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Introduction 

HCV was first characterized by Choo et al in 1989.
1
 It was 

soon identified as the main causative agent of the previously 

called post transfusion non-A, non-B hepatitis. HCV is an 

enveloped RNA virus and belongs to the genus Hepacivirus of 

the family Flaviviridae. HCV infection is a major cause of 

chronic liver diseases with about 170 million people infected 

worldover.
2-4

 HCV, a RNA virus has a high degree of 

heterogeneity
5
 that varies 30-35% among different genotypes. 

Till date six major genotypes and more than 120 subtypes have 

been characterized
6
. These HCV genotypes have distinct 

geographic distribution with genotype 1 and 2 frequently 

occurring worldwide.
7
 Genotype 3 is the most prevalent, 

followed by genotype 1 in India.
8,9

 Different genotypes of HCV 

have important epidemiological implications. In India, 

approximately 15 million people are HCV seropositive with 

reported prevalence of HCV in 15% to 20% chronic liver 

disease (CLD) patients.
10,11

 

  HCV genome consists of 9.6-kb single-strand RNA of 

positive polarity and a single open reading frame of 9033 - 9099 

nucleotides flanked by a highly conserved 5` and 3` noncoding 

region (NCR). Its genome codes for a long polyprotein of 

approximately 3000 amino acids
12

 which is processed co-

translationally and post-translationally to yield three structural 

proteins (core, envelope E1, E2 and p7) and nonstructural 

proteins (NS2, NS3, NS4A, NS4B, NS5A and NS5B).
13 

The 

envelope proteins (E1 and E2) are the outer surface proteins of 

the virus and have important role in virus entry inside the host 

cell. NS5B is one of the highly variable regions of HCV genome 

and codes for a RNA dependant RNA polymerase (RdRp) which 

lacks proof reading activity. This may alter the detection, 

sensitivity to anti-viral activity of interferon and pathogenicity 

of virus.
14  

HCV infection is a major public health problem of the 

world. It infects approximately 3% world population.
15

 HCV 

infection presents both as asymptomatic as well as symptomatic 

infection. A high proportion of patients
16

 infected with HCV 

infection develop chronic liver diseases which result in liver 

cirrhosis and hepatocellular carcinoma (HCC) in later stage.
17

 

HCV infection is a major indication for liver transplant all over 

the world.
17

 HCV patients show a poor response to antiviral 

therapy. Moreover, there is a high relapse rate of HCV infection 

after discontinuation of therapy. Therefore, every effort is being 

made to understand the pathogenesis of HCV infection so as to 

create a therapeutic model for an effective treatment against 

HCV. Present review gives highlights about few host factors 

(immune etc.) involved and the mechanisms of liver injury 

caused by HCV infection and its pathogenesis. This includes the 

role of host immunity, oxidative stress, insulin resistance and 

steatosis associated with HCV infection. It is believed that an 

understanding of these phenomenons may help in future plan to 

resolve the problem of HCV infection. 

Role of host immunity vs. HCV 

 HCV, a blood transmitted virus, reaches liver and infects it 

for disease causation and viral multiplication. During its course 

of transmission and final entry to liver cells, host poses several 

challenges to both its entry in the cell and in situ viral 

proliferation. Host immunity plays very important role in 

eradication or survival of virus and deciding the course of 

disease with its acute or chronic manifestation. Whereas some 
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patients develop an acute HCV infection with resolution of 

disease in a shorter time period, majority of HCV infected 

patients run a chronic course with persistence of virus for 

decades and finally development of end stage liver diseases 

including cirrhosis and hepatocellular carcinoma (HCC). This 

may be better explained by a sequence of reactions involving 

onset of HCV and response of host immune system to counter 

the onset. 

Innate Immunity 

 Innate immunity appears essential and first line defense for 

control of HCV infections like for several other viral infections. 

During HCV infection, cells produce Type 1 interferon (IFN) as 

a result of innate immune signaling events. The secreted IFN 

induce the cells to resist infection, check viral replication, 

promote adaptive immunity and activation of Natural Killer 

(NK) cells, Dendritic Cells (DC) and Kupffer cells etc. 

Intracellular innate immunity is triggered through host 

recognition of viral macromolecular motifs, known as pathogen-

associated molecular patterns (PAMPs) as non-self by cellular 

pathogen recognition receptors (PRRs) including Toll-like 

receptors (TLRs) and Retinoic acid-inducible gene-I (RIG-I) like 

receptors (RLRs).
18

  In hepatocytes RIG-I binds PAMP on 

HCV-RNA and activates interferon regulatory factor-3 (IRF-3) 

for expression of IFN-/ and anti-viral/ interferons stimulated 

genes (ISGs) that control viral infection. IFN remain major part 

of innate immunity and are regularly produced in response to 

viral infection
19

 both within infected cells and bystander cells. 

PAMP-RIG-1 interaction is most upstream to intracellular 

immunity to produce ISGs and IFN. The secreted IFN and 

cytokines are responsible for activation of NK, DC and Kupffer 

cell etc. These cells plays significant role in mounting T/B cell 

based immunity also.
20

 PAMP region lies on 3` UTR of HCV 

and induces RIG-1 signaling.
21

 RIG-1 signaling results in RIG-1 

interaction with IFN-beta promoter stimulator (IPS-1) which 

drives activation of IRF-3 and nuclear factor B (NFB).  

In majority of HCV infected patients (70-80%), HCV can 

effectively evade innate immunity resulting in persistent viral 

infection. This is so because HCV has evolved to counteract the 

RIG-1 pathway
22

 and thus evade the immune challenge. For this, 

the non-structural proteins of HCV i.e. NS3 and NS4A form a 

complex which activates NS protease domain to target cleavage 

of IPS-1. After cleavage, IPS-1 can no longer signal downstream 

to activate IRF-3 and NFB and the infected cells no longer 

produce IFN- or express ISGs. Thus HCV virions defend them 

from RIG-1 mediated pathway.
23

 

Natural killer (NK) cells, another way of innate immune 

response, usually becomes activated
 
in an early phase of a HCV 

infection. Liver is particularly
 
enriched in NK cells. Type-I IFNs 

activate NK cells. The activated NK cells play
 
an essential role 

in recruiting virus-specific T cells and inducing antiviral 

immunity in liver. They also eliminate virus-infected
 

hepatocytes directly by cytolytic mechanisms and indirectly
 
by 

secreting cytokines including interferon- (IFN-) and Tumor 

Necrosis Factor- (TNF-), which induce an antiviral state in 

host
 
cells. Therefore, optimally activated NK cells are important

 

in limiting viral replication in this organ. This notion is
 

supported by the observations that interferon treatment is 

effective
 
in HCV-infected persons in whom it increases NK cell 

activity.
 
Surprisingly, HCV has evolved multiple strategies to 

counter
 

host’s NK cell response. Compromised NK cell 

functions
 

have been reported in chronic HCV-infected 

individuals. It is
 
interesting to mention that activated NK cells 

may also contribute toward liver
  
injury.

24  

Cytotoxic T Lymphocytes 

During viral infection, T cells recognize viral peptides 

presented by Major Histocompatibility Complex (MHC) 

molecules on infected cells. Cellular and viral molecules partly 

degraded by proteosomes are transported to the endoplasmic 

reticulum and get associated with MHC molecules which are 

finally transported to cell surface. These are reviewed by T cells 

for recognition and their action. Most cytotoxic T lymphocytes 

(CTL) are CD8
+
 and recognize antigen presented on MHC class 

I molecules. However, about 10% of MHC-restricted CTL are 

CD4
+
 which recognizes antigen presented on class II molecules. 

The major role of CTL is the elimination of cells infected with 

virus. Several viruses have evolved mechanisms to avoid 

recognition by CTL. They either reduce the expression of MHC 

molecules or prevent the viral peptide from presentation at the 

cell surface. CTL plays a part in viral eradication.
25

 These cells 

have been also implicated in the immunopathogenesis of viral 

infection.
26

  

The destruction of HCV-infected hepatocytes releases HCV 

fragments; these fragments are taken up by myeloid DCs, 

consequently activating the DCs. These DCs migrate to the 

draining lymph nodes and express HCV antigens on human 

leukocyte antigen (HLA) class II molecules. Then, they enhance 

expression of costimulatory molecules (CD80, CD86) that 

interact with and activate antigen-specific helper T (Th) cells.
27

 

In turn, the activated Th cells promote the maturation of DCs by 

the expression of CD40 ligand and TNF-α. 

Dendritic cells induce T-cell activation upon maturation by 

up-regulation of the expression of their surface molecules, with 

enhanced antigen presentation capacity and through the 

increased production of cytokines that stimulate T-cell 

activation. IL-12 has been shown to play an important role in 

stimulating IFN- production from activated T cells,
28-29

 and 

thus, induces the development of type 1 (Th1) immune response 

characteristic of CTL activation.  

Mature DCs stimulate specific CTLs by antigen 

presentation on HLA class I molecule and enhance the 

expression of costimulatory molecules.
27

 Cytokines such as IL-2 

and IL-12 produced by Th1 cells and DCs further promote CTL 

activation. These CTLs infiltrate the liver and recognize HCV 

antigens presented on the surface of HCV-infected hepatocytes 

together with HLA class I molecules. Then, the effector CTLs 

release perforin, granzyme, and TNF-α, or express Fas ligand, 

and initiate a direct attack on HCV-infected hepatocytes.
30-31

  

Type I IFNs produced by HCV-infected hepatocytes and 

plasmacytoid DCs (PDC) suppress viral replication by inducing 

enzymes such as 2′–5′ oligoadenylate synthetase (OAS) and 

RNA-dependent protein kinase (PKR) in hepatocytes.
32

 The 

plasmacytoid DC recognizes HCV infection through toll-like 

receptor (TLR)-7, which interacts with single-stranded RNA.
33

 

The TLR-signaling upregulates PDC-Triggering Receptor 

Expressed on Myeloid Cells (PDC-TREM)  molecules on the 

cell surface, and PDC-TREM-dependent signal induces further 

production of IFN-α.
34

 Activated OAS destroys viral RNAs, 

whereas PKR inhibits forming polysome of viral mRNA.
32

  

When appropriate CTL responses are induced in hosts, 

HCV eradication is achieved. However, HCV-specific CTL 

responses are usually not strong enough to eradicate the virus, 

hence contributing to persistent infection. 
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 It has become increasingly clear that successful clearance of 

HCV virus during the acute HCV infection depends on the 

generation of a vigorous and sustained Th1 type immune 

response.
35-36

 Patients who can mount strong Th1 response 

showed efficient viral clearance and a self-limited course of 

disease. In contrast, those who showed defect in IL-12 and IFN-

 production invariably led to viral persistence and chronic 

hepatitis. Maturation of DC with E2 protein strongly induces IL-

12 production from these cells.
27

 It is important that an 

overwhelming majority
 
of the infected persons fail to control the 

infection and develop
 
a chronic infection with a variable degree 

of hepatitis and
 

viremia.
2,37

 Experimental studies have 

demonstrated that HCV preferentially induces the expression
 
of 

antigen processing and IFN-stimulated genes in the infected
 

livers.
38-40

  

Impaired function of DCs, which play the crucial role of 

antigen-presenting cells in inducing immunity, may be 

responsible for the impaired immune responses. It has been 

reported that the HCV core, E1, and NS3 proteins inhibit DC 

maturation.
41,42

 HCV is thought to infect DCs through the 

binding of HCV E2 protein and thereby suppress DC 

function.
43,44

  

The virus-specific CTL kill not only virus-infected cells but 

also contribute to virus control by noncytolytic mechanisms
 
by 

secreting cytokines, e.g., IFN-, IFN-/, and tumor
 
necrosis 

factor  (TNF-), which induce an antiviral state in
 
host cells. 

This makes uninfected cells resistant to infection
 
and frees them 

from virus by stopping
 
viral replication. The progression

 
of the 

majority of the infected persons to chronic infection
 
suggests the 

inability of the antiviral immunity to contain
 
this infection. 

There may be several reasons for this failure,
 

including 

emergence of escape variants as a result of a high
 
rate of virus 

mutations, a decreased production of antiviral
 

cytokines or 

"stunning" of HCV-specific CTL, a compromised cytolytic
 

potential of the CTL, and antagonistic peptides.
45

   

The HCV genome in single host is a dynamic population of 

different but closely related genomes, designated quasispecies. 

Hyper variable region-1 (HVR-1) is one of the main contributors 

to these genetically related variants.
46

 In acute resolving 

hepatitis, HVR-1 shows very little variation in genetic variants, 

as compared to that in chronic hepatitis.
47

 HVR-1 induces anti-

HCV neutralizing antibodies
48-49

 and HVR-1 specific CD4+ and 

CD8+ T cells.
50-51

  Using the responding host cellular immune 

response differentially, HVR-1 favours viral escape.
52,53

 HVR-1 

variations result from the action of a continuous immune-driven 

positive selection,
54,55 

probably controlled by humoral immune 

responses. Thus, HVR-1 complexity could represent a virus 

adaptive strategy to escape the continuous selective process 

mediated by anti-HVR1 antibodies. HCV clearance is associated 

with a vigorous HCV specific CD4+ and CD8+ T cell response 

in the acute phase of infection. In contrast, viral persistence is 

associated with a weak and dysfunctional virus specific T cell 

response.
52-56

 Several possible mechanisms of T cell failure and 

HCV immune evasion have been proposed and include T cell 

dysfunction and the emergence of viral escape mutations.
57-58

  

Recently, the possible role of different regulatory T cell 

populations in HCV persistence has also been suggested. There 

are reports showing higher frequency of CD4+CD25+ 

regulatory T cells in the blood and CD4+FoxP3+ T cells in the 

liver of chronically HCV infected patients.
59-61

 CD4+CD25+ 

regulatory T cells suppress HCV specific CD8+ T cell and 

CD4+ T cell proliferation as well as CD8+ T cell IFN-γ 

secretion in a dose-dependent and unspecific manner.
59,62-64

  

Treg  cells secrete IL-10 and Transforming Growth Factor- β 

(TGF-β) after HCV antigen stimulation to show Treg cell 

mediated suppression of virus specific T cell responses.
63-65

 

CD4+CD25+ Treg cells obtained from chronically HCV 

infected patients demonstrated more  suppressive activity against 

HCV specific CD8+ T cells compared to Treg cells isolated 

from acute HCV infected patients. However the suppressive 

effect observed in patients who successfully cleared the virus 

was still significant.
62

 Furthermore, another study showed that 

the frequency of CD4+CD25+FoxP3+ Treg cells and their 

suppressive capacity against virus specific T cell responses were 

as high in HCV recovered chimpanzees as in persistently HCV 

infected chimpanzees.
66

 Induction of Treg cells by HCV 

antigens was demonstrated first time by a response of CD4+ T 

cell to HCV core protein. HCV specific IL-10 secreting T cells 

were detected in the blood of chronic HCV infected persons.
67 

These regulatory TR1 cells recognized the same epitopes on the 

core protein as IFN-γ producing TH1 cells. The regulatory 

CD8+ T cells may play an important role in chronic HCV 

infection. It is supported by the observation that HCV specific 

CD8+CD25+FoxP3+ T cells from blood of chronically infected 

patients suppress HCV specific T cell responses via 

transforming growth factor- β (TGF-β) secretion. The blockade 

of TGF-β markedly enhanced the HCV specific IFN-γ secretion 

by CD4+ and CD8+ T cells.
68 

The presence of Treg cells, 

especially in the liver, may also protect the host from tissue 

damage.  

Another important impact of chronic HCV infection on 

adaptive T cell response is the exhaustion or impairment of 

HCV-specific CD8+ T cells antiviral function. During chronic 

HCV infection, CD8+ T cells show their failure to proliferate or 

secrete antiviral cytokines including interferon- (IFN-). This 

phenomenon is promoted by lack of CD4+ T cells and 

expression of immunomodulatory cytokines like IL-10.
69

 The 

major cause of HCV specific CD8+ T cells impairment is 

ascribed to expression of inhibitory receptor like Programmed 

Death-1 (PD-1), Lymphocyte-Activation Gene-3 (LAG-3, a 

protein related to CD4), CTLA-4 (a member of CD28 receptor 

family), T-cell immunoglobulin mucin-3 (TIM-3) and 2B4 etc. 

on HCV-specific CD8+ T cells in blood and liver.
70

 Expression 

of these inhibitory receptors is associated with low levels of 

CD127 expression and impaired proliferation and differentiation 

of T cells. Thus, different mechanism contribute to the 

dysfunction of HCV-specific CD8+ T cells in chronic HCV 

infection. 

HCV Associated Oxidative Stress 

 Oxidative stress is supposed to be an important part of 

HCV-induced liver pathogenesis. In studies conducted to 

explore the role of different molecular components of HCV 

structure in modulating oxidative stress, it was noticed that 

HCV-core protein present within the outer membrane of 

mitochondria induce oxidation of glutathione and promotes Ca
2+

 

uptake into mitochondria. Clement et al
68

 explained the 

molecular mechanism by a schematic diagram and demonstrated 

that following glutathione oxidation, there is increased reactive 

oxygen species (ROS) production by mitochondrial electron 

transport complex I and III. The HCV non-structural protein 

NS5A promotes ROS production in the membrane of 

endoplasmic reticulum (ER) by activating the release of Ca
2+

 

from ER, thereby inducing oxidative stress.
68

 NS3 protein 

induces ROS production by activation of NADPH oxidase.
68 
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That HCV infection causes increased ROS production and 

consequent oxidative stress is evident by presence of markers of 

increased oxidative stress in the blood. Levels of 8-hydroxy 

deoxyguanosine and 4-Hydroxy-2-nonenol are increased in 

HCV infection.
71,72

 Similarly, few studies have shown reduced 

levels of glutathione, possibly used up by antioxidant enzyme 

glutathione peroxidase, during HCV infection. In yet another 

study, the serum level of thioredoxin, marker of oxidative stress, 

was significantly reduced in HCV infection.
73-75

 

 Although, presence of oxidative stress has been noted in 

other hepatitis like hepatitis B also, however, there is a 

remarkable increase in Oxidative Stress (OS) in HCV 

infection.
71

 Several studies conducted at molecular level have 

shown that structural components of HCV induces an effective 

OS.
71 

HCV-core and non-structural components NS3 and NS5A 

proteins directly induce OS.
76-79

 Core protein is involved in OS 

generation via oxidation of mitochondria GSH and uptake of 

Ca
2+

 into mitochondria
79-80

 thus, changing the permeability of its 

membrane.
81

  As a result, electron transport complex I increases 

production of ROS and redistributes cytochrome from 

mitochondria to cytosolic fraction.
64

 NS5A is associated with 

membrane of ER
82 

as mentioned above. NS5A, simultaneously 

activates even signal transducers transcription and nuclear factor 

B (NFB)
83

All these activations lead to inflammation, immune 

response and apoptosis.
83,84

 Similarly, NS3 triggers ROS by 

activating NADPH oxidase 2 in mononuclear and 

polymorphonuclear phagocytes
85

 that increase role of apoptosis 

of hepatocytes.
85

 Thus, it is concluded that during HCV 

infection, the structural and non-structural components of HCV 

induce significant increase in OS that help in liver damage by 

following several mechanisms.  

HCV Induced Steatosis 

Steatosis, a condition with extra fat deposit in liver, is a 

state leading to liver injury. There are several factors responsible 

for causing steatosis, including alcohol consumption, obesity, 

diabetes, etc.
86-88

 Studies on steatosis in relation to hepatotropic 

viruses demonstrated that HCV infection directly causes 

steatosis in some patients. When these patients are treated with 

antivirals, steatosis usually disappears. Not only this, there are 

reports indicating reappearance of steatosis with relapse of 

infection after end of therapy.
89

 Studies in experimental animals 

have shown that HCV-core protein promotes steatosis in liver.
90-

91
 Furthermore, when steatosis was studied in relation to HCV-

genotypes, it was noticed that although steatosis is induced by 

all HCV-genotypes, it appears more prominent and frequent 

with HCV-genotype 3 infection.
92-95

 Genotype-3 shows direct 

involvement in accumulation of triglyceride in hepatocyte. In 

those patients carrying genotype-3 infection, there is a good 

correlation between level of steatosis and HCV replication
94,96

 

and presence of HCV-core in liver.
97

 Also steatosis disappears in 

patient with genotype-3 when treated successfully by anti-viral 

therapy as compared to those with non-genotype-3 who remain 

steatotic.
98-99

 Steatosis reappears with relapse of infection,
89 

clearly supports that HCV-genotypes particular have more 

steatogenic potential. Subsequent studies
100

 indicated that 

genotype-3 interferes with VLDL secretion. Core protein, which 

promotes lipid accumulation in hepatocytes,
90,91,101,102 

proves 

more efficient from genotype-3 as compared core from 

genotype-1. Core protein inhibits microsomal triglyceride 

transfer protein (MTP) activity, a key protein involved in VLDL 

assembly, thus leading to steatosis.  

Based on various reports, it was concluded that HCV causes 

steatosis in three different ways : (i) Impaired secretion of lipids 

from hepatocyte, (ii) Increased de novo synthesis of Free Fatty 

Acid (FFA) and (iii) Impaired FA degradation. The first aspect 

of HCV-induced steatosis was proposed as due to the impaired 

secretion of VLDL. To substantiate it, reports from different 

studies demonstrated decreased level of Apolipoprotein B (Apo 

B) and cholesterol in chronic HCV infected patients.
100-103

 Their 

low levels pointed towards HCV disturbing the assembly and 

secretion of VLDL from the liver. It was further supported by 

same experimental studies in transgenic mice expressing HCV 

core protein. These mice had impaired VLDL and Apo-B 

secretion
104

 as compared to non-transgenic mice. Another 

important aspect in this relation was the evidence of increased 

de novo synthesis of FFA under the effect of HCV infection. In 

this context, it is suggested that HCV upregulated the Sterol 

Regulatory Element Binding Protein-1c (SREBP-1c) signaling 

pathway
101

 with NS2 and NS4B proteins inducing SREBP at 

transcriptional level.
105-106 

It was also induced by expression of 

HCV core protein.
35

 Similarly, investigations on sub-cellular 

localization of HCV proteins in cells transacted with JFH1 

RNA
85

 demonstrated core localized to lipid droplets (LDs). Core 

enhances LDs formation. These studies conducted on JFH1 also 

indicate genotype-2 to show its involvement in LDs formation 

and disturbing lipid metabolism. Few studies in chimpanzees 

infected with HCV also demonstrated that HCV increase activity 

of lipogenic enzymes like ATP citrate lyase.
107

 HCV-core, in 

particular, activates and helps in cellular lipid synthesis,
107

 

possibly via its binding with retinoid receptor. However, there is 

possibility that other viral protein also help in hepatic steatosis 

via neolipogenesis. 

The third important aspect of HCV-induced steatosis is an 

impaired Fatty Acid (FA) degradation by HCV. Expression of 

HCV-core protein is reported to reduce the expression of 

peroxisome proliferation activated receptor- (PPAR), a 

nuclear receptor involved in FA degradation and down 

regulation of mitochondria -oxidation.
108

 Genotype-3 shows 

significant down-regulation of PPAR as compared to 

genotype-1.
109-110

 It is again HCV-core protein that down 

regulates PPAR and so, is more effective when from genotype-

3 as compared to genotype-1. Core protein from genotype-3 also 

down-regulated the PPAR and upregulated suppressor of 

cytokine signaling-7 (SOCS-7) in Human Hepatoma cells (Huh-

7).
111

 All these data clearly support that HCV-core protein may 

modulate the expression of various genes responsible for FA 

degradation via down regulation of PPARs. 

HCV Induced Insulin Resistance (Ir) 

HCV is reported to influence several metabolic pathways to 

increase steatosis, fibrosis, inflammation, apoptosis and insulin 

resistance
112-114

 during disease course. Insulin resistance plays an 

important role in liver pathogenesis by HCV infection. It has 

been observed that IR increases the de novo lipogenesis i.e. FA 

synthesis via over expression and maturation of SREBP-1c, 

which in turn increases the activities of lipogenic enzymes 

including Acetyl CoA carboxylase and FA synthase. At the 

same time, intermediates of triglyceride biosynthesis also 

activate inhibitors of insulin signaling. For example, activation 

of protein kinase C (PKC)-E by phosphorylating insulin receptor 

substrate (IRS-1) and thus inhibiting phosphatidyl inositol 3,4,5 

triphosphate (PIP3),
115

 inhibiting Akt translocation by ceramides 

etc.
116

 HCV-core protein, either by its direct interaction with 

insulin signaling pathway or via an increased secretion of TNF-
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 is considered to be causing IR.
117-118

 The HCV core can 

activate inhibitors of insulin signaling including mammalian 

target of rapamycin (mTOR)
111

 and SOCS-3 and C-Jun 

Nterminal kinase (JNK).
119-120

 The activation of JNK by HCV 

core may follow a direct or indirect proinflammatory cytokine 

mediated mechanism. In conclusion, HCV infection leads to IR 

in infected patients. IR can lead to steatosis and vice-a-versa and 

in either case, liver pathology is increased. 

Impact 

The overall impact of host factors including immune 

response, oxidative stress, steatosis and IR caused or promoted 

by HCV infection leads to cause liver damage in different 

proportion depending on their collective effect. IR promotes 

steatosis and reduces the response to treatment than steatosis.
121

  

Though, it is not yet clear, it is assessed that it may be possibly 

due to deregulation of SOCS-3.
122

 Most studies support the 

theory that IR is an important factor to be considered in HCV 

infection, both for liver fibrosis and anti-viral treatment. And so, 

correction of IR appears to be more promising. Another 

important aspect coming out of all studies till date is the 

differential inducement of all these causative factors by different 

HCV-genotypes. At present, there is only preliminary 

information available regarding the outcome of all these 

conditions in relation to HCV-genotypes. Once the real impact 

of each disease causing condition with HCV-genotypes and its 

isotypes is well established, the preliminary screening for HCV-

genotypes may help a lot in predicting the progression of disease 

and response to treatment, particularly with viewing the impact 

of above factors. 

Conclusion 

All above studies finally conclude that it is not any single 

cause of liver pathogenesis during HCV infection. In fact, host 

immune response to HCV related peptides and interruptions in 

the pathways of normal cellular metabolism by all these viral 

components have a collective role against virus and infected 

cells. Whereas host immunity is noted to be very crucial and 

deciding for the acute / chronic course of disease, an inducement 

of oxidative stress, hepatic steatosis and insulin resistance by 

HCV protein become the major underlying contributing factors 

for cellular damage. With an established fact that HCV-

genotypes respond differently to anti-viral treatment, their 

variable role in pathogenic changes becomes an important tool 

for future research to design therapeutic strategies according to 

their pathogenic potentials. Though, these studies address some 

aspects of HCV pathogenesis, however, there is still a lot to 

unravel the total mystery for an effective anti-HCV therapeutic 

measure based on well defined pathogenic changes during HCV 

infection. 
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