Fig. 2.5: 1-EML of 9 3C P  

2-EML of C7  P6 is shown in Fig. 2.6. 

 

Fig. 2.6:   2-EML of 7 6C P  

Case (iii)  n ≡ 2 (mod 4), n > 6 

4
For  1 ,

2

n
i


   
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( ) 2 2 3if v k i    

                 
2

2

2 6nf v k n

 
   

 
 

                    
2

2 2nf v k n
 

   
 

 

2
For  3,

2

n
i n


    

( ) 2 2 1if v k i  

                    
2( ) 2 2 6nf v k n     

                    
1( ) 2 2 2nf v k n     

( ) 2 2 3nf v k n    

For 1  j  m – 1, 

                     ( ) 2 2 2 3jf u k n j     

                    ( ) 2 2( 1) 2mf u k n m      

Then the induced edge labels are 

*

2
2 2 2, 1

2
( )

2 2 , 1
2

i

n
k i i

f e

n
k i i n


   


 


   


 

*( ) 2 2nf e k n    

For 1 1j m    

                     

* '( ) 2 2 2 2jf e k n j   
 

  * '( ) 2 2( 1) 2mf e k m n      

3-EML of C14  P5 is shown in Fig. 2.7. 

 

Fig. 2.7:   3-EML of 14 5C P  

Theorem 

The graph C6  Pm, m ≥ 2 is a k-even mean graph for any k. 

Proof 

Let 6( ) { , 1 6} { , 1 }m i jV C P v i u j m        and 

'

6( ) { , 1 5} { } { , 1 1}m i n jE C P e i e e j m          (see Fig. 

2.1) 

First we label the vertices of 6 mC P  as follows: 

Define 6: ( ) {0, 1, 2, . . . , 2 2 2}mf V C P k q     by  

For  1 4,i   

( ) 2 2 3if v k i    

5( ) 2 11f v k   

6( ) 2 12f v k   

Case (i) when m = 2 

1( ) 2 9f u k   

2( ) 2 10f u k   

Case (ii) when m > 2 

1( ) 2 7f u k   

For 2  i  m – 1, 

( ) 2 2 9if u k i    

( ) 2 2 8mf u k m    

Then the induced edge labels are 

*

2 2 2, 1 3

( )

2 4 8, 4 5

i

k i i

f e

k i i

   


 
    

 

*

6( ) 2 6f e k 

 * '

1( ) 2 10f e k 
 

For 2  j  m – 1 
* '( ) 2 2 10jf e k j  

 
* '( ) 2 2( 1) 2mf e k m n    

 
Therefore, 

*

6( ( ) {2 , 2 2, 2 4, . . . , 2 2 2}mf E C P k k k k q       

So, f is a k-even mean labeling and hence C6  Pm, m ≥ 2 is 

a k-even mean graph for any k. 

5-EML of 
6 2C P  is shown in Fig. 2.8. 

 
Fig. 2.8:   5-EML of C6  P2 

8-EML of 6 7C P  is shown in Fig. 2.9. 

 

Fig. 2.9:   8-EML of 6 7C P  
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