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Introduction
Difinitions and background:
Definition 1: Degree of vertex:

Let G be an undirected graph or multigraph. For each vertex
of G, the degree of v, written deg(v) ,is the number of edges in
G that are incident with v .[3]

Definition 2: bipartite graph:

A graph G is bipartite if the set of its vertices can be divided
into two disjoint subsets such that each edge has an endvertex in
each subset. We denote a bipartite graph by G = (X;0Y;E),
where X Oand Y are the two subsets of vertices (and so XUY
Ois the set of all vertices) and E is the set of edges.[2]
Definition 3: complete bipartite graph:

A bipartite graph G 0= (X;0Y;E) is complete if it is simple
and the set of its edges is E0={ xy | x € X ;y €Y } that is any
pair of a vertex of X and of a vertex of G Ois an edge of G . Tt
is denoted by K,, ;where p Ois the cardinality of X Oand q
the cardinality of Y.[1]

Definition 4: Cycle graph:

A cycle graph Cir, sometimes simply known as an #-cycle is
a graph on "nodes containing a single cycle through all nodes.
Alternatively, a cycle can be defined as a closed path.[4]
Definition 5: Regular graphs:

A graph GQOis said to be regular when the degrees of its
vertices are all equal.[2]

Definition 6: Complete graph:

Let v be a set of n vertices, the complete graph on v
denoted k, , is a loop free undirected graph, where for all a,b €v
,a#b there is an edge {a,b}.[1]

Definition7: weighted graph:

Is a graph for which each edge has an associated real
number weight.[5]
Definition 8:

Spanning tree for a graph G is a subgraph of G that contains
every vertex of G and is a tree.[5]
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Minimal spanning tree for a weighted graph is a spanning
tree that has at least possible total weight compared to all other
spanning trees for the graphs.[5]

Main Result:
Definition 1:

First neighborhood of vertex v on graph G denoted by N*(v)
or N*g(v) is the set of all vertices adjacent to v by one vertex.
Definition 2:

Second neighborhood of vertex v on graph G denoted by
N?s(v) is the set of all vertices adjacent to v by path of length
two.

Definition 3:

N_ neighborhood of vertex v on graph G denoted by N"5(v)
) is the set of all vertices adjacent to v by path of length n .
Definition 4:

First neighborhood of edge e on graph G denoted by N'(e)
or N's(e) is the set of all edges connect e by one edge.
Definition 5:

Second neighborhood of edge e on graph G denoted by
N?(e) or N°s(e) is the set of all edges connect e by path of length
two.

Definition 6:

N_ neighborhood of edge e on graph G denoted by N"(e) or
N"s(e) is the set of all edges connect e by path of length n .
Neighborhood of vertex v on graph G.

Lemma 1:

First neighborhood of vertex v on graph G equal to the

degree of this vertex.

Example 1:

Consider a graph shown in fig(1) ,we can compute first and
second neighborhood ,and degree of all vertex as follows:

Vertex N*(v) Deg(v) N%(v)
1 N*(1)={2,5} 2 N*(1)={4,3}
2 N'(2)={1,3,5} 3 N*(2)={4}
3 N*(3)={2,4} 2 N%(3)={1,5,6}
4 N*(4)={3,5,6} 3 N?(4)={1,2}
5 N'(5)={1,2,4} 3 N?(5)={3,6}
6 N'(6)={4} 1 N?(6)={3,5}
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Fig (1)
First and second neighborhood for special graphs:
For complete bipartite graph:
There are many types of complete bipartite graphs Ky, .
Cas(1): when m=n
Example 2:

We can compute first and second neighborhood for
complete bipartite graph shown in fig(2) as follows:

Vertex N*(v) Deg(v) | N°(v)
V1 {v2,v4,v6} 3 {v5,v3}
V2 {v1,v3,v5} 3 {v4,v6}
V3 {v2,v4,v6} 3 {v1yv5}
V4 {v1,v3,v5} 3 {v2,v6}
V5 {v2,v4,v6} 3 {v1,v3}
V6 {v1,v3,v5} 3 {v2,v4}

‘.4 3 \.3

Example 3:
For fig(3) ,K44 We have:

h

Vertex N%(v)
1 {2,3,4}
2 4 {134}
3 {5,6,7,8} 4 {1,2,4}
4 {5,6,7,8} 4 {1,2,3}
5 {5,6,7,8} 4 {6,7,8}
6 {5,6,7,8} 4 {578}
7 {5,6,7,8} 4 {5,6,8}
8 {5,6,7,8} 4 {56,7}

Cas(2): when m#n

Example 4:
Consider bipartite graph K3, with m=3, n=2 as shown in fig(4).

Vertex | N*(v) [ Deg(v) | Ni(v)
1 {45} 2 {23}
2 {45} 2 {13}
3 {45} 2 {1.2}
4 {123} 3 {5}
5 {123} 3 {4}
1
|
2
5
3
Fig (4)
Theorem 1:
For complete bipartite graph Kp, ,
for m=n

i. first neighborhood for every vertex on set m is equal to all
vertices on a set n ,and converse is true.
ii.second neighborhood for every vertex is equal to (m-1) or (n-
1).
For m#n
i. first neighborhood for every vertex on set m is equal to all
vertices on a set n . and the converse is true.
ii.second neighborhood for every vertex on set m is equal to (m-
1),and for every vertex on a set n is equal to (n-1).
Proof:
The proof comes directly from the above discussion.
For regular graph:

We can compute first and second neighborhood for regular
graph on the same way.
Example 5:
Consider 4-regular graph as shown in fig (5),we have:

Vertex N*(v) Deg(V) N%(v)
V1 {v2,v3,v4,v5} 4 {v2,v3,v4,v5}
V2 {v1,v3,v4,v5} 4 {v1,v3,v4,v5}
V3 {v1i,v2,v4,v5} 4 {v1i,v2,v4,v5}
V4 {vi,v2,v3,v5} 4 {vi,v2,v3,v5}
V5 {viv2,v3v4} 4 {vi,v2,v3,v4}
el \ov
.":(,’f \:';1"
V. V.
Fig(5)

Example 6:
For 3-regular graph shown in fig(6) we have:


http://en.wikipedia.org/wiki/File:6n-graf.svg
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Vertex Ni(v) Deg(v) NZ(v)
V1 {v2,v3,v4} 3 {v2,v3,v4}
V2 {v1,v3,v4} 3 {vi,v3,v4}
V3 {viv2v4} 3 {viv2,v4}
V4 {vi,v2,v3} 3 {vi,v2,v3}

Vy
Vy Vs
Fig (6)

Theorem 2:

For regular graph K-regular. First neighborhood for each
vertex equal to second neighborhood, N*(v)=N?(v) .
For complete graph:

All results discussed on regular graph is the same on
complete graph.
Example 6:
For K, (regular graph with 4 vertices) shown in fig(7),we have:

Vertex | N'(v) [ Deg(v) | N*v)
T | {234} | 3 | {234}
2 {1,3,4} 3 {1,3,4}
3 |24y | 3 | {124}
4 | {123y 3 | {123}

Fig (7)

For cyclic graph:

We have two cases on cycle graph, n-cycle.

Cas (1) for n=3 ,(3-cycle)

Example 7:

Consider cycle graph with 3 vertices(3-cycle) fig(8), we can
compute first and second neighborhood as follows:

vertex | N'(v) | Deg(v) | N*(v)
1 {2,3} 2 non
2 {1,3} 2 non
3 {1,2} 2 non

@

Fig (8)
Cas (2): for n>3
Example 8:
Consider cycle graph (4-cycle) with 4 vertices shown in fig (9),

vertex | N(v) | Deg(v) | N%(V)
1 {2,4} 2 {3}

2 {31} 2 {4}
3 {2,4} 2 {1}
4 {13} 2 {2}

Fig (9)

For 5-cycle graph Cs with 5 vertices shown in fig (10),

Example 9:

Vertex | NY(v) | Deg(v) | N(v)
V1 {v3,v5} 2 {v3,v4}
V2 {v1,v3} 2 {v1,v5}
V3 {v2,v4} 2 {v1,v5}
V4 {v3,v5} 2 {viv2}
V5 {v1i,v4} 2 {v2,v3}

E-3
Ve v
¢.
Fig (10)

Theorem 2:

For cycle graph n-cycle we have two cases,

Cas (1): for n=3

i. First neighborhood for each vertex equal to (n-1).
ii. Second neighborhood doesn't exist.

Cas (2): for n>3

i. First neighborhood for each vertex equal to 2.

ii. Second neighborhood for each vertex equal to (n-3).
Proof:

The proof comes directly from the above discussion.
Neighborhood for edge e on graph G:

Example 10:

For bipartite graph shown in fig(2),

Edge Ni(e) N%(e)
el | {e2,e6,e7,e8} | {e3,e4,e5}
e2 {el,e3,e8,e9} | {e4,e5,e6}
e3 {e2,e4,e7,e9} | {el,e5,e6}
ed {e2,e5,e7,e8} | {el,e2,e6}
e5 {e4,66,e8,e9} | {el,e2,e3}
e6 {el,e5,e7,e9} | {e2,e3,e4}
e7 {el,e3,e4,e6} {e2,e5}
e8 {el,e2,e4,e5} {e3,e6}
e9 {e2,e3,e5,e6} {el,e4}

Neighborhood and shortest path algorithm in weighted
graph:
Definition 1:

Shortest path algorithm for n-neighborhood for a vertex v
on graph G is the n-neighborhood of a vertex that have the
smallest weight.
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Note:

To find shortest path algorithm for n-neighborhood we must
optain minimum spanning tree first by using appropriate
algorithm.

Kruskal’s Algorithm[5]
Input: G [a weighed graph with n vertices)
Algorithm Body:

[Build a subgraph T of G to consist of all the vertices of G with edges added in order
of increasing weight. At each stage, let m be the number of edges of T ]

1. Imtialize T to have all the vertices of G and no edges.
2, Let E be the set of all edges of G, and let m =0,
[ pre-condition.: G is connected. )
3. while (m <n—1)
3a. Find an edge ¢ in £ of least weight.
3b. Delete e from E.
3e. if addition of ¢ to the edge set of T does not produce a circuit
then add ¢ to the edge set of T and set m :=m + 1
end while
[ post-condition: T is a minimum spanning tree for (G.]
Output: T
Example 11:

Describe the action of Kruskals algorithm for the graph shown in Figure 11

Minneapolis

Milwaukee

Detroit

7
695 \ Chicag 3
262
306 230
Cincinnati
83
51

4
0 48
St. Louis BYy) Louisville
)

Nashville

Figure (11)

Solution Iteration Number |  Edge Considered ’ Weight | Action Taken
| Chicago-Mifwaukee 4 added
2 Louisville-Cincinnati § added
] Louisvifle-Nashville 151 added
4 Cincinnati-Detroit 10 added
5 St Louis-Louisville 1 added
§ St. Lovis-Chicago 1| added
1 Chicago-Louisville yill not added
§ Louisville-Detroit 306 not added
9 Louisville-Mitwaukee | 348 not added
10 Minneapolis-Chicago | 355 added
The tree prodeced by Krudkal's algorithm s shown in Figure \::_

Mizscyquir
.

Plandwilk

SNudvile

Figure g

Then we can determine first and second neighborhood as
follows:

vertex N*(v) N%(v)
Minneapolis {Chicago} non
Chicago {Milwaukee } | { Louisvill}
Milwaukee { Chicago} {St.Louis}
Detroit { Cincinnati } | { Louisvill}
Cincinnati { Louisvill} { Nashvill }
Louisvill { Cincinnati } { Detroit}
Nashvill { Louisvill} | {Cincinnati }
St.Louis { Louisvill} | {Cincinnati }

Example 12:

For a graph shown in fig(13) ,compute first and second
neighborhood of shortest path.
Solution:

First we find minimum spanning tree by describing the
action of Kruskal's algorithm.

Iteration no. | Edge considered | weight | Action taken
1 DCA - JFK 370 added
2 YYZ-YUL 516 added
3 YUL - JFK 544 added
4 YYZ - JEK 593 not added
5 YYZ - LAX 3523 added
6 LAX - JFK 4010 not added

LAX 3593YYZ 516 YUL

4010 o4
DCA 370
Fig (12)

the tree produced by Kruskal' s algorithm will be:

LAX 3593YYZ 51 YUL

44

DCA 370 FK

Fig (14)
then we can compute first and second neighborhood as follows:

vertex | N(v) N*(v)
LAX | {YYZ} | {YUL}
YYZ | {YUL} | {JFK}
yuL | {vYz} | {DCA}
JFK | {DCA} | {YYZ}
DCA | {JFK} | {YUL}
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