
Binod Shaw et al./ Elixir Elec. Engg. 38 (2011) 4558-4563 
 

4558 

Introduction  

Economic dispatch (ED) allocates generations among the 

committed generating units in the most economical manner 

subject to different operational constraints [1]. To date, various 

investigations on ED problems have been undertaken as better 

solutions would result in more saving in the operating cost. 

Increased interests are being paid by the researchers towards the 

application of the evolutionary optimization techniques for the 

solution of the ED problems. Genetic algorithm (GA) [2], 

artificial neural networks [3], simulated annealing (SA), Tabu 

search, evolutionary programming (EP), particle swarm 

optimization (PSO) [2], [4], ant colony optimization (ACO) [5], 

differential evolution (DE) [6], bacteria foraging with Nelder-

Mead (BF-NM) [7],  biogeography-based optimization (BBO) 

[8], a hybrid technique combining DE with BBO (DE-BBO) [9] 

are just a few among the numerous techniques adopted for this 

specific purpose.  

Seeker optimization algorithm (SOA) [10] is, essentially, a 

novel population based heuristic search algorithm. It is based on 

human understanding and searching capability for finding an 

optimum solution. In the SOA, optimum solution is regarded as 

one which is searched out by a seeker population. The 

underlying concept of the SOA is very easy to model and 

relatively easier than other optimization techniques prevailing in 

the literature. The present work focuses on the performance of 

SOA as an optimizing tool in solving the ED problems.  

In view of the above, the main contribution of this paper can 

be summarized as follows: 

(a) Two large-scale power systems test cases of ED problem 

are solved with the SOA and the best results obtained by the 

SOA are presented in this paper. 

(b) The best results obtained by adopting the SOA are 

compared with those published in the recent papers. 

(c) Considering the near-globality of the solution and the 

improved convergence speed obtained, application of the SOA 

in solving ED problems seems to be a promising alternative 

approach for solving the ED problems in practical power 

system. 

Mathematical Modeling of the ED Problem 

ED with Quadratic Cost Function 

The problem of ED is multimodal, non-differentiable and 

highly non-linear. Mathematically, the problem can be stated as 

in (1). The simplified cost function of each generator unit can be 

represented as in (2) [8], [9]. 
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ED Problem with Valve Point Effect 

The cost function of a fossil fired plant, owing to valve 

point effect, is highly non-linear. Hence, the cost function is 

realistically denoted as a recurring rectified sinusoidal function 

[11] as given in (3) 

hPPfePcPbaPF iiiiiiiiiii /$))(sin()( min2 

   

(3) 

Ripples in the heat-rate curves are introduced due to valve-

point effects, and thereby, the number of local optima is 

increased. It is to be noted here that the fuel cost coefficients  ie  

and if  are introduced to model the valve point discontinuities.   

Constraints of ED Problems 

The problems of ED are subject to the following constraints. 

(i) Real Power Balance Constraint: The total generated power 

should be same as the total load demand ( DP ) plus the line loss 

( LP ) and is modeled as in (4). 
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The transmission loss is a function of active power 

generation of each generating unit for a given load demand. It 

may be expressed as a quadratic function of generations (using 

B coefficient matrix) as given by (5) [4]. 
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(ii) Generation Capacity Constraints: The power output of each 

generator should be within its minimum ( min
iP ) and maximum 

( max
iP ) limits. The generating capacity constraints are written 

as in (6). 
maxmin

iii PPP                                                                  (6) 

(iii) Ramp Rate Constraints: The ramp-up and ramp-down limits 

may be represented by the following equation [2]. 

iii URPP  0  , and iii DRPP 0                                      (7) 

To consider the ramp rate limits and power output limits 

constrains at the same time, (6) and (7) can be written as a 

combined inequality constraint as given by the following 

equation [2]. 

},min{},max{ 0max0min
iiiiiii URPPPDRPP            (8) 

(iv) Prohibited Operating Zone Constraints: The prohibited 

operating zones are the ranges of output power of a generator 

where the operation causes undue vibration of the turbine shaft. 

Normally, operation of a unit is avoided in such regions. Hence, 

mathematically, the feasible operating zones of a unit can be 

described in (9) [8], [9]. 
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Formulation of Objective Function 

The objective function ( ()OF ) is designed as in (10) that 

requires to be minimized. 
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The weighing factors are selected to make the 

corresponding terms competitive during the proces s of 

optimization. The unit of each weighing factor involved in (10) 

is $/MWh. 

Seeker optimization algorithms as applied to ED Problem 

Seeker Optimization Algorithm 

SOA [10, 12] is a population-based heuristic search 

algorithm. It regards optimization process as an optimal solution 

obtained by a seeker population. Each individual of this 

population is called seeker. The total population is randomly 

categorized into three subpopulations. These subpopulations 

search over several different domains of the search space. All 

seekers in the same subpopulation constitute a neighborhood. 

This neighborhood represents the social component for social 

sharing of information. 

Steps of Seeker Optimization Algorithm 

In SOA, a search direction )(td ij and a step length )(tij  

are computed separately for each ith seeker on each jth variable 

at each time step t , where 0)( tij  and }1,0,1{)( tdij  . 

Here, i  represents the population number and j  represents the 

number of variable to be optimized 

 

Calculation of Search Direction, )(td ij  

It is the natural tendency of the swarms to reciprocate in a 

cooperative manner while executing their needs and deeds. 

Normally, there are two extreme types of cooperative behavior 

prevailing in the swarm dynamics. One, egotistic, is entirely pro-

self and another, altruistic, is entirely pro-group [13]. Every 

seeker, as a single sophisticated agent, is uniformly egotistic 

[13]. He believes that he should go toward his historical best 

position according to his own judgment. This attitude of ith 

seeker may be modeled by an empirical direction vector 

)(, td egoi  as in (11). 

))()(()( ,, txtpsigntd ibestiegoi                                (11)  

In (11), ).(sign is a signum function on each dimension of 

the input vector. On the other hand, in altruistic behavior each 

seeker wants to communicate with each other, cooperate 

explicitly, and adjust their behaviors in response to the other 

seeker in the same neighborhood region for achieving the 

desired goal. That means the seekers exhibit entirely pro-group 

behavior. The population then exhibits a self-organized 

aggregation behavior of which the positive feedback, usually, 

takes the form of attraction toward a given signal source. Two 

optional altruistic directions may be modeled as in (12)-(13). 

))()(()(1, txtgsigntd ibestalti                          (12) 

))()(()(2, txtlsigntd ibestalti                          (13) 

In (12)-(13), )(tgbest represents neighbors’ historical best 

position, )(tlbest  means neighbors’ current best position. 

Moreover, seekers enjoy the properties of pro-activeness; 

seekers do not simply act in response to their environment; they 

are able to exhibit goal-directed behavior [14]. In addition, 

future behavior can be predicted and guided by past behavior 

[15]. As a result, the seeker may be pro-active to change his 

search direction and exhibit goal-directed behavior according to 

his past behavior. Hence, each seeker is associated with an 

empirical direction called as pro-activeness direction as in (14). 

))()(()( 21, txtxsigntd iiproi                          (14) 

In (14), }2,1,{, 21  ttttt and it is assumed that 

)( 1txi is better than )( 2txi . The aforementioned four empirical 

directions as shown in (11)-(14) direct human being to take a 

rational decision in the search direction.  

If the jth variable of the ith seeker goes towards the positive 

direction of the coordinate axis, )(td ij  is taken as +1. If the jth 

variable of the ith seeker goes towards the negative direction of 

the coordinate axis, )(td ij  is assumed as -1. The value of 

)(tdij is assumed as 0 if the ith seeker stays at the current 

position.  Every dimension j of )(td i is selected by applying 

the following proportional selection rule (shown in Figure 1) as 

stated in (15). 
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In (15), jr  is a uniform random number in [0, 1], 

)( m
jp }11,0{( m is the percent of the number of “ m  ” 

from the set },,,{ ,2,1,, proijaltijaltijegoij dddd on each 

dimension j of all the four empirical directions, i.e. 
)( m

jp = 

(the number of m ) / 4.  

 
Figure 1. The proportional selection rule of search directions 

Calculation of Step Length,
 

)(tij  

From the view point of human searching behavior, it is 

understood that one may find the near optimal solutions in a 

narrower neighborhood of the point with lower fitness, value and 

on the other hand, in a wider neighborhood of the point with 

higher fitness value. A fuzzy system may be an ideal choice to 

represent the understanding and the linguistic behavioral pattern 

of human searching tendency.  

Different optimization problems often have different ranges 

of fitness values. To design a fuzzy system to be applicable to a 

wide range of optimization problems, the fitness  values of all the 

seekers are sorted in descending manner (for minimization 

problem) / in ascending manner (for maximization problem) and 

turned into the sequence numbers from 1 to S as the inputs of 

fuzzy reasoning. The linear membership function is used in the 

conditional part since the universe of discourse is a given set of 

numbers, i.e. S........,,2,1  . The expression is presented as in 

(16).   

     

)(
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




s

Is i
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In (16), iI  is the sequence number of )( tx i after sorting 

the fitness values, max is the maximum membership degree 

value which is equal to or a little less than 1.0. Here, the value of 

max is taken as 0.95. 

A fuzzy system works on the principle of control rule as “If 

{the conditional part}, then {the action part}. Bell membership 

function 
22/2

)(  xex  (shown in Figure 2) is well utilized 

in the literature to represent the action part. For the convenience, 

one dimension is considered. Thus, the membership degree 

values of the input variables beyond ]3,3[   are less than 

0.0111 )0111.0)3((   , and the elements beyond 

]3,3[   in the universe of discourse can be neglected for a 

linguistic atom. Thus, the minimum value 0111.0min   is set. 

Moreover, the parameter,   , of the Bell membership function is 

determined by the following equation. 

)( randbest xxabs                          (17) 

In (17), the absolute value of the input vector as the 

corresponding output vector is represented by the symbol 

).(abs . The parameter  is used to decrease the step length 

with increasing time step so as to gradually improve the search 

precision. In the present experiments,  is linearly decreased 

from 0.9 to 0.1 during a run. The bestx  and randx  are the best 

seeker and a randomly selected seeker, respectively, from the 

same subpopulation to which the ith seeker belongs. It is to be 

noted here that randx  is different from bestx  and   is shared 

by all the seekers in the same subpopulation.  

  
Figure 2. The action part of the Fuzzy reasoning 

In order to introduce the randomness in each dimension and 

to improve local search capability, the following equation is 

introduced to convert i  into a vector  i .  

)1,( iij RAND               (18) 

In (18), )1,( iRAND   returns a uniformly random real 

number within ]1,[ i . Equation (19) denotes the action part of 

the fuzzy reasoning and gives the step length ( ij ) for every 

dimension j . 

)(ln ijjij                              (19) 

Updating of Seekers’ Position 

In a population of size S , for each seeker i ( Si 1 ), the 

position update on each dimension j  is given by the following 

equation.  

)()()()1( tdttxtx ijijijij                                           (20) 

where, 

)1( txij  the position of the jth variable of the ith seeker at 

time step 1t , 

)(txij  the position of the jth variable of the ith seeker at 

time step t , 

)(tij  the step length of the jth variable of the ith seeker at 

time step t , 

)(tdij  the search direction of the jth variable of the ith 

seeker at time step t . 

Subpopulation Learn From Each Other 

Each subpopulation is searching for the optimal solution 

using its own information. It hints that the subpopulation may 

trap into local optima yielding a premature convergence. 

Subpopulations must learn from each other about the optimum 

information so far they have acquired in their domain. Thus, the 

positions of the worst seekers of each subpopulation are 

combined with the best one in each of the other subpopulations 

using the following binomial crossover operator as expressed in 

(21). 
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In (21), jrand is a uniformly random real number within [0, 

1], worstjnkx , is denoted as the j dimension of the nth worst 

position in the k th subpopulation, worstjlx , is the jth dimension 

of the best position in the lth subpopulation with and n , k , 

l 1.......,,2,1 K and lk  . In order to increase the diversity 

in the population, good information acquired by each 

subpopulation is shared among the subpopulations. The 

flowchart of the algorithm is depicted in Figure 3. 
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Figure 3. Flowchart of the seeker optimization algorithm 

Numerical Examples and Solution Results 

The SOA has been applied to solve the ED problems in two 

different large-scale test systems for investigating its 

optimization capability. The software has been written in 

MATLAB-7.3 language and executed on a 3.0-GHz Pentium IV 

personal computer with 512-MB RAM. 

Test System 1: 40-Generating Units with Valve Point 

Loading 

A system with 40 generators with valve point loadings and 

transmission loss is considered as the tes t system 1. The input 

data are given in [11]. The load demand is 10500 MW. The best 

solutions of the generation schedules and the total generation 

cost etc as obtained from 50 trial runs are presented in Table I. 

Convergence results of the different algorithms are also 

presented in Table II. The convergence profile of the total 

generation cost ($/h) is depicted in Figure 4. 

Test System 2: A Large Scale Power System of Korea 

A large scale power system of Korea with 140 generators is 

taken as the test system 2. Hydro and pump storage units are 

excluded. For this system ramp rate limits, valve point effect, 

and prohibited operating zones are considered but transmission 

network loss is not considered. The system input data are 

available in [19]. The system load demand is 49342 MW. The 

convergence results of the different algorithms for this test 

system are shown in Table III. The convergence profile of the 

total generation cost ($/h) is depicted in Figure 5 

 
Figure 4. Convergence profile of the total generation cost for 

the 40-generating units 

 
Figure 5. Convergence profile of the total generation cost for 

the large scale power system of Korea 

Discussions of Results 

Solution Quality: It is noticed from Tables II, and III that the 

minimum cost achieved by applying the SOA is the least one as 

compared to those achieved by earlier reported algorithms as 

mentioned in the respective tables. 

Comparison of Best Generation Costs: It may be observed from 

Tables II, and III that the minimum costs achieved by the SOA 

based method for the test systems 1 and 2, are 113120 $/h, 

1571700 $/h, respectively. Again, power mismatches are the 

least ones in the SOA as compared to those in others. Hence, it 

can be concluded that for all the two test systems the 

performance of the SOA is  found to be the best one. 

Computational Efficiency: Apart from yielding the minimum 

cost by the SOA, it may also be noted that the SOA yields 

minimum cost at comparatively lesser time of execution of the 

program. Thus, this approach is also efficient as far as the 

computational time is concerned.  

Conclusion 

In this paper, the SOA has been successfully implemented 

to solve two different large-scale ED problems. It has been 

observed that the SOA has the ability to converge to a better 

quality near-optimal solution and possesses better convergence 

characteristics and robustness than other prevailing techniques 

reported in the recent literatures. It is also clear from the results 

obtained by different trials that the SOA is free from the

Real coded initialization of S seekers 

Divide the population into K subpopulations randomly  

Calculate the objective function value of each seeker 

Calculate the personal best position, neighborhood 

best position and population best position 

Compute step length for each 

seeker by using (20) 

 

Update the position of each seeker  

Subpopulations learn from each other by using (21) 

 

Meet stopping 
criterion? 

 

Display the optimal fitness value and optimal solution 

Start  

Stop 

No 

Yes 

Compute search direction for each 
seeker by using (15) 

 

Calculate the objective function value of each seeker 

Update the personal best position, neighborhood 
best position and population best position 

Set t = 0 

 

Increment t = t+1 
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shortcoming of premature convergence exhibited by the other 

optimization algorithms. Thus, this algorithm may become a 

very promising tool for solving some more complex engineering 

optimization problems for future researchers.  
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Table I SOA Based Best Results for the Test System 1 WITH PD = 10500 MW 
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P1 98.4760 P11 304.0025 P21 438.7379 P31 172.0005 

P2 106.2378 P12 292.9607 P22 436.0573 P32 178.5031 

P3 110.7931 P13 413.3226 P23 441.0579 P33 168.2835 

P4 158.2180 P14 391.8817 P24 425.0123 P34 187.7960 

P5 91.8640 P15 400.7214 P25 427.9365 P35 171.5563 

P6 127.2495 P16 401.5576 P26 452.8892 P36 178.2705 

P7 236.0978 P17 409.0213 P27 110.2229 P37 97.2393 

P8 286.5869 P18 468.3763 P28 140.5338 P38 87.7159 

P9 236.7750 P19 509.7511 P29 122.5079 P39 93.5632 
P10 260.7015 P20 509.1169 P30 87.2678 P40 498.2079 

 

Total Generation (MW) 10729.07 

Total Transmission Loss (MW) 229.06 

Power Mismatch (MW) 0.01 

Total Generation Cost ($/h) 113120 

Time/Iteration (s) 0.05 
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Table II convergence results (50 trial runs) of the different algorithms for the 

test system 1 with pd = 10500 mw 
Algorithms Total Generation Cost ($/h) 

Minimum  Maximum Average 

QPSO [16] 121448.21 NR
*
 122225.07 

BBO [8] 121426.953 121688.6634 121508.0325 

BF-NM [7] 121423.63792 NR
*
 122295.1278 

DE-BBO [9] 121420.8948 121420.8968 121420.8952 

RCGA [17] 121418.5425 121628.5987 121504.1169 

ICA-PSO [18] 121413.20 121453.56 121428.14 

CCPSO [19] 121403.5362 121525.4934 121445.3269 

SOA  113120 114000 113250 
NR

*
 means not reported in the referred literature 

 

Table III convergence results (50 trial runs) of the different algorithms for the test system 2with 

pd = 49342 mw 
Algorithms  Total Generation Cost ($/h)  

  Minimum  Maximum Average  

CTPSO [19]  1657962.73 1658002.79 1657964.06 

CSPSO [19]  1657962.73 1657962.85 1657962.74 

COPSO [19]  1657962.73 1657962.73 1657962.73 

CCPSO [19]  1657962.73 1657962.73 1657962.73 

SOA   1571700.00 1571700.00 1571700.00 

 


