E_{k} - cordial labeling of graphs

N. Sridharan ${ }^{1}$ and R. Umarani ${ }^{2}$
${ }^{1}$ Department of Mathematics, Alagappa University, Karaikudi
${ }^{2}$ Department of Mathematics, Govt. Arts College for Women, Pudukkottai-1.

ARTICLE INFO

Article history:

Received: 5 July 2011;
Received in revised form:
29 August 2011;
Accepted: 17 September 2011;

Keywor ds

Cordial labeling,
Cordial graph,
Edge-graceful labeling.

Introduction

Cordial graphs were first introduced by I.Cahit in 1987 as a weaker version of graceful and harmonious graphs and was based on $\{0,1\}$ - binary labeling of vertices [1-3]. On the other hand edge-graceful labeling of graphs was introduced by Lo in 1985. Edge - Cordial (E-cordial) graphs was introduced by Ng and Lee for graphs on $4 n, 4 n+1$ and $4 n+3$ vertices in 1988. Combining k-equitable labeling and edge - graceful labeling of graphs, in[5] Yilmag and Cahit have defined a new graph labeling technique, called E_{k} - cordial labeling in 1997[89]. Let f be an edge labeling of a graph $G=(V, E)$ such that f : $\mathrm{E}(\mathrm{G}) \rightarrow\{0,1,2, \ldots, \mathrm{k}-1\}$ and the induced vertex labeling be given as $\mathrm{f}(\mathrm{v})=\sum_{u} f(u v)(\bmod \mathrm{k})$, where $\mathrm{u}, \mathrm{v} \in \mathrm{V}$ and $\mathrm{uv} \in \mathrm{E}$ The map f is called an E_{k} - cordial labeling of G, if the following conditions are satisfied for all $\mathrm{i}, \mathrm{j} \in\{0,1, \ldots . . \mathrm{k}-1\}$:
$\begin{array}{ll}\text { (1) } & \left|\begin{array}{c}e_{f}(i)-e_{f}(j) \mid \leq 1 ~ a n d ~ \\ v_{f}(i)-v_{f}(j)\end{array}\right| \leq 1\end{array}$
where $e_{f}(i), e_{f}(j)$ denote the number of the edges labeled with i and j respectively and $v_{f}(i), v_{f}(\mathfrak{j})$ denote the number of vertices labeled with i and j respectively. The graph G is called E_{k}-cordial if it admits an E_{k} - cordial labeling. A graph is E - cordial if it is E_{2} - cordial. For an extensive survey on graph labeling we refer to Gallian[4].
In this paper, we investigate the E_{k} - Cordial labeling of the graphs $\mathrm{P}_{\mathrm{n}}^{+}, \mathrm{F}_{\mathrm{n}}$ and $\mathrm{C}_{\mathrm{n}}^{+}$.

Main Results

If G is a graph, then G^{+}is the graph obtained from G by adding a (new) pendant vertex to each vertex of G. The paths, cycles on n vertices are denoted by P_{n} and C_{n} respectively.
Theorem 2.1. If $\mathrm{n}>1$ is odd, then \boldsymbol{P}_{n}^{+}is E_{k}-cordial for all $\mathrm{k} \geq$ 2.

Proof: Let $\mathrm{n}=\mathrm{mk}+\mathrm{t}$, where $0 \leq \mathrm{t} \leq \mathrm{k}$. Let
(i) $\mathrm{P}_{\mathrm{n}}=\mathrm{u}_{1} \mathrm{u}_{2} \ldots \ldots \mathrm{u}_{\mathrm{n}}$ be the path in $\mathrm{P}=\mathrm{n}$ with $\operatorname{deg}\left(\mathrm{u}_{\mathrm{i}}\right) \neq 1$

$$
\text { for all } \mathrm{i}=1,2, \ldots, \mathrm{n} \text { in } P_{n}^{+} .
$$

Abstract

Yilmag and Cahit defined E_{k} - cordial labelling of graphs by combining k-equitable labelling and edge-graceful labelling of graphs. In this paper, we investigate the E_{k} - Cordial labeling of the graphs $\mathrm{P}_{\mathrm{n}}^{+}, \mathrm{F}_{\mathrm{n}}$ and $\mathrm{C}_{\mathrm{n}}^{+}$

(ii) $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$ be the pendant vertices of \boldsymbol{P}_{n}^{+}and $\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}} \in$ $\mathrm{E}\left(P_{n}^{+}\right)$.
(iii) $\mathrm{e}_{i} \quad=\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}$ for all $\mathrm{i}=1,2, \ldots, \mathrm{n}-1$ and
(iv) $\mathrm{e}^{\prime}{ }_{i}===\quad=\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}$ for all $\mathrm{i}=1,2, \ldots, \mathrm{n}$

Case(1): If $\mathrm{t}=0$ or $\mathrm{t}>\frac{k}{2}$, define $\mathrm{f}: \mathrm{E}\left(P_{n}^{+}\right) . \rightarrow\{0,1, \ldots, \mathrm{k}-1\}$ as follows:

$$
\mathrm{f}\left(e_{i}^{\prime}\right)=\square \text { and } \mathrm{f}\left(\mathrm{e}_{\mathrm{i}}\right)=\mathrm{k}-1-\square
$$

Where $\mathrm{i}-1=\square \square(\bmod \mathrm{k}), 0 \leq 1 \leq \mathrm{k}$. We claim that f induces an E_{k} - cordial labeling on P_{n}^{+}. Clearly the sequence $\left\{\mathrm{f}\left(\mathrm{e}_{\mathrm{i}}\right)\right\}$ is $\mathrm{k}-1$, $k-2, \ldots, 2,1,0, k-1, k-2, \ldots, 2,1,0, \ldots$ k-1,..1,0, k-1, k-2,..., k-t+1 and the sequence $\left\{\mathrm{f}\left(e_{i}^{\prime}\right)\right\}$ is $0,1,2, \ldots, \mathrm{k}-1, \ldots, 1, \ldots, \mathrm{k}$ -
$1,0,1,2, \ldots, \mathrm{t}-1$.
We note that
(1) If $t=0$,
$e_{f}(i)=\left\{\begin{array}{l}2 m \text { if } i \neq 0 \\ 2 m-1 \text { if } i=0 .\end{array}\right.$
(2)If $t \neq 0$,
$e_{f}(i)= \begin{cases}2 m+2 & \text { for } k-t<i<t \\ 2 m+1 & \text { for } i \leq k-t \text { or } i \geq t\end{cases}$
(3) $\left|e_{f}(\mathrm{i})-\mathrm{e}_{\mathrm{f}}(\mathrm{j})\right| \leq 1$ for all $\mathrm{i}, \mathrm{j} \in\{0,1, \ldots, \mathrm{k}-1\}$.
(4) $f\left(u_{i}\right)+f\left(v_{i}\right)=k-1$ for all $i \neq n \quad f\left(u_{n}\right)=0$
(5) If $\mathrm{t}=0, \mathrm{v}_{\mathrm{k}}(\mathrm{i})=2 \mathrm{~m}$ for all i
(6) If $\mathrm{t} \neq 0$,

$$
v_{f}(\text { i })= \begin{cases}2 m+1 & \text { if } 1 \leq i \leq k-t \text { or } t \leq i \\ 2 m+2 & \text { if } t=0 \text { or } k-t<i<t \\ (7)\left|v_{f}(i)-v_{f}(j)\right| \leq 1, \text { for all } i, j \in\{0,1 \ldots ., k-\end{cases}
$$

1\}
Thus in this case the map f induces an E_{k} - cordial labeling for $\mathrm{P}_{\mathrm{n}}^{+}$

Tele:

E-mail addresses: mrgopi1985@gmail.com

Case (2): If $2 \leq \mathrm{t}<\frac{k}{2}$, define $\mathrm{f}: \mathrm{E}\left(\mathrm{P}_{n}^{+}\right) . \rightarrow\{0,1, \ldots, \mathrm{k}-1\}$ as

$$
\mathrm{f}\left(e_{i}^{\prime}\right)=\square \square \text { and } \mathrm{f}\left(e_{i}\right)=\mathrm{k}-1-\square . \text { Where } \mathrm{i} \leq \mathrm{mk} \text { and } \mathrm{i}=
$$

$\square(\bmod \mathrm{k})$
$\mathrm{f}\left(e^{\prime}{ }_{m k+i}\right)=\mathrm{i}$ and $\mathrm{f}\left(e_{m k+i}\right)=\mathrm{k}-\mathrm{i}-1$, for $1 \leq \mathrm{i} \leq \mathrm{t}$.
Clearly,

$$
v_{f}(i)= \begin{cases}2 m+1 & \text { if } i=k-1,0 \leq i \leq t, k-t \leq i \leq k-3 \\ 2 m & \text { if } i=k-2 \text { and } t<i<k-t .\end{cases}
$$

Case (3): If $t=1$, define f: $E\left(P_{n}^{+}\right) . \rightarrow\{0,1, \ldots, k-1\}$ as

$$
\begin{aligned}
& \mathrm{f}\left(e_{n}^{\prime}\right)=\mathrm{k}-1 ; \quad \mathrm{f}\left(e^{\prime}{ }_{n-1}\right)=0 \\
& \mathrm{f}\left(e_{i}^{\prime}\right)=\square \square \text { for } \mathrm{i} \leq \mathrm{n}-2 \\
& \mathrm{f}\left(e_{i}\right)=\mathrm{k}-\square \square-1 \text { for all } \mathrm{i}=1,2, \ldots, \mathrm{n}
\end{aligned}
$$

Where $\mathrm{i}-1=\square \square(\bmod k), 0 \leq \square \square \leq \mathrm{k}$.
Clearly,

2 m

$$
e_{f}(\mathrm{i})= \begin{cases}2 \mathrm{~m} & \text { for all } \mathrm{i} \neq 0 \\ 2 \mathrm{~m}+1 & \text { for } \mathrm{i}=0\end{cases}
$$

$$
v_{f}(i)=\left\{\begin{array}{l}
\quad \text { for all } i \neq 1, k-1 \\
2 m+1 \quad \text { for } i=1, k-1 \\
\text { map } f \text { induces an } E_{k}-\text { cordial labeling }
\end{array}\right.
$$

Theorem 2.2 If n is even and $n \neq k / 2(\bmod k), \mathrm{P}_{n}^{+}$is $\mathrm{E}_{\mathrm{k}}-$ cordial.

Proof: Let

(i) $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots$ un be the path in P_{n}^{+}with $\operatorname{deg}\left(\mathrm{u}_{\mathrm{i}}\right) \neq 1$ in P_{n}^{+}.
(ii) $\mathrm{v}, \ldots \mathrm{v}_{\mathrm{n}}$ be the pendant vertices of P_{n}^{+}and $\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}} \in \mathrm{E}\left(\mathrm{P}_{n}^{+}\right)$.
(iii) $\mathrm{e}_{i}=\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}$ for all $\mathrm{i}=1,2, \ldots, \mathrm{n}-1$ and $e^{\prime}{ }_{i}=\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}$ for all $\mathrm{i}=1,2, \ldots \mathrm{n}$.
(iv) $\mathrm{n}=\mathrm{mk}+\mathrm{t}, 0 \leq \mathrm{t}<\mathrm{k}$.

Case (i): If $\mathrm{t}=0$ or $\mathrm{t}>\mathrm{k} / 2$, define f on $\mathrm{E}\left(\mathrm{P}_{n}^{+}\right)$as follows:
$\mathrm{f}\left(e_{i}^{\prime}\right)=\square$ and $\mathrm{f}\left(e_{i}\right)=\mathrm{k}-\square \square-1$ for all i where $\mathrm{i}=\square \square(\bmod$ k , $0 \leq \square \square<\mathrm{k}$.
Clearly, if $\mathrm{t}=0$,
$\left\{\begin{array}{ll}2 m & \\ 2 m-1 & e_{f}(i)= \\ & \text { if } i=0 .\end{array}\right.$ if $i \neq 0$
if $t \neq 0$.
$2 \mathrm{~m}+2$
$2 m+1$
$\leq \mathrm{i} \leq$
Case(2): If $\mathrm{t}=1$, define

$$
\begin{aligned}
& \left.\mathrm{f}\left(e_{n}^{\prime}\right)\right)=\mathrm{k}-1 ; \quad \mathrm{f}\left(\left(e_{n-1}^{\prime}\right)=0\right. \\
& \mathrm{f}\left(e^{\prime}\right)=\text { for all } \mathrm{i} \leq \mathrm{n}-2
\end{aligned}
$$

$\mathrm{f}\left(e^{\prime}{ }_{i}\right)=\mathrm{k}-1-\square \square$ for all $\mathrm{i}=1,2, \ldots, \mathrm{n}-1$
where $\mathrm{i}-1=\square \square(\bmod \mathrm{k}), 0 \leq \square \square<\mathrm{k}$.
Clearly,

$$
e_{f}(\mathrm{i})= \begin{cases}2 \mathrm{~m}+1 & \text { if } \mathrm{i}=0 \\ & \end{cases}
$$

$2 \mathrm{~m} \quad$ if $\mathrm{i} \neq 0$.
follows:

$$
\begin{aligned}
& \mathrm{f}\left(e_{n}^{\prime}\right)=2(\mathrm{t}-1) \\
& \mathrm{f}\left(e_{i}^{\prime}\right)=\square \square \text { and } \mathrm{f}\left(e_{i}\right)=\mathrm{k}-1-\square \square \text { for all } \mathrm{i} \leq \mathrm{n}-1
\end{aligned}
$$

Where i-1 $=\square \square(\bmod k), 0 \leq \square \square<k$.
Then clearly,
$\begin{array}{cc}2 \mathrm{~m}+1 \\ 2 \mathrm{~m}\end{array} \quad \mathrm{e}_{\mathrm{f}}(\mathrm{i})=\quad 0 \leq \mathrm{i} \leq \mathrm{t}-1$ or $\mathrm{i}=2(\mathrm{t}-1)$ or $\mathrm{k}-\mathrm{t} \leq \mathrm{i} \leq \mathrm{k}-1$
$\left\{\begin{array}{l}2 \mathrm{~m}+1 \\ \leq \mathrm{k}-1\end{array} \quad \mathrm{v}_{\mathrm{f}}(\mathrm{i})=\quad 0 \leq \mathrm{i} \leq \mathrm{t}-1\right.$ or $\mathrm{i}=2(\mathrm{t}-1)$ or $\mathrm{k}-\mathrm{t} \leq \mathrm{i}$
$\left\{\begin{array}{c}\leq \mathrm{k}-1 \\ 2 \mathrm{~m}\end{array} \quad \mathrm{v}_{\mathrm{f}}(\mathrm{i})=\right.$
Thus if $\mathrm{n} \neq \mathrm{k} / 2(\bmod \mathrm{k}), \mathrm{P}_{n}^{+}$is $\mathrm{E}_{\mathrm{k}}-$ cordial.
Theorem 2.3. Let $\mathrm{n} \geq 2$ and $\mathrm{k} \geq 2$ be integers such that $\mathrm{n} \neq \mathrm{k} / 2(\bmod \mathrm{k})$. Then C_{n}^{+}is E_{k} - cordial.
Proof: Let $u_{1}, \mathbf{u}_{2}, \ldots u_{n} u_{1}$ be the cycle in C_{n}^{+}and $v_{1}, \ldots v_{n}$ be the pendant
Vertices in C_{n}^{+}, let $\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}} \in \mathrm{E}\left(\mathrm{C}_{n}^{+}\right)$. Let e_{i} and e^{\prime} i denote the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}$ and $\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}$ respectively for all $\mathrm{i}=1,2, \ldots, \mathrm{n}-1$ and $e_{n}=\mathrm{u}_{\mathrm{n}} \mathrm{u}_{1}$, $e_{n}^{\prime}=u_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}$.
Let $\mathrm{n}=\mathrm{mk}+\mathrm{t}, 0 \leq \mathrm{t}<\mathrm{k}$
Let us define $\mathrm{f}: \mathrm{E}\left(\mathrm{C}_{n}^{+}\right) \rightarrow\{0,1, \ldots, \mathrm{k}-1\}$ as follows:

$$
\mathrm{f}\left(e_{i}^{\prime}\right)=\square \square \quad \text { for all } \mathrm{i}=1,2, \ldots, \mathrm{n} ; \mathrm{f}\left(e_{i}\right)=\mathrm{k}-\square \square-1
$$

for all $\mathrm{i}=1,2, \ldots, \mathrm{n}-1$
where $\mathrm{i}-1=\square(\bmod k), 0 \leq \square \square<\mathrm{k}$.
0

$$
\mathrm{f}\left(\mathrm{e}_{\mathrm{n}}\right)=\stackrel{\text { if } \mathrm{t}=0 \text { or } \mathrm{t}>\mathrm{k} / 2}{\mathrm{k}-1}\left\{\begin{array}{l}
\text { if } \mathrm{t}=1 \\
{[(k+1) / 2]}
\end{array} \quad \text { if } 1 \leq \mathrm{t}<\mathrm{k} / 2 .\right.
$$

We note that
(1) If $t=0, v_{f}(i)=e_{f}(i)=2 m$
(2) If $\mathrm{t}=1$,

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{f}}(\mathrm{i})= \begin{cases}2 \mathrm{~m}+1 & \text { for } \mathrm{i}=0, \mathrm{k}-2 \\
2 \mathrm{~m} & \text { for all other } \mathrm{i} . \\
& \mathrm{e}_{\mathrm{f}}(\mathrm{i})=\left\{\begin{array}{l}
2 \mathrm{~m}+1 \text { for } \mathrm{i}=0, \mathrm{k}-1 \\
2 \mathrm{~m} \text { for all other } \mathrm{i} .
\end{array}\right. \\
\frac{k}{2} .\end{cases} \\
& \text { If } 1<\mathrm{t} \leq
\end{aligned}
$$

$$
\left.\mathrm{v}_{\mathrm{f}} \mathrm{i}\right)=\left\{\begin{array}{l}
2 \mathrm{~m}+1 \text { if } 1 \leq \mathrm{i} \leq \mathrm{t}-1 \text { or } \mathrm{i} \\
=,[k / 2] \text { or }[(k+1) / 2] \mathrm{k}-\mathrm{t}<\mathrm{i} \leq \mathrm{k}-2 \\
2 \mathrm{~m} \text { for all other } \mathrm{i} .
\end{array}\right.
$$

$\mathrm{e}_{\mathrm{f}}(\mathrm{i})=\int_{\mathrm{k}+1}^{2 \mathrm{~m}+1} \mathrm{l}_{2 \mathrm{~m}}$ for $0 \leq \mathrm{i} \leq \mathrm{t}-1, \mathrm{i}=[(k+1) / 2], \mathrm{k}-\mathrm{t}<\mathrm{i} \leq$ for all otheri.
(4) if $\mathrm{k} / 2<\mathrm{t}$,

$$
\begin{aligned}
& \left\{\begin{array}{ll}
2 m+2 \text { for } \mathrm{i}=0, \mathrm{k}-\mathrm{t}<\mathrm{i}<\mathrm{t} \\
\mathrm{v}_{\mathrm{f}}(\mathrm{i})= & 2 \mathrm{~m}+1 \text { for } 1 \leq \mathrm{i} \leq \mathrm{k}-\mathrm{t} \text { or } \mathrm{i} \geq \mathrm{t} . \\
2 m+1 \text { for } \mathrm{i} \leq & \mathrm{e}_{f}(\mathrm{i})=\left\{\begin{array}{l}
2 \mathrm{~m}+2 \\
\mathrm{i}=0 \\
\mathrm{k}-\mathrm{t} \text { or } \mathrm{i} \geq \mathrm{t} .
\end{array}\right.
\end{array} .\right.
\end{aligned}
$$

Thus $\mathrm{C}_{\mathrm{n}}^{+}$is E_{k} - cordial.
The graph obtained from P_{n}^{+}by identifying all the pendant vertices of P_{n}^{+}to new vertex w is denoted by F_{n} and is called the fan on $(\mathrm{n}+1)$ vertices. The wheel W_{n} is the graph obtained from C_{n}^{+}by identifying all the pendant vertices of C_{n}^{+}to a new vertex w. Infact $F_{n}=K_{1}+P_{n}$ and $W_{n}=K_{1}+C_{n}$.

Theorem 2.4 Let $\mathrm{k} \geq 3$ and $\mathrm{n}=\mathrm{mk}+\mathrm{t}, 0 \mathrm{t}<\mathrm{k}, \mathrm{m} \geq 1$.
If $\mathrm{k}=2(\bmod 4)$ and $\mathrm{m}=0(\bmod 2)$ assume that $\mathrm{t} \neq \mathrm{k}-1$ Then F_{n} is E_{k} - cordial.
Proof:
Let $u_{1} u_{2} \ldots u_{n}$ be the path P_{n} and w be vertex which is adjacent to each $u_{i}(1 \leq i \leq n)$. The edges $u_{i} u_{i+1}$ and $w u_{i}$ are denoted by e_{i} and $\mathrm{e}^{\prime}{ }_{i}$ respectively. First we define $\mathrm{f}\left(e_{i}\right)$ and $\mathrm{f}\left(e_{i}^{\prime}\right)$ for all $\mathrm{i}<\mathrm{mk}-$ 1. Then we consider various cases and extend f to $E\left(F_{n}\right)$ in each case.
Define $\mathrm{f}\left(e_{i}^{\prime}\right)=\square$ and $\mathrm{f}\left(e_{i}^{\prime}\right)=\mathrm{k}-\square \square-1$ for $\mathrm{l} \leq \mathrm{i} \leq \mathrm{mk}-1$,
Where $\mathrm{i}-1=\square \square(\bmod \mathrm{k}), 0 \leq \square \square<\mathrm{k}$.
Case(1): If $\mathrm{t}=0$ define $\mathrm{f}\left(e_{i}^{\prime}\right)=\mathrm{k}-1, \mathrm{f}\left(e^{\prime}{ }_{n-1}\right)=\mathrm{k}-2$ and $\mathrm{f}\left(e_{n-1}\right)=1$
Case(2): If $\mathrm{t}=1, \mathrm{k}=4$ and m is odd, define

$$
\mathrm{f}\left(e^{\prime}{ }_{n-1}\right)=3, \mathrm{f}\left(e_{n-1}^{\prime}\right)=0 \text { and } \mathrm{f}\left(e_{n-1}\right)=0
$$

If $\mathrm{t}=1$ and either $\mathrm{k} \neq 4$ or m is even, define
$\mathrm{f}\left(e_{n}^{\prime}\right)=\mathrm{k}-1, \mathrm{f}\left(e_{n-1}^{\prime}\right)=1 ; \mathrm{f}\left(e_{n-2}\right)=\mathrm{f}\left(e_{n-1}\right)=0$.
Case(3): Let $1<\mathrm{t}<\mathrm{k}$.
We observe that $m \sum_{j=0}^{t-1} j \quad=\mathrm{k} / 2$ if k is even m is odd

$$
=0 \quad \text { if either } \mathrm{k} \text { is odd or } \mathrm{m} \text { is even }
$$

Let $(t(t-1)) / 2=s(\bmod \mathrm{k}), 0 \leq \mathrm{s}<\mathrm{k}$ and $\mathrm{s}+k / 2=\mathrm{a}(\bmod$ k).

Assume that either k is odd or m is even.
Sub case(1):
Let $\mathrm{s}<\mathrm{k}-\mathrm{t}+1$. Then define
$\mathrm{f}\left(e_{m k-1}\right)=1, \quad \mathrm{f}\left(e_{m k}\right)=0 ; \quad \mathrm{f}\left(e^{\prime}{ }_{m k-1}\right)=\mathrm{k}-2 ; \quad \mathrm{f}\left(e^{\prime}{ }_{m k}\right)=$
k-1
$\mathrm{f}\left(e_{m k+i}\right)=\mathrm{k}-\mathrm{i} \quad \mathrm{f}\left(e^{\prime}{ }_{m k+i}\right)=\mathrm{i}-1 \quad$ for all $1 \leq \mathrm{i}<\mathrm{t}-1$.
and if $\left.\mathrm{s}=0, \mathrm{f}\left(e^{\prime}{ }_{n}\right)=\mathrm{t} ; \quad \mathrm{f}\left(e^{\prime}{ }_{n-1}\right)=\mathrm{t}-1 ; \quad \mathrm{f}\left(e_{n-1}\right)\right)=\mathrm{k}-\mathrm{t}$.
if $\mathrm{s} \neq 0, \mathrm{f}\left(e_{n}^{\prime}\right)=\mathrm{t}-1 ; \quad \mathrm{f}\left(e_{n-1}^{\prime}\right)=\mathrm{t}-2 ; \quad \mathrm{f}\left(e_{n-1}\right)=\mathrm{k}-\mathrm{t}+1$.
Sub case(2):
Let $\mathrm{s} \geq \mathrm{k}-\mathrm{t}+1$ and $\mathrm{t}<\mathrm{k}-\mathrm{t}$.
Define f as follows:
$\mathrm{f}\left(e_{m k-1}\right)=1, \quad \mathrm{f}\left(e_{m k}\right)=0 ; \quad \mathrm{f}\left(e^{\prime}{ }_{m k-1}\right)=\mathrm{k}-2 ; \quad \mathrm{f}\left(e^{\prime}{ }_{m k}\right)=$ k-1

$$
\mathrm{f}\left(e_{m k+i}\right)= \begin{cases}\mathrm{k}-\mathrm{i} & \text { for all } 1 \leq \mathrm{i} \leq \mathrm{k}-\mathrm{s}-2 \\ \mathrm{k}-\mathrm{i}-1 & \text { for all } \mathrm{k}-\mathrm{s}-1 \leq \mathrm{i} \leq \mathrm{t}-1 \\ \mathrm{f}\left(e^{\prime}{ }_{m k+i}\right)=\mathrm{i}-1 & \text { for all } 1 \leq \mathrm{i}<\mathrm{t}-1 \mathrm{f}\left(e^{\prime}{ }_{n}\right)=\mathrm{t}\end{cases}
$$

Sub case(3):
Let $\mathrm{s} \geq \mathrm{k}-\mathrm{t}+1 ; 2 \mathrm{t} \geq \mathrm{k}+2$ and $\mathrm{t} \leq \mathrm{s}$.
Then $\mathrm{t}-1<\mathrm{s}$ and hence $\mathrm{k}-\mathrm{s}<\mathrm{k}$ - ($\mathrm{t}-1$) and $(\mathrm{t}-1)<(\mathrm{t}-1)+(\mathrm{k}-\mathrm{s})=\mathrm{k}-(\mathrm{s}-\mathrm{t})-1<\mathrm{k}$. Define f as follows:
$\mathrm{f}\left(e_{m k-1}\right)=1, \quad \mathrm{f}\left(e_{m k}\right)=0 ; \quad \mathrm{f}\left(e^{\prime}{ }_{m k-1}\right)=\mathrm{k}-2 ;$
$\mathrm{f}\left(e^{\prime}{ }_{m k}\right)=\mathrm{k}-1$
$\mathrm{f}\left(e_{m k+i}\right)=\mathrm{k}-\mathrm{i} \quad$ for all $1 \leq \mathrm{i} \leq \mathrm{t}-1$
$\mathrm{f}\left(e^{\prime}{ }_{m k+i}\right)=\mathrm{i}-1 \quad$ for all $1 \leq \mathrm{i}<\mathrm{t}-1$
and $\mathrm{f}\left(e^{\prime}{ }_{n}\right)=\mathrm{t}-1+\mathrm{k}$-s.
Sub case(4):
Let $\mathrm{s} \geq \mathrm{k}-\mathrm{t}+1: 2 \mathrm{t}=\mathrm{k}+1$ (ork). Then $\mathrm{s} \geq \mathrm{t}$.
Then $\mathrm{t}-1+\mathrm{k}-\mathrm{s}+\mathrm{k}-\mathrm{t}=\mathrm{k}+\mathrm{k}-(\mathrm{s}+1) \equiv \mathrm{k}-(\mathrm{s}+1)(\bmod \mathrm{k})$;
$\mathrm{k}-(\mathrm{s}+1)<\mathrm{k}-\mathrm{t}$ as $\mathrm{k}>\mathrm{s} \geq \mathrm{t}$.
Define f as follows:
$\mathrm{f}\left(e_{m k-1}\right)=1, \quad \mathrm{f}\left(e_{m k}\right)=0 ; \quad \mathrm{f}\left(e^{\prime}{ }_{m k-1}\right)=\mathrm{k}-2 ;$
$\mathrm{f}\left(e_{m k}^{\prime}\right)=\mathrm{k}-1$
$\mathrm{f}\left(e_{m k+i}\right)=\left\{\begin{array}{ll}\mathrm{k}-\mathrm{i} & \text { for all } 1 \leq \mathrm{i} \leq \mathrm{s}-\mathrm{t} \\ \mathrm{i}-1 \\ (\mathrm{t}-1)+(\mathrm{k}-\mathrm{s})\end{array} \quad \begin{array}{l}\mathrm{k}-\mathrm{i}-1 \quad \text { for all } \mathrm{s}-\mathrm{t}+1 \leq \mathrm{i} \leq \mathrm{t}-1 \\ \mathrm{f}\left(e^{\prime}{ }_{m k+i}\right)=\quad \text { for } \mathrm{i}=\mathrm{t}\end{array} \quad\right.$ for all $1 \leq \mathrm{i}<\mathrm{t}-1$
Case(4):
Let m be odd and k be even. All the subcases proved in case 3 are valid, if we replace s by a, where $s+[k / 2]=\mathrm{a}(\bmod \mathrm{k}) 0 \leq$ $\mathrm{a}<\mathrm{k}$.
One can easily verify that the map f induces an E_{k} - cordial labeling.
Illustration for E_{k} - cordial labeling of graphs
E_{k} - Cordial Labeling of \boldsymbol{P}_{n}^{+}
Case(i) $\mathrm{E}_{7}-$ Cordial Labeling of \boldsymbol{P}_{7}^{+}

E_{7} - Cordial Labeling of \boldsymbol{P}_{11}^{+}

0	\bullet									
6	5	4	3	2	1	0	6	5	4	

case(ii) $\mathrm{E}_{9}-$ Cordial Labeling of \boldsymbol{P}_{12}^{+}

Case(iii) $\mathrm{E}_{9}-$ Cordial Labeling of \boldsymbol{P}_{10}^{+}

Case (ii) $\mathrm{E}_{6}-$ Cordial Labeling of \boldsymbol{P}_{6}^{+}
Subcase (i)

Subcase (ii) $\mathrm{E}_{6}-$ Cordial Labeling of \boldsymbol{P}_{11}^{+}

Subcase (iii) $\mathrm{E}_{6}-$ Cordial Labeling of \boldsymbol{P}_{7}^{+}

E_{6} - Cordial Labeling of \boldsymbol{P}_{8}^{+}

Case(i) $\mathrm{E}_{7}-$ Cordial Labeling of C_{7}^{+}

Case(ii) E_{7}-Cordial labeling of C_{8}^{+}

Case(iii) $\mathrm{E}_{7}-$ Cordial labeling of C_{10}^{+}

Case(iv) E_{7} - Cordial labeling of C_{11}^{+}

Theorem: $4 \mathrm{~F}_{\mathrm{n}}$ is E_{k} - Cordial
Case (i) t $=0$ m-odd k-odd
$\mathrm{E}_{9}-$ Cordial Labeling of F_{9}

Case(ii) $\mathrm{E}_{4}-$ Cordial Labeling of F_{5}

$\mathrm{E}_{6}-$ Cordial Labeling of F_{13}

$\mathrm{E}_{4}-$ Cordial Labeling of F_{9}

$\mathrm{E}_{13}-$ Cordial labeling of F_{19}

References

1. I. Cahit, On Cordial and 3 - Equitable Labelings of Graphs, Utilita Mathematica, 37(1990), 189-198.
2. I. Cahit, On harmonious tree labelings, Ars Combinatoria, 41(1995), 311 - 317.
3. I. Cahit, Cordial graphs: a weaker version of graceful and harmonic graphs, Ars combin., 23(1987) 201 - 207.
4. J.A. Gallian - A Dynamic Survey of Graph Labeling, Electronic J Combinatorics, 17(2010) \# DS6.
5. Yilmaz and Cahit E- cordial graphs, Ars combinations 46(1997) 251 - 266.
6. R.Umarani, A Study on graph labelings - k-Equitable and strong α - labelings, Ph.D. Thesis, 2003.
