First and second neighborhood for some graphs and its algorithm

Habiba EL-Zohny ${ }^{1}$, Randa Salam ${ }^{2}$ and Hend EL-Morsy ${ }^{3}$
Department of Mathematics, Faculty of Science, Al-Azahar University, Cairo, Egypt.

ARTICLE INFO

Article history:

Received: 12 June 2011;
Received in revised form:
19 July 2011;
Accepted: 29 July 2011;

Keywords

Neighborhood,
Types of graphs,
Shortest path algorithm.

Introduction

Difinitions and background:

Definition 1: Degree of vertex:

Let G be an undirected graph or multigraph. For each vertex of G, the degree of v, written $\operatorname{deg}(v)$, is the number of edges in G that are incident with v .[3]

Definition 2: bipartite graph:

A graph G is bipartite if the set of its vertices can be divided into two disjoint subsets such that each edge has an endvertex in each subset. We denote a bipartite graph by $\mathrm{G}=(\mathrm{X} ; \square \mathrm{Y} ; \mathrm{E})$, where $\mathrm{X} \square$ and Y are the two subsets of vertices (and so XUY \square is the set of all vertices) and E is the set of edges.[2]

Definition 3: complete bipartite graph:

A bipartite graph $G \square=(\mathrm{X} ; \square \mathrm{Y} ; \mathrm{E})$ is complete if it is simple and the set of its edges is $E \square=\{\mathrm{xy} \mid \mathrm{x} € \mathrm{X} ; y € Y\}$ that is any pair of a vertex of X and of a vertex of $G \square i s$ an edge of G. It is denoted by $\mathrm{K}_{\mathrm{p}, \mathrm{q}}$; where $\mathrm{p} \square$ is the cardinality of $\mathrm{X} \square$ and q the cardinality of Y.[1]

Definition 4: Cycle graph:

A cycle graph $C^{\#}$, sometimes simply known as an $n_{\text {-cycle is }}$ a graph on $n_{\text {nodes containing a single cycle through all nodes. }}$
Alternatively, a cycle can be defined as a closed path.[4]

Definition 5: Regular graphs:

A graph $\mathrm{G} \square$ is said to be regular when the degrees of its vertices are all equal.[2]

Definition 6: Complete graph:

Let v be a set of n vertices, the complete graph on v denoted k_{n}, is a loop free undirected graph, where for all $a, b € v$,$a \neq b$ there is an edge $\{a, b\} .[1]$

Definition7: weighted graph:

Is a graph for which each edge has an associated real number weight.[5]

Definition 8:

Spanning tree for a graph G is a subgraph of G that contains every vertex of G and is a tree.[5]

Tele:

E-mail addresses: hendelmorsy@yahoo.com

Minimal spanning tree for a weighted graph is a spanning tree that has at least possible total weight compared to all other spanning trees for the graphs.[5]

Main Result:

Definition 1:

First neighborhood of vertex v on graph G denoted by $N^{1}(v)$ or $\mathrm{N}^{1}{ }_{\mathrm{G}}(\mathrm{v})$ is the set of all vertices adjacent to v by one vertex.

Definition 2:

Second neighborhood of vertex v on graph G denoted by $\mathrm{N}_{\mathrm{G}}{ }^{2}(\mathrm{v})$ is the set of all vertices adjacent to v by path of length two.

Definition 3:

$N_{\text {_ }}$ neighborhood of vertex v on graph G denoted by $N_{G}{ }_{G}(v)$) is the set of all vertices adjacent to v by path of length n.

Definition 4:

First neighborhood of edge e on graph G denoted by $N^{1}(e)$ or $\mathrm{N}_{\mathrm{G}}{ }^{1}(\mathrm{e})$ is the set of all edges connect e by one edge.

Definition 5:

Second neighborhood of edge e on graph G denoted by $N^{2}(e)$ or $N_{G}^{2}(e)$ is the set of all edges connect e by path of length two.

Definition 6:

N_ neighborhood of edge e on graph G denoted by $\mathrm{N}^{\mathrm{n}}(\mathrm{e})$ or $\mathrm{N}_{\mathrm{G}}{ }_{\mathrm{G}}(\mathrm{e})$ is the set of all edges connect e by path of length n .
Neighborhood of vertex v on graph G.

Lemma 1:

First neighborhood of vertex v on graph G equal to the degree of this vertex.

Example 1:

Consider a graph shown in fig(1), we can compute first and second neighborhood , and degree of all vertex as follows:

Vertex	$\mathrm{N}^{1}(\mathrm{v})$	Deg (v)	$\mathrm{N}^{2}(\mathrm{v})$
1	$\mathrm{~N}^{1}(1)=\{2,5\}$	2	$\mathrm{~N}^{2}(1)=\{4,3\}$
2	$\mathrm{~N}^{1}(2)=\{1,3,5\}$	3	$\mathrm{~N}^{2}(2)=\{4\}$
3	$\mathrm{~N}^{1}(3)=\{2,4\}$	2	$\mathrm{~N}^{2}(3)=\{1,5,6\}$
4	$\mathrm{~N}^{1}(4)=\{3,5,6\}$	3	$\mathrm{~N}^{2}(4)=\{1,2\}$
5	$\mathrm{~N}^{1}(5)=\{1,2,4\}$	3	$\mathrm{~N}^{2}(5)=\{3,6\}$
6	$\mathrm{~N}^{1}(6)=\{4\}$	1	$\mathrm{~N}^{2}(6)=\{3,5\}$

Fig (1)
First and second neighborhood for special graphs:
For complete bipartite graph:
There are many types of complete bipartite graphs $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$.

Cas(1): when $\mathrm{m}=\mathrm{n}$

Example 2:

We can compute first and second neighborhood for complete bipartite graph shown in $\operatorname{fig}(2)$ as follows:

Vertex	$\mathrm{N}^{1}(\mathrm{v})$	$\operatorname{Deg}(\mathrm{v})$	$\mathrm{N}^{2}(\mathrm{v})$
V1	$\{\mathrm{v} 2, \mathrm{v} 4, \mathrm{v} 6\}$	3	$\{\mathrm{v} 5, \mathrm{v} 3\}$
V2	$\{\mathrm{v} 1, \mathrm{v} 3, \mathrm{v} 5\}$	3	$\{\mathrm{v} 4, \mathrm{v} 6\}$
V3	$\{\mathrm{v} 2, \mathrm{v} 4, \mathrm{v} 6\}$	3	$\{\mathrm{v} 1, \mathrm{v} 5\}$
V4	$\{\mathrm{v} 1, \mathrm{v} 3, \mathrm{v} 5\}$	3	$\{\mathrm{v} 2, \mathrm{v} 6\}$
V5	$\{\mathrm{v} 2, \mathrm{v} 4, \mathrm{v} 6\}$	3	$\{\mathrm{v} 1, \mathrm{v} 3\}$
V6	$\{\mathrm{v} 1, \mathrm{v} 3, \mathrm{v} 5\}$	3	$\{\mathrm{v} 2, \mathrm{v} 4\}$

Fig (2)

Example 3:

For fig(3) , $\mathrm{K}_{4,4}$ we have:

Fig (3)

Vertex	$\mathrm{N}^{1}(\mathrm{v})$	$\operatorname{deg}(\mathrm{v})$	$\mathrm{N}^{2}(\mathrm{v})$
1	$\{5,6,7,8\}$	4	$\{2,3,4\}$
2	$\{5,6,7,8\}$	4	$\{1,3,4\}$
3	$\{5,6,7,8\}$	4	$\{1,2,4\}$
4	$\{5,6,7,8\}$	4	$\{1,2,3\}$
5	$\{5,6,7,8\}$	4	$\{6,7,8\}$
6	$\{5,6,7,8\}$	4	$\{5,7,8\}$
7	$\{5,6,7,8\}$	4	$\{5,6,8\}$
8	$\{5,6,7,8\}$	4	$\{5,6,7\}$

Cas(2): when $m \neq n$

Example 4:

Consider bipartite graph $\mathrm{K}_{3,2}$ with $\mathrm{m}=3, \mathrm{n}=2$ as shown in fig(4).

Vertex	$\mathrm{N}^{1}(\mathrm{v})$	$\operatorname{Deg}(\mathrm{v})$	$\mathrm{N}^{2}(\mathrm{v})$
1	$\{4,5\}$	2	$\{2,3\}$
2	$\{4,5\}$	2	$\{1,3\}$
3	$\{4,5\}$	2	$\{1,2\}$
4	$\{1,2,3\}$	3	$\{5\}$
5	$\{1,2,3\}$	3	$\{4\}$

Fig (4)

Theorem 1:

For complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$, for $\mathrm{m}=\mathrm{n}$
i. first neighborhood for every vertex on set m is equal to all vertices on a set n , and converse is true.
ii.second neighborhood for every vertex is equal to (m-1) or (n1).

For $\mathrm{m} \neq \mathrm{n}$
i. first neighborhood for every vertex on set m is equal to all vertices on a set n . and the converse is true.
ii.second neighborhood for every vertex on set m is equal to (m 1), and for every vertex on a set n is equal to ($n-1$).

Proof:

The proof comes directly from the above discussion.

For regular graph:

We can compute first and second neighborhood for regular graph on the same way.

Example 5:

Consider 4-regular graph as shown in fig (5),we have:

Vertex	$\mathrm{N}^{1}(\mathrm{v})$	$\operatorname{Deg}(\mathrm{v})$	$\mathrm{N}^{2}(\mathrm{v})$
V1	$\{\mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 4, \mathrm{v} 5\}$	4	$\{\mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 4, \mathrm{v} 5\}$
V2	$\{\mathrm{v} 1, \mathrm{v} 3, \mathrm{v} 4, \mathrm{v} 5\}$	4	$\{\mathrm{v} 1, \mathrm{v} 3, \mathrm{v} 4, \mathrm{v} 5\}$
V3	$\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 4, \mathrm{v} 5\}$	4	$\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 4, \mathrm{v} 5\}$
V4	$\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 5\}$	4	$\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 5\}$
V5	$\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 4\}$	4	$\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 4\}$

Fig(5)

Example 6:

For 3-regular graph shown in fig(6) we have:

Vertex	$\mathrm{N}^{1}(\mathrm{v})$	$\operatorname{Deg}(\mathrm{v})$	$\mathrm{N}^{2}(\mathrm{v})$
V1	$\{\mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 4\}$	3	$\{\mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 4\}$
V 2	$\{\mathrm{v} 1, \mathrm{v} 3, \mathrm{v} 4\}$	3	$\{\mathrm{v} 1, \mathrm{v} 3, \mathrm{v} 4\}$
V3	$\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 4\}$	3	$\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 4\}$
V4	$\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3\}$	3	$\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3\}$

Fig (6)

Theorem 2:

For regular graph K-regular. First neighborhood for each vertex equal to second neighborhood, $N^{1}(v)=N^{2}(v)$.

For complete graph:

All results discussed on regular graph is the same on complete graph.

Example 6:

For K_{4} (regular graph with 4 vertices) shown in fig(7), we have:

Vertex	$\mathrm{N}^{1}(\mathrm{v})$	$\operatorname{Deg}(\mathrm{v})$	$\mathrm{N}^{2}(\mathrm{v})$
1	$\{2,3,4\}$	3	$\{2,3,4\}$
2	$\{1,3,4\}$	3	$\{1,3,4\}$
3	$\{1,2,4\}$	3	$\{1,2,4\}$
4	$\{1,2,3\}$	3	$\{1,2,3\}$

Fig (7)

For cyclic graph:

We have two cases on cycle graph, n-cycle.
Cas (1) for $\mathrm{n}=3$,(3-cycle)

Example 7:

Consider cycle graph with 3 vertices(3-cycle) fig(8), we can compute first and second neighborhood as follows:

vertex	$\mathrm{N}^{1}(\mathrm{v})$	$\operatorname{Deg}(\mathrm{v})$	$\mathrm{N}^{2}(\mathrm{v})$
1	$\{2,3\}$	2	non
2	$\{1,3\}$	2	non
3	$\{1,2\}$	2	non

Fig (8)

Cas (2): for $\mathrm{n}>3$

Example 8:

Consider cycle graph (4-cycle) with 4 vertices shown in fig (9),

vertex	$\mathrm{N}^{1}(\mathrm{v})$	$\operatorname{Deg}(\mathrm{v})$	$\mathrm{N}^{2}(\mathrm{~V})$
1	$\{2,4\}$	2	$\{3\}$
2	$\{3,1\}$	2	$\{4\}$
3	$\{2,4\}$	2	$\{1\}$
4	$\{1,3\}$	2	$\{2\}$

Fig (9)

Example 9:

For 5-cycle graph C_{5} with 5 vertices shown in fig (10),

Vertex	$\mathrm{N}^{1}(\mathrm{v})$	$\operatorname{Deg}(\mathrm{v})$	$\mathrm{N}^{2}(\mathrm{v})$
V1	$\{\mathrm{v} 3, \mathrm{v} 5\}$	2	$\{\mathrm{v} 3, \mathrm{v} 4\}$
V2	$\{\mathrm{v} 1, \mathrm{v} 3\}$	2	$\{\mathrm{v} 1, \mathrm{v} 5\}$
V3	$\{\mathrm{v} 2, \mathrm{v} 4\}$	2	$\{\mathrm{v} 1, \mathrm{v} 5\}$
V4	$\{\mathrm{v} 3, \mathrm{v} 5\}$	2	$\{\mathrm{v} 1, \mathrm{v} 2\}$
V5	$\{\mathrm{v} 1, \mathrm{v} 4\}$	2	$\{\mathrm{v} 2, \mathrm{v} 3\}$

Fig (10)

Theorem 2:

For cycle graph n-cycle we have two cases,
Cas (1): for $\mathrm{n}=3$
i. First neighborhood for each vertex equal to ($\mathrm{n}-1$).
ii. Second neighborhood doesn't exist.

Cas (2): for $n>3$
i. First neighborhood for each vertex equal to 2 .
ii. Second neighborhood for each vertex equal to ($n-3$).

Proof:

The proof comes directly from the above discussion.
Neighborhood for edge e on graph G:
Example 10:
For bipartite graph shown in fig(2),

Edge	$\mathrm{N}^{1}(\mathrm{e})$	$\mathrm{N}^{2}(\mathrm{e})$
e 1	$\{\mathrm{e} 2, \mathrm{e} 6, \mathrm{e} 7, \mathrm{e} 8\}$	$\{\mathrm{e} 3, \mathrm{e} 4, \mathrm{e} 5\}$
e 2	$\{\mathrm{e} 1, \mathrm{e} 3, \mathrm{e} 8, \mathrm{e} 9\}$	$\{\mathrm{e} 4, \mathrm{e} 5, \mathrm{e} 6\}$
e 3	$\{\mathrm{e} 2, \mathrm{e} 4, \mathrm{e} 7, \mathrm{e} 9\}$	$\{\mathrm{e} 1, \mathrm{e} 5, \mathrm{e} 6\}$
e 4	$\{\mathrm{e} 2, \mathrm{e} 5, \mathrm{e} 7, \mathrm{e} 8\}$	$\{\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 6\}$
e 5	$\{\mathrm{e} 4, \mathrm{e} 6, \mathrm{e} 8, \mathrm{e} 9\}$	$\{\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 3\}$
e 6	$\{\mathrm{e} 1, \mathrm{e} 5, \mathrm{e} 7, \mathrm{e} 9\}$	$\{\mathrm{e} 2, \mathrm{e} 3, \mathrm{e} 4\}$
e 7	$\{\mathrm{e} 1, \mathrm{e} 3, \mathrm{e} 4, \mathrm{e} 6\}$	$\{\mathrm{e} 2, \mathrm{e} 5\}$
e 8	$\{\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 4, \mathrm{e} 5\}$	$\{\mathrm{e} 3, \mathrm{e} 6\}$
e 9	$\{\mathrm{e} 2, \mathrm{e} 3, \mathrm{e} 5, \mathrm{e} 6\}$	$\{\mathrm{e} 1, \mathrm{e} 4\}$

Neighborhood and shortest path algorithm in weighted graph:

Definition 1:

Shortest path algorithm for n-neighborhood for a vertex v on graph G is the n-neighborhood of a vertex that have the smallest weight.

Note:

To find shortest path algorithm for n-neighborhood we must optain minimum spanning tree first by using appropriate algorithm.

Kruskal's Algorithm[5]

Input: G [a weighed graph with n vertices]

Algorithm Body:

[Build a subgraph T of G to consist of all the vertices of G with edges added in order of increasing weight. At each stage, let m be the number of edges of T.]

1. Initialize T to have all the vertices of G and no edges.
2. Let E be the set of all edges of G, and let $m:=0$.
[pre-condition: G is connected.]
3. while ($m<n-1$)

3a. Find an edge e in E of least weight.
3b. Delete e from E.
3c. If addition of e to the edge set of T does not produce a circuit
then add e to the edge set of T and set $m:=m+1$
end while
[post-condition: T is a minimum spanning tree for G.]
Output: T

Example 11:

Describe the action of Kruskal's algorithm for the graph shown in Figure 11

Figure (11)

Solution	Iteration Number	Edge Considered	Weight	Action Taken
	1	Chicago-Milwaukee	74	added
	2	Louisyille-Cincinnati	83	added
	3	Louisville-Nashrille	151	added
	4	Cincinnati-Detroit	230	added
	5	St. Louis-Louisville	242	added
	6	St. Lavis-Chicago	262	added
	7	Chicago-Louisville	269	not aded
	8	Louisvilie-Detroit	306	notaded
	9	Louisvilie-Milwauke	348	notaded
	10	Minneapolis-Chicago	355	added

The tree prodsod by Krukal's algorithm is mown in Figure \{Z

Then we can determine first and second neighborhood as follows:

vertex	N^{1} (v)	N^{2} (v)
Minneapolis	\{Chicago \}	non
Chicago	\{Milwaukee \}	\{ Louisvill\}
Milwaukee	\{ Chicago \}	\{St.Louis\}
Detroit	\{ Cincinnati \}	\{ Louisvill\}
Cincinnati	\{Louisvill\}	\{ Nashvill \}
Louisvill	\{ Cincinnati \}	\{ Detroit \}
Nashvill	\{ Louisvill\}	\{ Cincinnati \}
St.Louis	\{ Louisvill \}	\{ Cincinnati \}

Example 12:

For a graph shown in $\mathrm{fig}(13)$,compute first and second neighborhood of shortest path.

Solution:

First we find minimum spanning tree by describing the action of Kruskal's algorithm.

Iteration no.	Edge considered	weight	Action taken
1	DCA - JFK	370	added
2	YYZ - YUL	516	added
3	YUL - JFK	544	added
4	YYZ - JEK	593	not added
5	YYZ - LAX	3523	added
6	LAX - JFK	4010	not added

Fig (12)
the tree produced by Kruskal' s algorithm will be:

Fig (14)
then we can compute first and second neighborhood as follows:

vertex	$\mathrm{N}^{1}(\mathrm{v})$	$\mathrm{N}^{2}(\mathrm{v})$
LAX	$\{\mathrm{YYZ}\}$	$\{\mathrm{YUL}\}$
YYZ	$\{\mathrm{YUL}\}$	$\{\mathrm{JFK}\}$
YUL	$\{\mathrm{YYZ}\}$	$\{\mathrm{DCA}\}$
JFK	$\{\mathrm{DCA}\}$	$\{\mathrm{YYZ}\}$
DCA	$\{\mathrm{JFK}\}$	$\{\mathrm{YUL}\}$

Reference:

[1] Bondy, John Adrian; Murty, U. S. R. (1976), Graph Theory with Applications, North-Holland, ISBN 0-444-19451-7, page 5.
[2] Fournier,Jean-Claude,Graph Theory and applications with Exercises and problems, ISTE Ltd,2009.
[3]Grimadi Ralph,P., Discrete and combinatorial mathematics:An Applied Introduction, Fifth Edition, Pearson Education, Inc., 2004
[4] Pemmaraju, S. and Skiena, S. "Cycles, Stars, and Wheels." §6.2.4 in computational Discrete Mathematics combinatiorics and graph theory in mathematica Cambridge, England: Cambridge University Press, pp. 248-249, 2003.
[5]Susanna S.Epp, Discrete Mathematics With Application, Third Edition, Thomson Learning,Inc,2004.

