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Introduction 

Survival analysis is considered as the backbone of medical 

research and is based on the observed time of event.  

The event of interest may for instance be death or recovery 

from treatment. Survival analysis is based on three techniques i) 

parametric ii) Semi-parametric and iii) Non-parametric.  

Non-parametric technique is more commonly used 

technique (Fleming & Harrington, 1984), due to relax conditions 

about the assumptions of distributions.  

Kaplan-Meier survival function (1958) is the most famous 

and commonly used non-parametric technique of survival 

analysis. To define the function we proceed as: 

Let the survival times X1, X2, …, Xn be independently 

identically distributed according to the distribution function F 

(x).  

Similarly, let Y1, Y2, …, Yn be independently identically 

distributed censoring times according to G(y). In addition, the 

survival times Xi and censoring times Yi are assumed to be 

independent (Miller and Rupert, 1983). 

The observable random variables are Ti= min {Xi, Yi} and 

δ i = I (Xi ≤ Yi) indicates whether the survival time is uncensored 

or censored. Let T1 < … < Tn denote the ordered observed 

survival times, and let δ1, …, δn be their corresponding 

(unordered) indicator values.  

Let the number of individuals who are alive just before time 

ti, including those who are about to die at this time, be denoted 

by ri and ei denotes the number who die at this time.  

Using these notations, the Kaplan- Meier estimator is defined as  
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Another non-parametric similar approach for calculating the 

survival function is the Bootstrap survival function.  

A brief introduction of the function is defined below: 

 

Bootstrap Method 

The Bootstrap (Effron, 1979) is a method for calculating the 

approximated biases, standard deviations, confidence intervals 

etc. Except these applications, Bootstrap also doing a reasonable 

job under a variety of situations. e.g. in survival analysis, one 

can use the Bootstrap to estimate the survival probabilities (as 

by Kaplan-Meier, 1958). 

Sampling scheme for Bootstrapping censored data was 

introduced by Efron for „Bootstraping individual‟ k, sample a 

survival time and censoring indicator pair (t i, δ i) with 

replacement from the data set { (t i, δ i), i=1, …, n}. If n Bootstrap 

individuals are generated, a Bootstrap replicate can be found by 

applying the Kaplan-Meier estimator to the Bootstrap data set. 

We take M of these replicates and order them as  
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The procedure is describe as  

Draw Bootstrap sample of the pair (ti, δ i), and note im = # times 

( iit , ) appears in the Bootstrap sample, so 

 nmmmm ,...,, 21  is an n-category multinomial, n draws, 

probability 1/n for each category:  nnmultm /1,~  
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Where 

nM 1 , 12 mnM   and so forth. 

The survival function based on Bootstrap data is  
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Aim 

  “Bootstrap is a way to pull oneself up (from an 

unfavourable situation) by one„s Bootstrap, to provide 

trustworthy answers despite of unfavourable Circumstances” 

(Efron, 1979). 

The aim of the study is to judge the performance (in terms 

of bias) of the quote by comparing the curves as well as the 

survival probabilities of two nonparametric survival functions 

for four data sets. For small sample Kaplan-Meier gives 

downward bias results (Whittemore & Keller, 1986). The 

performance of the two methods will be evaluated through the 

probabilities and also through graphical presentation on four 

different data sets containing different percentage of censoring. 

For the analysis R- package (2004) is used. 

Brief Introduction of Data Sets  

Leukaemia data set: 

The famous leukaemia data set conducted by Freireich 

(Freireich et. al. 1963), which was reviewed by Gehan (1965) 

and also used by Borkowf (2005). The data consisted of 21 

patients, including 9 events and 12(57%) censored observations. 

The data set consists of weeks in maintenance of remission. We 

ignore the placebo controls (containing no censored observation) 

here. 

The weeks in remission are: 6, 6, 6, 6+, 7, 9+, 10, 10+, 11+, 

13, 16, 17+, 19+, 20+, 22, 23, 25+, 32+, 32+, 34+ and 35+. 

Where + denotes a censored observation.  

Stanford Heart Transplant Data Analysis  

The second data set is the Stanford heart transplant data 

(Kalbflesch and Printice, 1980) .The data set contains 103 

patients 75of were events and 28(27.2%) censored. The data set 

is given below 

 1,       2,       2,       2,       3,       3,       3,       5,       5,       6,       6,       

8,       9,      11+,      12,      16,      16,      16,      17,      18,      21,      

21,      28,      30,      31+,      32,      35,      36,      37,      39,      

39+,      40,      40,      43,      45,      50,      51,      53,      58,      

61,      66,      68,      68,      69,      72,      72,      77,      78,      80,      

81,      85,      90,      96,     100,     102,     109+,     110,     131+,     

149,     153,     165,     180+,     186,     188,     207,     219,     

263,     265+,     285,     285,     308,     334,     340,     340+,     

342,     370+,     397+,     427+,     445+,     482+,     515+,     

545+,     583,     596+,     630+,     670+,     675,     733,     841+,     

852,     915+,     941+,     979,     995,    1032,    1141+,    1321+,    

1386,    1400+,    1407+,    1571+,    1586+,    1799+ 

Where + denotes a censored observation.  

An Application to a Lung Cancer Data 

A data set from the Veterans Administration lung cancer 

trial in which chemotherapy was given to males with advanced 

inoperable lung cancer (presented by Prentice (1973)). This data 

set was also used by Gupta (1999). The data set consists of 97 

patients out of which 91 were events and 6(6.2%) were 

censored. The survival times are given in days: 

  72 228   10 110 314 100*   42

 144   30 384   4   13 

123*    97*   59 117 151   22   18

 139   20   31   52 18   51

 122         27   54     7   63 392   

92   35 117 132 162   3   95

 162        216 553 278 260 156

 182* 143 105 103 

112 87* 242 111      587 389   33   

25 357 467     1   30 

283   25 21   13   87         7   24   

99     8   99   61   25   95   80   

29 24   83*   31        51   52   73     

8   36   48     7 140 186   19

 45   80   52       53   15 133

 111 378   49 

Where + denotes a censored observation.  

An Application to a Breast Cancer Data 

A large data set of 1207 breast cancer patient is obtained 

from SPSS, version 11.5 (SPSS, 2004) containing 1135 

censored (94.3 %) and 72 events only. 

Method of Bootstrap Sample 

Software for the program is prepared in R-package. A 

Bootstrap of sample “10* size of data set” is drawn with 

replacement. Sample is selected with the point to give each time 

enough chances to be included in the sample. 

Results 

The results of leukaemia data set are shown in table 1 and in 

Figure 1. For heart transplant data, we prepared table 2 and 

Figure 2. Table 3 and Figure 3 represent the facts of lung cancer 

data set. For a very large breast cancer data set, we show the 

results through Figure 4 and not prepared table of probabilities, 

due to the same conclusion obtained from the previous data sets.  

Figure 1: Survival curves of Kaplan-Meier and Modified 

Kaplan-Meier for leukaemia data set 

 
Figure 2: Survival curves of Kaplan-Meier and Modified 

Kaplan-Meier for heart transplant data 

Set.  

 
Leukaemia data set containing 21 patients having 57% 

censored data. Stanford heart transplant data containing 27.2% 

censored data. Lung cancer data consists of 6.2% censored 

cases, while the breast cancer data 1207 patients having very 

high censoring (94.3%). The range of data sets is 21 to 1207 

patients and the range of percentage censoring is 6.2 to 94.3. On 

the basis of these facts and also on the basis of 4 Figures and 3 

Tables, we reach to the followings. 

• Bootstrap function is a form of Kaplan-Meier survival 

function.
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• Kaplan-Meier gives the underestimate (bias) results for small 

sample. By comparing the survival probabilities of given data 

sets and curves, we can say that Bootstrap function gives more 

bias results than Kaplan-Meier survival function. 

• For large data set, Kaplan-Meier gives unbiased results 

(Maller and Zhou, 1996). If we compare the curves of breast 

cancer data, the Bootstrap still gives  some bias. 

• If the last observation is censored, one can not obtain the 

mean of survival function and the same result we obtained from 

the Bootstrap survival function. 

• Both the survival functions have the same range i.e. 0 to 1. 

Figure 3: Survival curves of Kaplan-Meier and Modified 

Kaplan-Meier for lung cancer data set. 

 
Figure 4: Survival curves of Kaplan-Meier and Modified 

Kaplan-Meier for breast cancer data set (SPSS data 

directory). 

 
Discussion and Conclusion 

 Parametric approach produces better results, if we are able 

to find a specific parametric survival distribution (Exponential, 

Weibull etc.) that fits the data. As most of the survival data are 

skewed and some times, it is very difficult to find the 

appropriate distribution. The easiest way to avoid the possible 

error (which may occur due to the application of in appropriate 

distribution) is the non-parametric approach. The two non-

parametric approaches for estimating the survival function are 

the Kaplan-Meier and Bootstrap approach. 

 In this article we compared the two approaches by applying 

them on different data sets and on the basis of analysis we 

reached to the conclusion that, Kaplan-Meier approach as 

compared to the Bootstrap approach is easy to understand and to 

apply. The Kaplan-Meier approach can be easily apply to 

different data sets by the help of  packages e.g. SPSS, R, S, 

SPLUS, while for applying the Bootstrap technique, there is no 

option available in commonly used packages. In some situations 

Kaplan-Meier gives bias results, which are smaller than the 

results obtained by applying the Bootstrap survival function.  

 Bootstrap survival function in all the four data sets gives the 

smaller probabilities of survival (for every censoring 

percentage). 

 If comparatively large data set, having moderate censoring 

is available, then for estimating the probabilities and for drawing 

the survival curve, Kaplan-Meier is considered as the 

conventional, easy and less time consuming method. 
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Table 1. Estimated survival functions of Kaplan-Meier and Bootstrap for leukaemia data set 
Time Event No. at risk Kaplan-Meier  

Survival Function 
Bootstrap 
Survival Function 

6 
7 

9 
10 
11 
13 

16 
17 
19 
20 

22 
23 
25 
32 

34 
35 

3 
1 

0 
1 
0 
1 

1 
0 
0 
0 

1 
1 
0 
0 

0 
0 

21 
17 

16 
15 
13 
12 

11 
10 
  9 
  8 

  7 
  6 
  5 
  4 

  2 
  1 

0.8571 
0.8067 

0.8067 
0.7529 
0.7529 
0.6902 

0.6275 
0.6275 
0.6275 
0.6275 

0.5378 
0.4482 
0.4482 
0.4482 

0.4482 
0.4482 

0.8382 
0.7578 

0.7578 
0.7179 
0.7179 
0.6257 

0.5772 
0.5772 
0.5772 
0.5772 

0.4861 
0.3797 
0.3797 
0.3797 

0.3797 
0.3797 
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Table 2. Estimated survival functions of Kaplan-Meier and Bootstrap for heart transplant data set 
Time Event No. at risk Kaplan-Meier  

Survival Function 

Bootstrap 

Survival Function 

1 

2 
3 

5 

6 

8 
9 

11 

12 

16 
17 

18 

21 
28 

30 

31 

32 
35 

36 

37 

39 
40 

43 

45 

50 
51 

53 

58 
61 

66 

68 

69 
72 

77 

78 

80 
81 

85 

90 
96 

100 

102 

109 
110 

131 

149 

153 
165 

180 

186 

188 
207 

219 

263 
265 

285 

308 

334 
340 

342 

370 

397 
427 

445 

482 

515 
545 

583 

596 
630 

670 

675 

733 
841 

852 

915 

941 
979 

995 

1032 

1141 
1321 

1386 

1400 
1407 

1571 

1586 

1799 

1 

3 
3 

2 

2 

1 
1 

0 

1 

3 
1 

1 

2 
1 

1 

0 

1 
1 

1 

1 

1 
2 

1 

1 

1 
1 

1 

1 
1 

1 

2 

1 
2 

1 

1 

1 
1 

1 

1 
1 

1 

1 

0 
1 

0 

1 

1 
1 

0 

1 

1 
1 

1 

1 
0 

2 

1 

1 
1 

1 

0 

0 
0 

0 

0 

0 
0 

1 

0 
0 

0 

1 

1 
0 

1 

0 

0 
1 

1 

1 

0 
0 

1 

0 
0 

0 

0 

0 

103 

102 
99 

96 

94 

92 
91 

90 

89 

88 
85 

84 

83 
81 

80 

79 

78 
77 

76 

75 

74 
72 

70 

69 

68 
67 

66 

65 
64 

63 

62 

60 
59 

57 

56 

55 
54 

53 

52 
51 

50 

49 

48 
47 

46 

45 

44 
43 

42 

41 

40 
39 

38 

37 
36 

35 

33 

32 
31 

29 

28 

27 
26 

25 

24 

23 
22 

21 

20 
19 

18 

17 

16 
15 

14 

13 

12 
11 

10 

  9 

  8 
  7 

  6 

  5 
  4 

  3 

  2 

  1 

0.9903 

0.9612 
0.9320 

0.9126 

0.8932 

0.8835 
0.8738 

0.8738 

0.8640 

0.8345 
0.8247 

0.8149 

0.7952 
0.7854 

0.7756 

0.7756 

0.7657 
0.7557 

0.7458 

0.7358 

0.7259 
0.7057 

0.6956 

0.6856 

0.6755 
0.6654 

0.6553 

0.6452 
0.6352 

0.6251 

0.6049 

0.5948 
0.5747 

0.5646 

0.5545 

0.5444 
0.5343 

0.5243 

0.5142 
0.5041 

0.4940 

0.4839 

0.4839 
0.4736 

0.4736 

0.4631 

0.4526 
0.4426 

0.4421 

0.4313 

0.4205 
0.4097 

0.3989 

0.3882 
0.3882 

0.3660 

0.3549 

0.3438 
0.3327 

0.3212 

0.3212 

0.3212 
0.3212 

0.3212 

0.3212 

0.3212 
0.3212 

0.3059 

0.3059 
0.3059 

0.3059 

0.2879 

0.2699 
0.2699 

0.2507 

0.2507 

0.2507 
0.2279 

0.2051 

0.1823 

0.1823 
0.1823 

0.1519 

0.1519 
0.1519 

0.1519 

0.1519 

0.1519 

0.9874 

0.9500 
0.9247 

0.9062 

0.8788 

0.8697 
0.8616 

0.8616 

0.8515 

0.8164 
0.8066 

0.7968 

0.7738 
0.7633 

0.7510 

0.7510 

0.7448 
0.7297 

0.7155 

0.7084 

0.6933 
0.6756 

0.6616 

0.6519 

0.6449 
0.6361 

0.6256 

0.6159 
0.6045 

0.5940 

0.5766 

0.5662 
0.5474 

0.5423 

0.5346 

0.5219 
0.5159 

0.5040 

0.4955 
0.4819 

0.4700 

0.4615 

0.4615 
0.4513 

0.4513 

0.4417 

0.4312 
0.4181 

0.4181 

0.4073 

0.4010 
0.3866 

0.3748 

0.3577 
0.3577 

0.3303 

0.3187 

0.3088 
0.3008 

0.2909 

0.2909 

0.2909 
0.2909 

0.2909 

0.2909 

0.2909 
0.2909 

0.2780 

0.2780 
0.2780 

0.2780 

0.2652 

0.2410 
0.2410 

0.2247 

0.2247 

0.2247 
0.2010 

0.1757 

0.1622 

0.1622 
0.1622 

0.1403 

0.1403 
0.1403 

0.1403 

0.1403 

0.1403 
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Table 2. Estimated survival functions of Kaplan-Meier and Bootstrap for lung cancer data set 

Time Event No. at risk Kaplan-Meier  
Survival Function 

Bootstrap 
Survival Function 

1 
3 

4 
7 
8 

10 

13 
15 
18 
19 

20 
21 
22 
24 

25 
27 
29 

30 
31 
33 
35 

36 
42 
45 
48 

49 
51 
52 
53 

54 
59 
61 
63 

72 
73 
80 

83 
87 
92 
95 

97 
99 

100 
103 

105 
110 
111 
112 

117 
122 
123 

132 
133 
139 
140 

143 
144 
151 
156 

162 
182 
186 
216 

228 
242 
260 

278 
283 
314 
357 

378 
384 
389 
392 

467 
553 
587 

1 
1 

1 
2 
2 
1 

2 
1 
0 
1 

1 
1 
1 
2 

3 
1 
1 

2 
2 
1 
1 

1 
1 
1 
1 

1 
2 
3 
1 

1 
1 
0 
1 

1 
1 
1 

1 
2 
1 
2 

1 
2 
1 
1 

1 
1 
2 
1 

2 
1 
1 

1 
1 
1 
1 

1 
1 
0 
1 

2 
1 
1 
1 

1 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 

97 
96 

95 
94 
91 
89 

88 
86 
85 
83 

82 
81 
80 
79 

77 
74 
73 

72 
70 
68 
67 

66 
65 
64 
63 

62 
61 
59 
56 

55 
54 
53 
52 

51 
50 
49 

47 
46 
44 
43 

41 
40 
38 
37 

36 
35 
34 
32 

31 
29 
28 

27 
26 
25 
24 

23 
22 
21 
20 

19 
17 
16 
15 

14 
13 
12 

11 
10 
 9 
 8 

 7 
 6 
 5 
 4 

 3 
 2 
 1 

0.9897 
0.9794 

0.9691 
0.9485 
0.9276 
0.9172 

0.8963 
0.8859 
0.8859 
0.8753 

0.8646 
0.8539 
0.8432 
0.8219 

0.7899 
0.7792 
0.7685 

0.7472 
0.7258 
0.7151 
0.7045 

0.6938 
0.6831 
0.6724 
0.6618 

0.6511 
0.6298 
0.5977 
0.5871 

0.5764 
0.5657 
0.5657 
0.5548 

0.5440 
0.5331 
0.5222 

0.5111 
0.4889 
0.4778 
0.4555 

0.4444 
0.4222 
0.4111 
0.4000 

0.3889 
0.3778 
0.3555 
0.3444 

0.3222 
0.3111 
0.3000 

0.2889 
0.2778 
0.2667 
0.2555 

0.2444 
0.2333 
0.2333 
0.2217 

0.1983 
0.1867 
0.1750 
0.1633 

0.1517 
0.1400 
0.1283 

0.1167 
0.1050 
0.0933 
0.0817 

0.0700 
0.0583 
0.0467 
0.0350 

0.0233 
0.0117 
0.0000 

0.9897 
0.9784 

0.9650 
0.9343 
0.9161 
0.9030 

0.8771 
0.8652 
0.8652 
0.8512 

0.8402 
0.8272 
0.8162 
0.7923 

0.7602 
0.7515 
0.7391 

0.7124 
0.6863 
0.6734 
0.6595 

0.6484 
0.6419 
0.6280 
0.6169 

0.5984 
0.5710 
0.5391 
0.5200 

0.5095 
0.5008 
0.5008 
0.4946 

0.4847 
0.4748 
0.4613 

0.4506 
0.4363 
0.4240 
0.4048 

0.3953 
0.3681 
0.3623 
0.3448 

0.3331 
0.3232 
0.2987 
0.2890 

0.2640 
0.2540 
0.2487 

0.2372 
0.2265 
0.2181 
0.2120 

0.2012 
0.1921 
0.1921 
0.1807 

0.1601 
0.1525 
0.1394 
0.1325 

0.1202 
0.1088 
0.0965 

0.0896 
0.0820 
0.0705 
0.0598 

0.0513 
0.0398 
0.0307 
0.0238 

0.0138 
0.0061 
0.0000 

 


