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Introduction 

In original Chua's circuit, a nonlinear resistor is called 

Chua's diode is the unique nonlinear electric element. It plays an 

important role in the circuit. Due to the existence of this 

nonlinear element Chua's circuit exhibits a variety of nonlinear 

phenomena, such as chaos, bifurcation and so on [1-5]. The 

characteristic of Chua's diode is described by a continuous 

piecewise - linear function with three segments and two non-

differential break points [6-9]. However, the characteristics of 

nonlinear devices in practical circuits are always smooth and the 

implementation of piecewise-linear function requires a large 

amount of circuitry compared with smooth cubic function. 

Therefore, it is significant to investigate Chua's circuit with a 

smooth cubic nonlinearity from practical view point [14]. 

Hartley (1989) proposed to replace the piecewise-linear 

nonlinearity in Chua's circuit with a smooth cubic nonlinearity. 

 In the present report the behavior of a fourth-order 

autonomous hyperchaotic oscillator circuit has been studied. 

This circuit consists of two active elements, one linear negative 

conductance and smooth cubic nonlinearity exhibiting a 

symmetrical piecewise-linear v-i characteristic. Two inductances 

(L1, L2) two capacitances (C1, C2) and one locally active resistor 

(R) is also included in the circuit, serve as the control 

parameters. 

 Hyperchaos is defined as a chaotic attractor with more than 

one positive Lyapunov exponents, i.e., its dynamics expand in 

more than one direction [5]. In otherwords, the dynamics expand 

not only small line segments, but also small area elements, there 

giving rise to a 'thick' chaotic attractor. Most hyperchaotic and 

bifurcation effects cited in the literature have been observed in 

electric circuits. They include the period-doubling route to 

chaos, the intermittency route to chaos, and the quasiperiodicity 

route to chaos and of course the crisis [7, 10-12]. This popularity 

is attributed to the advantages which electric circuits offer to 

experimental hyperchaos studies, such complicated hyperchaotic 

wave forms are expected to be utilized for realization of several 

hyperchaotic applications such a chaos communication system 

with robustness against various interferences including multi-

user access [9-14]. The plan of the paper is as follows. In section 

II, we present the details of realization of the proposed 

autonomous circuit. The results of the observations from the 

laboratory experimental simulation and the conformation 

through analytical calculation and numerical simulation on the 

dynamics of the circuit are presented in section III. Finally, in 

section IV, we summarize and conclude the results and indicate 

further direction. 

Circuit description and simulation results  

 The fourth-order hyperchaotic oscillator circuit we have 

studied is presented in Fig. 1.  

 
 It consists of two active elements, one linear negative 

conductance (G1) using current feedback op-amp and one 

smooth cubic nonlinearity with an odd symmetric piecewise-

linear v-i characteristic [14]. This fourth-order circuit is based on 

a third-order autonomous piecewise-linear circuit introduced by 

Chua and Lin, capable to realize every member of the Chua's 

circuit family [9]. Applying Kirchoff's laws, the set of four first-

orders coupled autonomous differential equations as given 

below:
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 While V1 and V2 are the voltages across the Capacitors C1 

and C2, iL1 and iL2 denotes the currents through the inductances 

L1 and L2 respectively, the term f (V1) representing the 

characteristic of the smooth cubic nonlinearity can be expressed 

mathematically: 
3
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 For our present experimental study we have chosen the 

following typical values of the circuit in Fig. 1. Were L1 = 

25mH, L2 = 250mH, C1 = 25nF, C2 = 75nF and G1 = 1.0mS. 

Here the variable resistor „R‟ is assumed to be the control 

parameter. By decreasing the value of „R‟ from 2,100Ω ≥ R ≥  

33Ω, the circuit behavior of Fig. 1 is found to transit from a 

period-doubling route to chaos and then to hyperchaotic attractor 

through border collision bifurcation behavior followed by 

period-doubling windows and boundary crisis [13-14], etc. The 

hyperchaotic attractors of fourth-order autonomous circuit with 

the smooth cubic nonlinearity projected onto different planes are 

shown in Fig. 2. Experimental time series were registered using 

a simulation storage oscilloscope for discrete values of C1 and 

C2 are shown if Fig. 3. 

 
Fig. 2 Experimental results of the projections of 

hyperchaotic attractor onto different planes. 

 
Fig. 3 Experimental results of the hyperchaotic time series. 

The distribution of power in a signal x(t) is the most 

commonly quantified by means of the power density spectrum 

or simply power spectrum. It is the magnitude-square of the 

Fourier transforms of the signal x(t). It can detect the presence of 

hyperchaos when the spectrum is broad-banded. The power 

spectrum corresponding to the voltages V1(t) and V2(t) 

waveforms across the capacitors C1 and C2 for the hyperchaotic 

regimes are shown in Fig. 4 which resembles broad-band 

spectrum noise. 

 
Fig. 4 Experimental results of the projections of 

hyperchaotic Power spectrum. 

Numerical confirmation 

The hyperchaotic dynamics of circuit as shown in Fig. 1 is 

studied by numerical integration of the normalized differential 

equations [14]. For a convenient numerical analysis of the 

experimental system given by Eq. (1), we rescale the parameters 

as  
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Eqs. (1) and (2) reduce to the following set of normalized 

equations of the fourth-order oscillator circuit as given below: 
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 The dynamics of Eq. (3) now depends upon the parameters 

υ1, υ2, γ, α, β1, and β2. The experimental results have been verified 

by numerical simulation of the normalized Eq. (3) using the 

standard fourth-order Runge-Kutta method for a specific choice 

of system parameters employed in the experimental simulation 

results. That is, in the actual experimental set up the resistor „R‟ 

is varied from R = 2,100Ω ≥ R ≥ 33Ω. Therefore in the 

numerical simulation, we study the corresponding Eq. (3) for in 

the range R = 2,100Ω ≥ R ≥ 33Ω.  

 
Fig. 5 Numerical results of the projections of hyperchaotic 

attractor onto different planes  

 When the value of „R‟ is decreased to lower than 2,100Ω 

particularly in the range R = (2,100Ω ≥ R ≥ 33Ω) the system 
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displays a period-doubling route to chaos and then to hyperchaos 

through boundary condition. These numerical results of the 

hyperchaotic attractor of fourth-order autonomous circuit with 

the smooth cubic nonlinearity projected onto different planes are 

shown in Fig. 5. It is gratifying to note that the numerical results 

agree qualitatively very well with that of the experimental 

simulation results. 

Conclusions 

 We have presented a simple-4D hyperchaotic oscillator 

circuit which has symmetrical piecewise-linear elements. We 

can confirm hyperchaotic attractor on computer simulation or 

circuit experiments. The attractive feature of this circuit is the 

presence of hyperchaotic attractor over a range of parameter 

values, which might be useful for applications in controlling of 

hyperchaos, synchronization and in secure communication 

system. 
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