Available online at www.elixirpublishers.com (Elixir International Journal)

ABSTRACT

Applied Mathematics

Elixir Appl. Math. 38 (2011) 4564-4567

$E_k \text{ - cordial labeling of graphs}_{N. \; Sridharan^1 \; and \; R. \; Umarani^2}$

¹Department of Mathematics, Alagappa University, Karaikudi ²Department of Mathematics, Govt. Arts College for Women, Pudukkottai-1.

labeling of the graphs P_n^+ , F_n and C_n^+

ARTICLE INFO

Article history: Received: 5 July 2011; Received in revised form: 29 August 2011; Accepted: 17 September 2011;

Keywor ds

Cordial	labeling,
Cordial	graph,
Edge-gr	aceful labeling.

Introduction

Cordial graphs were first introduced by I.Cahit in 1987 as a weaker version of graceful and harmonious graphs and was based on {0, 1}- binary labeling of vertices [1 - 3]. On the other hand edge-graceful labeling of graphs was introduced by Lo in 1985. Edge - Cordial (E-cordial) graphs was introduced by Ng and Lee for graphs on 4n, 4n+1 and 4n+3 vertices in 1988. Combining k-equitable labeling and edge - graceful labeling of graphs, in[5] Yilmag and Cahit have defined a new graph labeling technique, called E_k – cordial labeling in 1997[89]. Let f be an edge labeling of a graph G = (V,E) such that f: $E(G) \rightarrow \{0,1,2,\ldots,k-1\}$ and the induced vertex labeling be given as $f(v) = \sum f(uv) \pmod{k}$, where $u, v \in V$ and $uv \in E$ The map f is

called an E_k – cordial labeling of G, if the following conditions are satisfied for all i, $j \in \{0,1,\ldots,k-1\}$:

 $|\mathbf{e}_{f}(\mathbf{i})-\mathbf{e}_{f}(\mathbf{j})| \leq 1$ and (1)

(2) $|v_{f}(i)-v_{f}(j)| \leq 1$

where $e_f(i)$, $e_f(j)$ denote the number of the edges labeled with i and j respectively and $v_f(i)$, $v_f(j)$ denote the number of vertices labeled with i and j respectively. The graph G is called Ek-cordial if it admits an E_k – cordial labeling. A graph is E – cordial if it is E_2 - cordial. For an extensive survey on graph labeling we refer to Gallian[4].

In this paper, we investigate the E_k - Cordial labeling of the graphs P_n^+ , F_n and C_n^+

Main Results

If G is a graph, then G^+ is the graph obtained from G by adding a (new) pendant vertex to each vertex of G. The paths, cycles on n vertices are denoted by P_n and C_n respectively.

Theorem 2.1. If n >1 is odd, then P_n^+ is E_k –cordial for all $k \ge 1$ 2.

Proof: Let n = mk + t, where $0 \le t \le k$. Let

(i)
$$P_n = u_1 u_2 \dots u_n$$
 be the path in $P = n$ with $deg(u_i) \neq 1$
for all $i = 1, 2, \dots, n$ in \boldsymbol{P}^+ .

(ii) v_1, \dots, v_n be the pendant vertices of P_n^+ and $u_i v_i \in$ $E(\boldsymbol{P}_{n}^{*})$

Yilmag and Cahit defined E_k – cordial labelling of graphs by combining k-equitable

labelling and edge-graceful labelling of graphs. In this paper, we investigate the E_k - Cordial

(iii)
$$e_i = u_i u_{i+1}$$
 for all $i = 1, 2, ..., n-1$ and

(iv)
$$e'_i = u_i v_i$$
 for all $i = 1, 2, ..., n$

Case(1): If t = 0 or t > $\frac{k}{2}$, define f: E(P_n^+). \rightarrow {0,1,...,k-1}as

follows:

 $f(e'_i) = \Box$ and $f(e_i) = k-1-\Box$ Where i-1 = $\square \square \pmod{k}$, $0 \le 1 \le k$. We claim that f induces an

 E_k – cordial labeling on P_n^+ . Clearly the sequence {f(e_i)} is k-1, k-2,...,2, 1, 0, k-1, k-2,...,2,1, 0,... k-1,...1,0, k-1, k-2,..., k-t+1 and the sequence $\{f(e'_i)\}$ is 0, 1, 2, ..., k-1, ..., 0, 1, ..., k-1

1,0,1,2,..., t-1.

We note that (1) If t = 0,

1}

(3) $|e_{f}(i)-e_{f}(j)| \le 1 \text{ for all } i, j \in \{0,1,..,k-1\}$. (4) $f(u_i)+f(v_i) = k-1$ for all $i \neq n$ $f(u_n) = 0$

(5) If t = 0, $v_k(i) = 2m$ for all i

(6) If
$$t \neq 0$$
,

$$v_{f}(i) = \begin{cases} 2m+1 & \text{if } 1 \le i \le k\text{-t or } t \le i \\ 2m+2 & \text{if } t = 0 \text{ or } k\text{-t} < i < t \\ (7) | v_{f}(i) \cdot v_{f}(j) | \le 1, \text{ for all } i, j \in \{0,1,...,k\text{-}\} \end{cases}$$

Thus in this case the map f induces an E_k – cordial labeling for P_n^+

© 2011 Elixir All rights reserved

© 2011 Elixir All rights reserved.

2m if $i \neq 0$.

Case (2): If $2 \le t < \frac{k}{2}$, define f: $E(\mathbf{p}_n^+)$. $\rightarrow \{0,1,\ldots,k-1\}$ as $f(e'_i) = \Box \Box$ and $f(e_i) = k-1-\Box$. Where $i \le mk$ and i = $\square \pmod{k}$ $f(e'_{mk+i}) = i \text{ and } f(e_{mk+i}) = k-i-1, \text{ for } 1 \le i \le t.$ Clearly, $v_{f}(i) = \begin{cases} 2m\!\!+\!\!1 & \text{if } i = k\!\!-\!\!1,\! 0 \le \! i \le \! t, k\!\!+\!\! t \le \! i \le \! k\!\!-\!\! 3 \\ 2m & \text{if } i = k\!\!-\!\! 2 \text{ and } t < \! i < \! k\!\!-\!\! t. \end{cases}$ if i if i = 0 or t $e_{f}(i) = \langle i < k-t, i \rangle = k-1.$ as ef induces an E_k - cordial labeling. : If t =1, define f: E $(\mathbf{P}_n^+) \rightarrow \{0,1,\dots,k-1\}$ as 2m+1 if i 2m In this case f induces Case (3): $f(e'_n) = k-1;$ $f(e'_{n-1}) = 0$ $f(e'_i) = \Box \Box$ for $i \le n-2$; $f(e_i) = k \cdot \Box \Box -1$ for all i = 1, 2, ..., nWhere i-1 = $\square \square \pmod{k}$, $0 \le \square \square \le k$. Clearly, $\begin{cases} 2m & \text{for all } i \neq \\ 2m+1 & \text{for } i = 0 \end{cases}$ for all $i \neq 0$ $e_{f}(i) = \dot{}$ $v_{f}(i) = \begin{cases} for all \ i \neq 1, k-1 \\ 2m+1 & for \ i = 1, k-1 \\ map \ f \ induces \ an \ E_{k} - cordial \ labeling. \end{cases}$ 2m This Theorem 2.2 If n is even and $n \neq k/2 \pmod{k}$, P_n^+ is $E_k - \text{cordial}$. Proof: Let (i) u_1, u_2, \dots un be the path in P_n^+ with $deg(u_i) \neq 1$ in P_n^+ . (ii) v,...v_n be the pendant vertices of \mathbf{P}_n^+ and $\mathbf{u}_i \mathbf{v}_i \in \mathbf{E}(\mathbf{P}_n^+)$. (iii) $\mathbf{e}_i = \mathbf{u}_i \mathbf{u}_{i+1}$ for all i=1,2,...,n-1 and $\mathbf{e'}_i = \mathbf{u}_i \mathbf{v}_i$ for all i=1,2,...n. $n = mk + t, 0 \le t < k.$ (iv) Case (i): If t=0 or t >k/2, define f on $E(\mathbf{P}_n^+)$ as follows: $f(e'_i) = \Box$ and $f(e_i) = k - \Box \Box - 1$ for all i where $i = \Box \Box \pmod{d}$ k), $0 \leq \Box \Box \leq k$. Clearly, if t = 0, $e_{f}(i) = if i = 0.$ (2m if $i \neq 0$ 2m-1 $v_{f}(i) =$ 2m for all i. if $t \neq 0$. 2m+2 $e_{f}(i) = \begin{cases} \text{for } i \leq k \text{-t or } i \geq t. \\ \text{for } i \leq k \text{-t or } i \geq t. \end{cases}$ $v_{f}(i) = \begin{cases} 2m+2 \quad \text{for } i = 0, k \text{-t}, < i < t \\ 2m+1 \quad k \text{-t or } i \geq t. \end{cases}$ 2m+1 for 1 $\leq i \leq$ Case(2): If t = 1, define $f(e'_n) = k-1;$ $f((e'_{n-1}) = 0$ $f(e'_i) = \text{for all } i \leq n-2,$ $f(e'_i) = k-1-\Box \Box$ for all i = 1, 2, ..., n-1where i-1= \square (mod k), $0 \leq \square \square < k$. Clearly, 2m+1

 $v_{t}(i) = \begin{cases} 2m+1 \text{ if } i = 1 \text{ or } k-1\\ 2m & \text{ if } i \neq 1, k-1.\\ \text{Case(3): If } 2 \leq t < \frac{k}{2}, \text{ define } f \text{ on } E(\mathbf{p}_{n}^{+}).\text{as} \end{cases}$ follows: $f(e'_n) = 2(t-1)$ $f(e'_i) = \square$ and $f(e_i) = k-1-\square$ for all $i \le n-1$, Where i-1 = $\square \square \pmod{k}$, $0 \le \square \square < k$. Then clearly, 2m+1 $0 \le i \le t-1$ or i = 2(t-1) or $k-t \le i \le k-1$ $e_{f}(i) =$ 2m for all other i. 2m+1 $0 \le i \le t-1$ or i = 2(t-1) or $k-t \le i$ $v_{f}(i) =$ ≤k-1 2m for all other i. Thus if $n \neq k/2 \pmod{k}$, \mathbf{P}_n^+ is \mathbf{E}_k – cordial. Theorem 2.3. Let $n \ge 2$ and $k \ge 2$ be integers such that $n \neq k/2 \pmod{k}$. Then C_n^+ is E_k – cordial. Proof: Let $u_1, u_2, \dots u_n u_1$ be the cycle in C_n^+ and $v_1, \dots v_n$ be the pendant Vertices in \mathbf{C}_n^+ , let $u_i v_i \in E(\mathbf{C}_n^+)$.Let e_i and e'_i denote the edges $u_i u_{i+1}$ and $u_i v_i$ respectively for all i = 1, 2, ..., n-1 and $e_n = u_n u_1$, $e'_n = u_n v_n$. Let n = mk + t, $0 \le t < k$ Let us define f: $E(\mathbb{C}_n^+) \rightarrow \{0, 1, \dots, k-1\}$ as follows: $f(e'_i) = \Box \Box$ for all i=1,2,...,n; $f(e_i) = k - \Box \Box -1$ for all i=1,2,...,n-1 where $i-1 \equiv \square \pmod{k}, 0 \leq \square \leq k$. 0 if t = 0 or $t \ge k/2$ $\begin{cases} 1 & t & 0 & 0 \\ k-1 & \\ k-1 & \\ k-1 & \\ k+1 & \\ k-1 & \\ k$ $f(e_n) =$ We note that If t = 0, $v_f(i) = e_f(i) = 2m$ (1)(2) If $1 < t \leq$ (3) If $1 \le t \le \frac{k}{2}$. $v_{f}(i) = \begin{cases} 2m+1 & \text{if } 1 \le i \le t-1 \text{ or } i \\ =, [k/2] \text{ or } [(k+1)/2] & k-t \le i \le k-2 \\ 2m & \text{ for all other } i. \end{cases}$ $e_{f}(i) = \int_{k+1}^{2m+1} \text{ for } 0 \le i \le t-1, i = [(k+1)/2], k-t \le i \le k+1$ for all other i. (4) if k/2 < t, 2m+2 for i = 0, k-t < i<t $2m+1 \text{ for } 1 \le i \le k\text{-t or } i \ge t.$ $e_{i}(i) = \begin{cases} 2m+2 & \text{for } k\text{-t} < i < t \text{ and} \\ i=0 \\ k\text{-t or } i \ge t. \end{cases}$ $v_{f}(i) =$ 2m+1 for $i \leq$

· (·

Thus C_n^+ is E_k – cordial.

The graph obtained from \mathbf{P}_n^+ by identifying all the pendant vertices of \mathbf{P}_n^+ to new vertex w is denoted by \mathbf{F}_n and is called the fan on (n+1) vertices. The wheel W_n is the graph obtained from C_n^+ by identifying all the pendant vertices of C_n^+ to a new vertex w. Infact $F_n = K_1 + P_n$ and $W_n = K_1 + C_n$.

Theorem 2.4 Let $k \ge 3$ and n = mk + t, 0 t < k, $m \ge 1$.

If $k = 2 \pmod{4}$ and $m = 0 \pmod{2}$ assume that $t \neq k-1$ Then F_n is E_{k} – cordial. Proof:

Let $u_1u_2...u_n$ be the path P_n and w be vertex which is adjacent to each u_i ($1 \le i \le n$). The edges $u_i u_{i+1}$ and wu_i are denoted by e_i and e'_i respectively. First we define $f(e_i)$ and $f(e'_i)$ for all i < mk-1. Then we consider various cases and extend f to $E(F_n)$ in each 0000

Define
$$f(e'_i) \equiv \Box$$
 and $f(e'_i) \equiv k-\Box \Box -1$ for $1 \le i \le mk-1$,
Where $i-1 \equiv \Box \pmod{k}, 0 \le \Box < k$.
Case(1): If $t \equiv 0$ define $f(e'_i) \equiv k-1$, $f(e'_{n-1}) = k-2$ and $f(e_{n-1}) = 1$

Case(2): If t = 1, k = 4 and m is odd, define $f(e'_{n-1}) = 3$, $f(e'_{n-1}) = 0$ and $f(e_{n-1}) = 0$. If t =1 and either k $\neq 4$ or m is even, define $f(e'_n) = k-1, f(e'_{n-1}) = 1; f(e_{n-2}) = f(e_{n-1}) = 0.$ Case(3): Let 1 < t < k.

We observe that $m \sum_{i=0}^{t-1} j = k/2$ if k is even m is odd

$$= 0$$
 if either k is odd or m is even

Let $(t(t-1))/2 = s \pmod{k}, 0 \le s \le k \text{ and } s + k/2 = a \pmod{k}$ k).

Assume that either k is odd or m is even. Sub case(1):

Let s < k - t + 1. Then define $f(e_{mk-1}) = 1, \quad f(e_{mk}) = 0; \quad f(e'_{mk-1}) = k-2; \quad f(e'_{mk}) = 0$ $f(e_{mk+i}) = k-i \quad f(e'_{mk+i}) = i-1 \quad \text{for all } 1 \le i < t-1.$ and if s = 0, $f(e'_n) = t$; $f(e'_{n-1}) = t-1$; $f(e_{n-1}) = k-t$. if $s \ne 0$, $f(e'_n) = t-1$; $f(e'_{n-1}) = t-2$; $f(e_{n-1}) = k-t+1$. Sub case(2): Let $s \ge k-t+1$ and t < k-t. Define f as follows: $f(e_{mk-1}) = 1,$ $f(e_{mk}) = 0;$ $f(e'_{mk-1}) = k-2;$ $f(e'_{mk}) = k-2;$ $f(e_{mk+i}) = \begin{cases} k\text{-}i & \text{for all } 1 \le i \le k\text{-}s\text{-}2\\ k\text{-}i\text{-}1 & \text{for all } k\text{-}s\text{-}1 \le i \le t\text{-}1\\ f(e'_{mk+i}) = i\text{-}1 & \text{for all } 1 \le i < t\text{-}1 \text{ f}(e'_n) = t. \end{cases}$ Sub case(3): Let $s \ge k - t + 1$; $2t \ge k + 2$ and $t \le s$.

Then t -1 < s and hence k - s < k- (t-1) and (t-1) < (t-1) + (k-s) = k-(s-t)-1 < k. Define f as follows: $f(e_{mk-1}) = 1,$ $f(e_{mk}) = 0;$ $f(e'_{mk-1}) = k-2;$ $f(e'_{mk}) = k-1$ $f(e_{mk+i}) = k-i$ for all $1 \le i \le t-1$

$$f(e'_{mk+i}) = i-1 \text{ for all } 1 \le i < t-1$$

and $f(e'_n) = t-1 + k$ -s.
Sub case(4):
Let $s \ge k - t + 1$: $2t = k + 1$ (ork). Then $s \ge t$.
Then $t-1 + k - s + k - t = k + k - (s+1) \equiv k-(s+1) \pmod{k}$;
 $k - (s+1) < k-t$ as $k > s \ge t$.
Define f as follows:
 $f(e_{mk-1}) = 1, \quad f(e_{mk}) = 0; \quad f(e'_{mk-1}) = k-2;$
 $f(e'_{mk}) = k-1$
 $f(e_{mk+i}) = \begin{cases} k-i & \text{for all } 1 \le i \le s - t \\ k-i-1 & \text{for all } s-t+1 \le i \le t-1 \end{cases}$
 $f(e'_{mk+i}) = \begin{cases} k-i & \text{for all } 1 \le i \le s - t \\ k-i-1 & \text{for all } 1 \le i < t-1 \end{cases}$
 $f(e'_{mk+i}) = f(e'_{mk+i}) = f(e'_$

Let m be odd and k be even. All the subcases proved in case 3 are valid, if we replace s by a, where $s + \lfloor k/2 \rfloor = a \pmod{k} 0 \le 1$ a < k.

One can easily verify that the map f induces an E_k – cordial labeling.

Illustration for Ek - cordial labeling of graphs

 E_k – Cordial Labeling of P_n^+

Case(i) E₇ – Cordial Labeling of P_7^+

$$0 1 2 3 4 5 6$$

$$6 5 4 3 2 1$$

 E_7 – Cordial Labeling of P_{11}^+

case(ii) E₉ – Cordial Labeling of P_{12}^+

Case(iii) E₉ – Cordial Labeling of P_{10}^+

Case (ii) E_6 – Cordial Labeling of P_6^+ Subcase (i)

$$0 \boxed{1} 2 3 4 5$$

$$5 4 3 2 1$$

Subcase (ii) E_6 – Cordial Labeling of P_{11}^+

Subcase (iii) E₆ – Cordial Labeling of P_7^+

Case(i) E_7 – Cordial Labeling of C_7^+

Case(iii) E₇ – Cordial labeling of C_{10}^+

 $Case(iv)E_7$ – Cordial labeling of C_{11}^+

Theorem: 4 F_n is E_k – Cordial Case (i) t = 0 m-odd k-odd E_9 – Cordial Labeling of F_9

E₆ – Cordial Labeling of F₁₃

E₄ – Cordial Labeling of F₉

 E_{13} – Cordial labeling of F_{19}

References

1. I. Cahit, On Cordial and 3 – Equitable Labelings of Graphs, Utilita Mathematica, 37(1990), 189 - 198.

2. I. Cahit, On harmonious tree labelings, Ars Combinatoria, 41(1995), 311 – 317.

3. I. Cahit, Cordial graphs: a weaker version of graceful and harmonic graphs, Ars combin., 23(1987) 201 – 207.

4. J.A. Gallian – A Dynamic Survey of Graph Labeling, Electronic J Combinatorics, 17(2010) # DS6.

5. Yilmaz and Cahit E- cordial graphs, Ars combinations 46(1997) 251 – 266.

6. R.Umarani, A Study on graph labelings – k-Equitable and strong α – labelings, Ph.D. Thesis, 2003.