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Introduction 

 In the present report the behavior of a third-order new 

autonomous oscillator circuit has been studied. This circuit 

consists of two active elements, one linear negative conductance 

and smooth cubic nonlinearity exhibiting symmetrical 

piecewise-linear v-i characteristics, two linear capacitances      

(C1 and C2) and one linear inductor (L) is also included in the 

circuit, serves as the control parameters [1-5]. 

Most chaotic and bifurcation effect cited in the literature 

have been observed in electrical circuits. They include the 

period-doubling route to chaos [6], the intermittency route to 

chaos [7], and the quasi-periodicity route to chaos and of course 

the crisis [8-10]. This popularity is attributed to the advantages 

which electric circuits  offer to experimental chaos studies, such 

as robustness and convenient implementation. 

In this work we introduce a new autonomous third-order 

oscillator circuit that realizes period-doubling route to chaos 

followed by periodic window and then to lower dimensions of 

strong chaos through boundary crisis etc. We consider that such 

complicated chaotic time waveforms are expected to be utilized 

for realization of several chaotic applications such as chaos 

communication system with robustness against various 

interferences including multi user access. 

Experimental realization of the new autonomous oscillator 

circuit 

 The experimental realization of the simple-3D new 

autonomous oscillator is shown in Fig.1. The negative 

conductance (-G1) and the symmetrical cubic nonlinearity is 

designed by the help of two signal diodes is used to introduce 

symmetrical cubic nonlinearities [11]-[12]. The characteristics 

of the negative conductance are mathematically represented by i 

= –G1V1. The v-i characteristics of the global nonlinearity which 

can therefore be approximated by a cubic function of the form 

with    a < 0 and b > 0. 

 
Fig. 1 Simple third-order new autonomous oscillator circuit. 
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The constant term v describes the input current offset of the 

op-amp which can be practically adjusted to zero using the 

potentiometer ( v  = 0).  

By applying Kirchhoff’s laws to the equivalent circuit of 

Fig.1 we obtain the following set of differential equations: 
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 While V1 and V2 are the voltages across the capacitors C1 

and C2, and iL denote the current through the inductance (L) 

respectively, the term f(V2-V1) representing the characteristics of 

the symmetrical cubic nonlinearity can be expressed 

mathematically as 
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 ABS TRACT  

The simple third-order chaotic dynamics of a new autonomous oscillator circuit was studied 
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 The simple-3D new autonomous oscillator circuit is also 

truly chaotic oscillator. This is because, there is no locally active 

resistance (R) in this circuit, only varying that the inductance (L) 

value, this circuit exhibits a very interesting dynamical 

phenomena like period-doubling bifurcation sequence leading to 

chaos, period-doubling window and then to lower dimensions of  

strong chaos through boundary condition [13].  

 However in the parameter regimes investigated, important 

features like period-doubling window, lower dimensions of 

strong chaos have not been reported. 

Experimental Observations: Period-doubling route to chaos 

via period-doubling window 

For our present experimental study we have chosen the 

following typical values of the circuit in Fig.1: C1 = 10nF, C2 = 

100nF. The negative conductance G1 = -0.5mS and cubic 

nonlinear resistance a < 0 and b > 0. Here the variable inductor 

(L) is assumed to be the control parameter. 

By increasing the value of L from 1mH to 10mH, the circuit 

behavior of Fig.1 is found to transmit from a period doubling 

route to chaos, and then to period doubling window through 

lower dimensions of strong chaos followed by boundary crisis 

etc. The projection of the attractors on the 
)( 21 VV 

 and 

current sensing resistor with voltage plane of Cathode Ray 

Oscilloscope are shown in Fig.2 for various values of control 

parameter L.  

Fig.3 shows the experimental chaotic time series were 

registered using a Cathode Ray Oscilloscope for discrete values 

of L serving as the control parameter. 

 
Fig 2. Typical experimental phase portraits of the system 

corresponding to different regimes. 

 
Fig. 3 Time-domain measurements of the proposed new 

autonomous third-order chaotic oscillator. 

The simple third-order new autonomous oscillator circuit 

with the symmetrical cubic nonlinearity can produce lower 

dimensions of  strong chaos see in Fig.4, from which we observe 

clearly that there are broad-band power spectrum.  

The power spectrum corresponding to the voltages V1(t) and 

V2(t) waveform across the capacitors C1 and C2 respectively, 

which resembles broad-band spectrum noise. 

Numerical realization of the new autonomous oscillator 

circuit 

 
Fig. 4 Power spectrum of the signals V1(t) and V2(t) from 

the circuit of new autonomous third-order chaotic oscillator. 

 

For a convenient numerical analysis of the experimental systems 

given by Eqns.(1), we rescale the parameters as bR
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 and then redefine τ as t. Then 

the normalized equations of the third-order new autonomous 

oscillator circuit (Fig.1) are 
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Where    
3
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The dynamics of Eqns.(2) now depends on the parameter α, 

β, γ and υ.  

The experimental results have been verified by computer 

simulation of the normalized Eqns.(2) using the standard fourth-

order Runge-Kutta method for a specific choice of system 

parameters employed in the laboratory experiments.    That is, in 

the actual experimental set up the inductor L is varied from L = 

1mH upwards to 10mH.  

Therefore in the numerical simulation we study the 

corresponding Eqns.(2) for L in the range L = (1mH, 10mH). 

From our numerical investigations, we find that for the value of 

L above 1mH, limit cycle motion is obtained, when the value of 

L is increased, particularly in the range L = 7mH the system 

displays a double band chaotic motion and then to period -

doubling window through lower dimensions of  strong chaos 

followed by boundary crisis etc.,. These numerical results are 

summarized in the phase portraits given in the
)( 21 xx 

, and 

)( 32 xx 
  planes are shown in Fig.5.  Figure 6. Shows the 

numerical chaotic time series were registered using a discrete 

value of L serving as the control parameter. It is gratifying to 

note that the numerical results agree qualitatively very well with 

that of the laboratory experiments.  
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Fig. 5 Typical numerical phase portraits of the system 

corresponding to different regimes. 

 

 
Fig. 6 Numerical time-domain measurements of the 

proposed new autonomous third-order chaotic oscillator. 

Conclusions 

It appears that the new autonomous oscillator circuit 

presented in this paper is one of the simplest third-order systems 

reported so far. Its simplicity arises from the fact that (i) The 

negative conductance is a simple op-amp impedance converter. 

(ii) The symmetrical cubic nonlinearity is synthesized from mere 

two signal diodes. (iii) The circuit equations are the most simple 

because of there is no locally active resistor (R) in the circuit, 

where the inductance (L) as the control parameter. The attractive 

features of this circuit are the presence of period-doubling route 

to chaos, period-doubling window through lower dimensions of 

strong chaos followed by boundary condition etc.  It is of further 

interest to study these aspects also in this system as well as the 

intermittency route to chaos and synchronization of coupled 

chaotic circuits of the present system for improved high security 

communication systems. 
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