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Introduction 

Mathematical methods are widely used for understanding 

mechanisms in the spread of infectious diseases. Modelling the 

disease infections has been gaining great interest in the study of 

epidemiology. The mathematical study of epidemics has come 

up with an astonishing number of models with explanations for 

the spread and cause of epidemic outbreaks [1-9,12]. 

While modelling an epidemic process we need to make the 

following assumptions: (1) the population affected, (2) the way 

the disease is spread and (3) the mechanism of recovery from the 

population. In population dynamics either we can consider the 

population is  closed, so that immigration, emigration, birth and 

disease-unrelated death can be neglected, or  open. Again, in 

epidemiology, the population can be classified into three broad 

classes: (a)  Susceptible - population which can be infected. (b)  

Incubated or latent or exposed - population infected by the 

disease, but not infectious and (c)  Diseased or infective or 

infectious - an individual may become infectious after disease 

outbreaks. The period before the symptoms appear is the  

incubation period. A portion of diseased population rejoins to 

susceptible population due to medication or hospitalization.  

As the simple  SIS model suggests, the population from the 

susceptible class joins or transfer to the infected class 

continuously. But in practice this process is not regular, in fact, 

it is in the case of any viral disease and many other disease. The 

susceptible individual stays for a definite period after leaving the 

susceptible class and joining the infected class, this intermediate 

period may be termed as incubation period.  

The incubation period is defined as the time from exposure 

to onset of disease and when limited to infectious disease, 

corresponds to the time from infection with a microorganism to 

symptom development [9]. 

During the incubation period of acute infections disease, 

which is subsequently followed by a symptomatic period, it 

should be noted that infected host can be infections. The 

incubation period of infectious disease offers various insights 

into clinical and public health practices, as well as it is important 

for epidemiological and ecological studies [9]. The incubation 

period is useful not only for making rough guesses as to the 

causes and sources of infection of individual cases [1, 2, 7], but 

also for developing treatment strategies to extend the incubation 

period, for performing early projection of disease prognosis and 

when the incubation period is clearly as sociated with clinical 

severity due to dose response mechanism [2, 5, 6, 9]. 

Recently [4], studied the dynamics of susceptible, 

incubated, and diseased class, but they have not considered that 

a portion of the incubated population may rejoin to the 

susceptible class due to immunization( natural immunity and 

immunity caused by vaccination etc). 

Keeping in view of the above, in this paper we will study 

the role of the incubation period in a disease model by assuming 

an intermediate class, namely the incubated population class 

between the susceptible and infected population classes. Further 

assume that a portion of the incubated population rejoin to the 

susceptible population due to immunization. 

The Mathematical Model 

Let )(tS  and )(tD  be the population densities at any time 

t of susceptible and diseased class, respectively. Suppose that 

there is no vertical transmission of the disease and susceptible 

population is logistically growing with intrinsic growth rate r  

and carrying capacity K . Let   be the disease contact rate and 

p  be the rate of removal population from disease class and out 

of which   fraction of infected population will rejoin i

Tele:  
E-mail addresses: jdhar@iiitm.ac.in, govind3012@gmail.com 

         © 2011 Elixir All rights reserved 

Mathematical modelling and analysis of viral disease outbreak with partial 
immunity and incubation period 

Joydip Dhar
1
, Anuj Kumar Sharma

2
, Govind Prasad Sahu

1
 and H. S. Bhatti

3
 

1
Department

 
of Applied Sciences, ABV-Indian Institute of Information Technology & Management, Gwalior (M.P)-474010, India  

2
Department of Mathematics, L.R.D.A.V. College, Jagraon-142026, Ludhiana, Punjab, India 

3
Department of Mathematics, BBSBE College, Fatehgarh Sahib-140407, Punjab, India. 

ABS TRACT 

In this paper, a mathematical model is proposed with three classes of population namely, 

susceptible, incubated and infected. The incubation period is defined as the time from 

exposure to onset of viral disease, and when limited to infectious viral disease, corresponds 

to the time from infection with a microorganism to symptom development. 

Immunity(natural or caused by vaccination) plays an important role in recovery of a disease, 

due to strong immunity a portion of incubated class rejoins susceptible class without being 

infected. The stability behavior of the trivial, disease free and endemic steady states are 

studied, it is found that the instability of disease free state leads to the existence of the 

endemic state. The possibility of Hopf-bifurcation of the endemic equilibrium is studied, 

considering the transfer rate from susceptible to incubated population as bifurcation 

parameter. Finally, a threshold value of bifurcation parameter is determined numerically for 

a particular set of parameters.  

                                                                                                  © 2011 Elixir All rights reserved. 
 

ARTICLE INFO    

Article his tory: 

Received: 1 June 2011; 

Received in revised form: 

16 July 2011; 

Accepted: 26 July 2011;

 
Keywor ds  

Epidemic Model,  

Incubated Population,  

Partial Immunity,  

Hopf-Bifurcation. 

 

 

 

Elixir Bio. Phys. 37 (2011) 3691-3695 

Bio Physics 

Available online at www.elixirpublishers.com (Elixir International Journal) 

 



Joydip Dhar et al./ Elixir Bio. Phys. 37 (2011) 3691-3695 
 

3692 

susceptible class. Then the dynamics of the "susceptible-

infected" population is governed by following:  

DSD
K

S
rS

dt

dS
 








1=  (1) 

pDSD
dt

dD
=                                           (2) 

In our present study, we have considered that suscept ible 

population instead of joining infected class directly, will now go 

through an intermediate class termed as incubated class. The 

incubation period is defined as the time from exposure to onset 

of disease. 

Let )(tI  be the population density of incubated class at any 

instant of time t . Further we have considered that due to strong 

immune system (natural immunity or immunity caused by 

vaccination etc.) a fraction of incubated population will again 

rejoin to the susceptible class. Let   be viral disease contact 

rate and due to immunization the   fraction of incubated 

population is recovered and it joins to the susceptible class 

again. Let   is the fraction of the disease population joining to 

susceptible class after recovery from viral disease and   is 

fraction of incubated class population that will go to the disease 

class. Again, let p  and   are total removable population from 

disease class and incubated class, which includes death due to 

viral disease and natural death of diseased population and 

incubated population respectively. Thus with this assumptions, 

our population dynamics, i.e., "susceptible-incubated-infected-

susceptible (with partial immunity)" is governed by the 

following set of differential equations:  

IDSD
K

S
rS

dt

dS
 








1=              (3) 

ISD
dt

dI
 =                                                (4) 

pDI
dt

dD
=                                                                      (5) 

where initial populations are 0>(0)S , 0>(0)I  and 

0>(0)D  and total population at any instant t  is 

)()()(=)( tDtItStN  .    Again due to natural death of  

incubated and diseased class, we can consider,  

 >  and  .> p                  (6) 

    Now, on removing the dimensions of the parameters of the 

above system (3)-(5) using following:  

,=;=;=;= rt
K

D
z

K

I
y

K

S
x   

we get the following re-scaled system:   

cybzaxzxx
d

dx
 )(1=


        (7) 

dyaxz
d

dy
=


                                   (8) 

hzey
d

dz
=


                                     (9) 

 where  

r

p
h

r
e

r
d

r
c

r
b

r

K
a =;=;=;=;=;=


 

and 0>(0)x , 0>(0)y  and 0>(0)z . Then (6) reduces to 

ecd >  and bh > .  

In the next section, we will study the existence of all 

possible steady states of the system and the boundedness of the 

solutions. 

Existence Of Equilibrium Points And Boundedness 

There are three biologically feasible equilibria for the 

system (7)-(9), (i) (0,0,0)=0E  is the trivial steady state; (ii) 

(1,0,0)=1E  is the disease free steady state and (iii) 

),,(= **** zyxE  is endemic equilibrium state, where 

.

)(

)(1

=

)(

)(1

=;= ***

c
h

be
d

ae

dh

a

d
zand

c
h

be
d

ae

dh

ae

dh
y

ae

dh
x








 

Further, it is clear form the above expression that 
3*

RE ,  

if 1>
dh

ae
.  

The basic reproduction number (R0) of an infection is 

defined by Diekmann & Heesterbeek [14] as the “expected 

number of secondary cases per primary case in a completely 

susceptible population”. 

The basic reproduction number for the system (7)-(9) is 

given by 
dh

ae
R 0 . Thus endemic equilibrium E* exists if R0 > 

1. 

Now, we will show that all the solutions of the system (7)-

(9) are bounded in a region 
3

 RB . We consider the following 

function: 

)()()(=)(  zyxw                    (10) 

Then differentiating (7) with respect to   and substituting 

the values from (7)-(9), we get  

zbhyecdxx
d

dw
)()()(1= 


. 

If we choose a positive real number 

},{= bhecdmin  , then  

)(=)(1)(
)( 2 xfxxw

d

dw
 




. 

Again )(xf  is maximum at )/2(1= x  and hence 

)(=/4)(1)( 2 sayMxf  . Hence  

.)()( Mww    

Now, using comparison theorem, as  , then  




M
wsup )( . 

Therefore,  




M
zyx  )()()(0 , 

and let us consider the set 

})()()(0:),,{(= 3




M
zyxRzyxB  

, hence we can 

state the following lemma: 

 



Joydip Dhar et al./ Elixir Bio. Phys. 37 (2011) 3691-3695 
 

3693 

 LEMMA 1. The system (7)-(9) is uniformly bounded in the 

region 
3

 RB . 

Dynamics of the System 

We have already established that the system (7)-(9) has 

three equilibrium points, namely, (0,0,0)=0E , (1,0,0)=1E  

and ),,(= **** zyxE  in the previous section. Again, the 

general variational matrix corresponding to the system is given 

by  























he

axdaz

baxcazx

J

0

21

= **

***

 

Now, corresponding to the trivial steady state 

(0,0,0)=0E  the Jacobian J has the following eigen values 

hdi  ,1,= ; hence 0E  is repulsive in x -direction and 

attracting in zy   plane. Clinically it means when there is no 

susceptible population then there will be no mass in incubated 

and in infected class. Hence, 0E  is a saddle point. 

Again, corresponding to the disease free equilibrium point 

(1,0,0)=1E , we have following eigen values 1=1   and 

2,3  are the roots of the following quadratic equation:  

0=)()(2 aedhhd   , 

when aedh > , i.e., R0 < 1, then the both the roots have 

negative real part and thus (1,0,0)1E  is a locally stable in this 

case.  

Further, from the existence of 
*E  and the stability 

condition of 1E , it is clear that the instability of the disease free 

equilibrium will lead to the existence of the endemic 

equilibrium. Now, we will examine the local behavior of the 

flow of the system around the endemic equilibria 
*E . The 

characteristic equation corresponding to the equilibrium is  

0==)( 32

2

1

3 AAAP            (11) 

 where  

).(1=)(=

1))(2(=

12=

**

3

***

2

**

1

xhdc
h

be
dahzA

aczazxhdA

hdazxA







 

Since 0>>1)(2 *** xazx  , on substitution the 

values of 
*x  and 

*z , it can be easily verified that 0>iA , for 

1,3=i  and 0>2A  if acecdhdh  )( . Now, from 

Routh-Hurwitz criterion a set of necessary and sufficient 

conditions for all the roots of the equation (11) having negative 

real part are 1,2,3=0,> iAi  and 321 > AAA .  

Again, solving the last inequality, we get a sufficient 

condition for stability given by .))(( aedhcdh   

Hence, we can state the following theorem: 

Theorem 1. The system (7)-(9) is locally stable around the 

endemic equilibrium point 
*E , when acecdhdh  )(  and 

.))(( aedhcdh    

Further, we will study the Hopf-bifurcation of above 

system, taking " a " (i.e., the rate of transfer from susceptible to 

incubated population) as the bifurcation parameter. Now, the 

necessary and sufficient condition for the existence of the Hopf-

bifurcation, if there exists 
0= aa  such that (i) 0>)( 0aAi

, 

1,2,3=i , (ii) 0=)()()( 030201 aAaAaA   and (iii) if we consider 

the eigen values of the characteris tic equation (11) of the form 

iii ivu = , then 0)( iu
da

d
Re , 1,2,3=i . After substitution 

of the values, the condition 0=321 AAA   becomes  

0=
11

3212
BB

a
B

a
                           (12) 

where 

.
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For example, taking 0.01=b , 0.01=c , 0.2=d , 

0.01=e  and 0.08=h , we get a positive root 15.986=a  

of the quadratic equation (12). Therefore, the eigen values of the 

characteristic equation (11) at 15.986=a  are of the form 

iv=1,2  and w=3 , where v  and w  are positive real 

number. 

Now, we will verify the condition (iii) of hopf-bifurcation. 

Put ivu =  in (11), we get  

0=)()()( 32

2

1

3 AivuAivuAivu  .   (13) 

 On separating the real and imaginary part and eliminating v  

between real and imaginary part, we get  

0=)2(88 3212

2

1

2

1

3 AAAuAAuAu  .    (14) 

 It is clear from the above that 0=)( 0au  iff 

0=)()()( 030201 aAaAaA  . Further, at 0= aa , )( 0au  is 

the only root, since the discriminant 

0=)2(88 2

2

11

2 AAuAu   is  

0<)64(64 2

2

1

2

1 AAA  . 

Again, differentiating (14) with respect to a , we have  

    0=)(248)2(1624 321

21

1

2

2

2

11

2 AAA
da

d

da

dA
u

da

dA
uAu

da

du
AAuAu  . 

Now, since at 0= aa , 0=)( 0au , we get  

0,
)2(

)(

=
2

2

1

321

0
=















AA

AAA
da

d

da

du

aa

 

which will ensure that the above system has a hopf-

bifurcation. Hence as the rate of transfer from susceptible to 

incubated population (or the rate of interaction between viral 

disease class and susceptible class), is a , when crosses its 
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threshold value, i.e., 
0= aa , then susceptible, incubated and 

disease population starts oscillating around the endemic 

equilibrium point. 

Numerical  Analysis 

For example, taking values for the parameters 0.01=b , 

0.01=c , 0.2=d , 0.01=e  and 0.08=h , we get a 

positive root 15.986=a  of the quadratic equation (12). which 

will ensure that the above system has a Hopf-bifurcation. Hence 

as the rate of transfer from susceptible to incubated population 

""a  (or the rate of interaction between viral disease class 

population and susceptible class) when crosses its threshold 

value 
0= aa , then susceptible, incubated and disease 

population starts oscillating around the endemic equilibrium 

point. The above result is shown numerically in figure (1)-(3) 

when 0.01=b , 0.01=c , 0.2=d , 0.01=e  and 

0.08=h  initial values 0.15=(0)x , 0.6=(0)y , 

0.1=(0)z  with different values of a . In figure-1, we 

observed that the endemic equilibrium is stable, when 

15.986<a , but when we cross the threshold value of 

15.986=a , the above system starts oscillating around the 

endemic equilibrium, as shown in figure-2 and figure-3. 

Conclusion 

In this paper, a mathematical model of viral disease 

outbreak has been studied with three classes of population 

namely, susceptible, incubated and infected. The immune 

system plays an important role in recovery of a disease. It is 

further assumed that due to strong immunity a portion of 

incubated class rejoins susceptible class without being infected 

(diseased). It is observed that the system is bounded. The 

stability behavior of the trivial, disease free and endemic 

equilibrium state are studied. If 10 R  disease free equilibrium 

point is locally stable and the disease dies out. The instability of 

disease free state leads to the existence of the endemic state, i.e., 

endemic equilibrium exists if 10 R  . If acecdhdh  )(  

and aedhcdh  ))(( , then the endemic equilibrium is 

locally stable.  

We determine criteria for Hopf-bifurcation using disease 

transfer rate ""a  as bifurcation parameter. It is shown that 

disease free equilibrium point is locally asymptotically stable 

when ""a  is small, while a loss of stability by a Hopf 

bifurcation can occur as ""a  increases. Hopf bifurcation has 

helped us in finding the existence of a region of instability in the 

neighborhood of a nonzero endemic equilibrium where the 

population will survive undergoing regular fluctuations. The 

above said results are shown numerically.We left some future 

extension of the proposed model including other type of 

interactions such as Holling type-2 or Holling type-3 sometimes 

they represent more realistic interactions in epidemiology. 

 

 Figure 1. Stable endemic equilibrium ,*E  for 15.8=a  

 

Figure 2. Oscillating endemic equilibrium ,*E  for 

16.3=a  

 

Figure 3. Oscillating endemic equilibrium ,*E  for 

17.0=a  
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