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Introduction 

In the past two decades, the dynamics of neural networks 

have received a great deal of interest due to their fruitful 

applications in numerous areas such as associative memory, 

pattern recognition and combinatorial optimization [1-5]. Due to 

the finite speed of information processing, the existence of time-

delays frequently causes oscillation, divergence, or even 

instability in neural networks, which may be harmful to 

successful applications of neural networks, however the 

achieved applications heavily depend on the dynamic behaviors 

of the equilibrium point of neural networks. That is, the stability 

analysis problems of delayed neural networks have gained 

considerable attention, and a large amount of results have 

appeared in the literature [7-16]. Various types of time-delays 

have been investigated, including constant or time-varying 

delays, discrete and distributed delays, and the corresponding 

stability criteria can be classified as delay-dependent or delay-

independent conditions. 

Generally speaking, there are two kinds of disturbances to 

be considered when one model neural networks. They are 

stochastic perturbations and parameter uncertainties, which are 

unavoidable in practice. For the stochastic perturbations, there 

has been a great deal of robust stability criteria proposed by 

many researchers, for example [8-10]. For the uncertainties, 

there has also been a great deal of robust stability criteria 

proposed, for example [11]. [14-16] have considered both 

stochastic perturbations and parameter uncertainties, however, 

the discrete delays are not time-varying and the distributed 

delays are bounded. 

Motivated by the aforementioned discussion, this paper 

focuses on the global asymptotic stability of uncertain stochastic 

neural networks with discrete time-varying delays and 

unbounded distributed delays, the parameter uncertainties are 

norm-bounded, and the neural networks are subjected to 

stochastic disturbances described in terms of a Brownian 

motion. By using Lyapunov-Krasovskii functional, the well-

known Leibniz-Newton formula and the linear matrix inequality 

(LMI) approach, and then to establish easy to test sufficient 

stability conditions under which the addressed neural network is 

globally, robustly, asymptotically stable in the mean square for 

all admissible parameter uncertainties. The LMIs can be easily 

solved by using the Matlab LMI toolbox, and no tuning of 

parameters is required. Ultimately, a simple example is provided 

to demonstrate the effectiveness of the proposed criteria. 

Notations. The notations are quite standard. Throughout this 

letter, nR and n nR  denote, respectively, the n-dimensional 

Euclidean space and the set of all n m  real matrices. The 

superscript “T” denotes matrix transposition and the notation 

X Y (respectively, X Y ) where X  and Y  are symmetric 

matrices, means that -X Y  is positive semi-definite 

(respectively, positive definite). I is the identity matrix of 

appropriate dimension. •  is the Euclidean norm in 
nR . If A is 

a matrix, denote by A  its operator norm, i.e.,  

   maxA sup : 1 TAx x A A    

where  max  (respectively,  min  ) means the largest 

(respectively, smallest) eigenvalue of A .  2l 0, is the space of 

square integral vector. Moreover, let   t 0
,F, F ,

t
P


 be a 

complete probability space with a filtration t 0
F

t
satisfying the 

usual conditions. Denote by   
0

p

FL ,0 ; nh R  the family of all 

0F -measurable   ,0 ; nC h R -valued random variable 

  = : 0h      such that 
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 0sup
p

h E        

where  E  stand for the mathematical expectation operator 

with respect to the given probability measure P . The symmetric 

terms in a symmetric matrix are denoted by *. Sometimes, the 

arguments of a function or a matrix will be omitted in the 

analysis when no confusion can arise. 

Problem formulation 

In this section, we consider the following uncertain 

stochastic neural networks with time-delays: 

1 2 3( ) [ ( ) ( ) ( ) ( ( )) ( ) ( ( ( ))) ( ) ( ) ( ( )) ]

( , ( ), ( ( ))) ( )

t

dx t A t x t B t f x t C t f x t t D t K t s f x s ds dt

t x t x t t dw t



 


      

 

     (1) 

Where        1 2, , ,
T n

nx t x t x t x t R   L is the neural 

state vector, the matrix are the time-varying parameters 

uncertainties. 

( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ),A t A A t B t B B t C t C C t D t D D t       

( ), ( ), ( ), ( )A t B t C t D t     

Where  1 2, , nA diag a a a L is a diagonal matrix, where 

0, 1,2, ,ia i n  L ,   , 1,2,jK k j n  L

, ,n n n n n nB R C R D R     are the connection weight 

matrix, the discrete time-varying delays connection weight 

matrix, and the unbounded distributed delays connection weight 

matrix, respectively. 

          1 1 2 2, , , 1,2,3
T

i i i in nf x t f x f x f x i   L denotes 

the neuron activation function with  0 0if  .  t represents 

the discrete time-varying delay with 0 ( ) , ( ) 1t t u     & and 

the delay kernel jk is a real valued continuous function defined 

on 0, and satisfies  
0

1jk s ds


 . 

       1 2, ,
T m

mt t t t R      L is a m-dimensional Brownian 

motion defined on a complete probability 

space  , ,F P .      , , : n mt x t x t t R R R R       loca

lly Lipschitz continuous and satisfies the linear growth condition 

as well. 

Remark 1. The motivation for considering the system (1) 

containing parameter uncertainties and stochastic perturbations, 

which are unavoidable owing to the complexity of such systems, 

environmental noises in practice, etc. Indeed, it is more 

reasonable and practical than the model of the controlled system 

considered in [21]. 

Remark 2. It should be pointed out that, if we 

let            1 2 3f x t f x t f x t f x t   , the model (1) is 

the one investigated in [12], however its delays are interval, that 

is  1 20 h t h   . 

Remark 3. In system (1), the stochastic disturbance term, 

( , ( ), ( ( ))) ( )t x t x t t dw t  can be viewed as stochastic 

perturbations on the neuron states and delayed neuron states. It 

has been used in recent papers dealing with stochastic neural 

networks, see for example [8,12,15]. 

  In order to obtain our main results, the following 

assumptions are made throughout this paper. 

Assumption 1. The activation function 

   , 1,2,3if x i  is bounded and satisfies the following 

Lipschitz condition:    

  i if x L x                            (2)  

where  1 2, ,i i i inL diag l l l L are known constant 

matrices. 

Assumption 2. The admissible parameter uncertainties are 

assumed to be of the following form: 

         1 1 2 2 3 3 4 4( ), ( ), ( ), ( ) , , ,A t B t C t D t M F t N M F t N M F t N M F t N          (3) 

in which , ( 1,2,3,4)i iM N i  are known real constant matrices 

with appropriate dimensions. The uncertain matrix  F t satisfy:        

       for  .
T

F t F t I t R             (4) 

Assumption 3. Assume that the noise intensity 

matrix      , ,t x t x t t  could be estimated 

by                       1 1 2, , , ,T T Tt x t x t t P ML t x t x t t x t Px ttr x t t P xc ta e t          





 

in which  1 2 1 2, , 0, , nP P P M diag m m m  L and 1L is 

defined in (2). 

Now, we give the following lemmas that are useful in 

deriving our LMI-based stability criteria. 

Lemma 1 ([23]). For given matrices ,   D E and F with 

TF F I and scalar 0  , the following inequality holds:  
1T T T T TDFE E F D DD E E     . 

Lemma 2 ([22]). Assume that 

, ,  Na b a bn n n n
a R b R and R


    are defined, then for any 

matrices ,  Za b a b a bn n n n n n
X R Y R and R

  
   , the 

following holds: 

2 ,          0
* *

T

T
a X Y N a X Y

a Nb
b Z b Z

       
         

       
 

Lemma 3 ([17] Schur complement). Given constant 

matrices 1 2 3, ,   where 1 1

T   and 

2 20 T    , then 1

1 3 2 3 0T       if and only if 

2 31 3

12

0,     0
**

T      
    

   
 

Lemma 4 ([12]). For any real matrices 1 2 3, ,   of 

appropriate dimensions and a positive scalar  , such 

that 3 30 T  . Then the following inequality holds  

1 1

1 2 1 3 1 2 3 22 T T T              

Lemma 5 ([19]). For any constant matrix 

, 0n n TM R M M   , a scalar 0  ,vector function 

 : 0, nR   such that the integrations are well defined, 

the following inequality holds: 

       
0 0 0

T
Ts ds M s ds s M s ds

  

        
          

Main results and proofs 

For the sake of presentation simplicity, we denote: 
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1 1 1 1 2 2 2 3 3 3 4 4 4

2 5 1 1 6 2 2 7 3 3 8 4 4

= , ,0, , ,0

= , ,0, , ,0

T T T T

T T T T

diag N N N N N N N N

diag N N N N N N N N

   

   




 

 

 

 

1 1 5 1 9 1

2 2 6 2 10 2

3 3 7 3 11 3

4 4

,0,0,0,0,0 , ,0,0,0,0,0 , 0, ,0,0,0,0

,0,0,0,0,0 , 0, ,0,0,0,0 , 0, ,0,0,0,0

,0,0,0,0,0 , 0,0,0, ,0,0 , 0, ,0,0,0,0

T TTT T T T

T TTT T T T

T TTT T T T

M P N M M

M P N M M

M P N M M

M

            

           

           

   8 4 12 4,0,0,0,0,0 , 0,0,0,0, ,0 , 0, ,0,0,0,0
T TTT T T TP N M M         

 

 

1

2 2 2 2

2

1,1 0

* 2 0

* * ( 1) 0 0

* * * ( 1) 0

* * * *

* * * * *

T T

T

T

T

T

PB PC Y PD A Z

MB D MC MD B Z

u Q P L D L Y

u R X D C Z

E D Z

Z





 





  
 

 
   

   
   

 
 

  

, 

where 

  2 2 3 3 1 1 1 1 11,1 2T T T T TP A AP L RL L EL P Q L MA L D L          

Now, we are in the position to give the main results, which 

can be expressed as the feasibility of two linear matrix 

inequalities. 

Theorem 1. For given    1 2, , , 1,2,3i i i inL diag l l l i L , 

the neural network (1) is globally, robustly, asymptotically 

stable in the mean square if there exist positive 

scalars  0 1, ,8i i   L  and positive definite 

matrices
1 2, , , , , , , ,P P P Q R X Y Z positive diagonal 

matrices 1 2, , ,E M D D  

such that the following two linear matrix inequalities hold: 

1 2 1 2 3 4 9 10 11 12

1

2

3

1 4

5

6

7

8

+

* 0 0 0 0 0 0 0

* * 0 0 0 0 0 0

* * * 0 0 0 0 0

* * * * 0 0 0 0 0

* * * * * 0 0 0

* * * * * * 0 0

* * * * * * * 0

* * * * * * * *

I

I

I

I

I

I

I

I

















           
 


 
 
 

 
    
 

 
 
 

 
 

  

    (5) 

2 0
*

X Y

Z

 
   

 

,                         (6)  

Proof. At first, we consider the following system 

1 2 3( ) [ ( ) ( ( )) ( ( ( ))) ( ) ( ( )) ] ( , ( ), ( ( ))) ( )
t

dx t Ax t Bf x t Cf x t t D K t s f x s ds dt t x t x t t dw t  


          (7) 

The Lyapunov functional of system (7) is defined by: 

   1 2 3 4 5 6,V t x t V V V V V V       

     
 

   
 

     
 

        

1 2 1
0

1

3 4 2 2

0
2

5 6 3
0

1

                              2      

                  

           

i t
n x

T

i i

i

t t
T T

t t t t

nt t
T

j j j
t t

j

V x t Px t V m f s ds

V x s Qx s ds V f x s Rf x s ds

V x s Zx s dsd V e k f x s dsd

 

  
  



 



  


 

 

 

 

 

   & &

 

By ˆ 'Ito s differential formula, the stochastic derivative of 

  ,V t x t along (7) can be obtained as follows: 

   
    

           

       

1 2 3

1 2 3

1

2 1 1

3

4 2 2 2

( ) ( ( )) ( ( ( ))) ( ) ( ( ))

( ) ( ( )) ( ( ( ))) ( ) ( ( ))

2 ( )

2 ( )

1

1

T T

T T

T

t

T T

T

t

Ax t Bf x t Cf x t t D K t sdV x t P trace P

dV f x t M trace ML

dV

f x

x t Qx t u x t t Qx t t

dV f x t Rf x

s ds

Ax t Bf x t Cf x t t D K t s f x

t u f

s s

x

d

 





 

 





  

  



    



   

 





  





       

       
 

         

2

5

6 3 3 33 ( ) ( ( )) ( ) ( ( ))
t

t
T T

t t

T
T

t

t t Rf x t t

dV x t Zx t x t Zx t ds

dV f x K t s f x s dst Ef x t E K t s f x s ds



 



 





 

 

  





& & & &

    (8) 

By well-known Leibniz-Newton formula, the following 

equation satisfies 

          
  22 0

t

t t
f x t t x t x t t x s ds


 


     &           (9) 

and because 

               

       
1 1 1 1 1 1 2 2 2

2 2 2                                0

T T T

T

x t L D L x t f x t D f x t x t t L D L x t t

f x t t D f x t t

 

 

   

   
         (10) 

Using (2), (8),(9),(10) we have  

  

 

 

   
 

          
  

1
1

2 2 2 2

2

2

1,1 0

* 2 0

, * * ( 1) 0 0

* * * ( 1) 0

* * * *

2

T T T

t t
T

t t t t

PB PC PD

MB D MC MD

dV t x t Zu Q P L D L

u R D

E

x t Zx t ds f x t t x t x t t x s ds
 

    

 



 

 
 

 
      
 

  
  

      & & &

    (11) 

where 

             
 

31 2, , , , ( ) (

0

(

, , , ,

))
T

t
T

T T T T

T

K t s f x st x t f t x t t f t t

ZA ZB ZC ZD

ds  

   



 
   
 

  


 

By applying Lemma (2) to a term in (11), we have the 

following relationship: 

     
 

       

              
 

2 2 2

2

2

2

t
T

t t

t
T T

t t

f x t t x s ds f x t t Xf x t t

f x t t Y I x t x t t x t Zx t ds





   

 





    

     





&

& &

   (12) 

where , ,X Y Z satisfy the LMI condition (6).  

substituting (12) to (11) and using Lemma (3), we know that 

  , TdV t x t                                                             (13)     

If the matrix 0  , then there exist a positive scalar 0  such 

that  

0 0 0 0 0

* 0 0 0 0 0

* * 0 0 0 0
0

* * * 0 0 0

* * * * 0 0

* * * * 0 0

I 
 
 
 

   
 
 
 
  

 

Taking the mathematical expectation of both sides of (13), 

we have  

  
   

2,
T

dEV t x t
E E x t

dt
      . 

Which indicates from the Lyapunov stability theory that the 

neural network (7) is globally, robustly, asymptotically stable in 

the mean square.  
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Then using Lemma (3) again, the system (1) is globally, 

robustly, asymptotically stable in the mean square if the 

following inequality holds: 

       

       

1 5 2 6 3 7 4 8

9 5 10 6 11 7 12 8

2 2 2 2

   2 2 2 2 0

T T T T

T T T T

F t F t F t F t

F t F t F t F t

           

            
      (14) 

By inequality (4) and lemma 4, inequality (14) holds if the 

following inequality satisfies: 
1 1 1 1

1 1 1 1 5 5 2 2 2 2 6 6 3 3 3 3 7 7 4 4 4 4 8 8

1 1 1 1

5 9 9 5 5 5 6 10 10 6 6 6 7 11 11 7 7 7 8 12 12 8 8 8

1 1 1 1

1 2 1 1 1 2 2 2 3 3 3 4 4 4

 

T T T T T T T T

T T T T T T T T

T T T T

       

       

   

   

   

   

                       

                       

              

1 1 1 1

5 9 9 6 10 10 7 11 11 8 12 12       0T T T T                  

    (15) 

Then using Lemma (3) again, the inequality (14) is 

equivalent to the LMI (5). Thus it can now be concluded that if 

the LMIs given (5) and (6) hold, the neural network (1) is 

globally, robustly, asymptotically stable in the mean square. 

This completes the proof of Theorem 1. 

Remark 4. In [15, 16], the authors studied the global 

stability results for neural networks with discrete delays and 

distributed delays, however, the discrete delays are constant and 

the distributed delays is bounded. In [10], exponential stability a 

criteria of neural networks with continuously distributed delays 

was derived, however, the stochastic term and parameter 

uncertainties were not taken into account in the models. 

Therefore, our model considered in this paper is more general 

than those reported in [10, 15, and 16]. 

Numerical examples 

Example. Let us consider a third-order delayed neural 

network (1). The network date are given as follows: 

2.5 0 0 0.3 1.7 0.6 0.7 0.2 0.1 0.4 0.2 0.1

0 3.9 0  B= 1.0 1.6 1.1  C= 0.2 0.5 0.5  D= 0.3 0.7 0.2  

0 0 3.7 0.6 0.4 0.2 0.9 1.1 1.3 1.2 1.1 0.5

A

         
       

    
       
                

 

 1 2 1 2 3

1 2 3 4 1 2 3 4

0.1,0,3,0,.1 ,   L 0.1 ,  L 0.2 ,   L 0.3 ,  u=0.6

0.2 ,   0.3 ,    =1.2

P P diag I I I

M M M M I N N N N I 

    

       
 

Then, solving the LMIs (5) and (6) by the Matlab’s LMI 

Toolbox, then we found that the LMIs given in the Theorem 1 

are feasible and we obtained 

1 2 3 4

5 6 7 8

925.7140,    947.3097,    926.7531,    959.5230,

901.4975,    923.0604,    902.5132,    935.2631,

   

   

   

   
 

3

810.0292 112.3832 -0.3050 1.3395 0.2447 -0.0263 1.5322 0.1219 -0.1925

112.3832 641.0574 -16.3042 , 0.2447 1.5294 -0.0771 10 , 0.1219 1.4808 -0.3130

-0.3050 -16.3042 539.4389 -0.0263 -0.0771 1.3633 -0

P Q R

   
   

   
   
      

310 ,

.1925 -0.3130 1.5022

671.0250 -9.8821 41.0062 164.0198 5.7990 0.6568 195.9817 25.

-9.8821 735.0114 76.6749 , 5.7990 137.3637 -1.6511 ,

41.0062 76.6749 746.2823 0.6568 -1.6511 135.8104

X Y Z

 
 


 
  

   
   

  
   
      

3

8394 1.9818

25.8394 111.7199 -1.2315 ,

1.9818 -1.2315 96.0086

1.4739 0 0 159.6858 0 0

                               0 1.5410 0 10 , 0 135.7029 0 ,

0 0 1.1395 0 0 151.3877

                      

E M

 
 
 
  

   
   

  
   
      

3 3

1 2

1.7370 0 0 1.3314 0 0

           0 3.0396 0 10 , 0 1.4340 0 10

0 0 1.4173 0 0 1.3679

D D

   
   

   
   
      

 which indicates that the delayed stochastic neural network 

(1) is globally, robustly, asymptotically stable in the mean 

square. 

Conclusions 

In this paper, we have performed a global asymptotic 

stability analysis problem for a general class of uncertain 

stochastic neural networks with mixed time-delays. We have 

removed the traditional monotonic and smoothness assumptions 

on the activation function. The stability criteria have been given 

in terms of liner matrix inequality (LMI), which can be checked 

easily by using the Matlab LMI toolbox. A simple example has 

been used to demonstrate the usefulness of the main results. In 

the future research, we can extend the present results to more 

general cases, for example, the case that the delays are multiple 

and the case that exponential stability is investigated. 
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