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Introduction  

Power dissipation is recognized as a critical parameter in 

modern VLSI design field. To satisfy MOORE‟S law and to 

produce consumer electronics goods with more backup and less 

weight, low power VLSI design is necessary.  

Fast multipliers are essential parts of digital signal 

processing systems. The speed of multiply operation is of great 

importance in digital signal processing as well as in the general 

purpose processors today, especially since the media processing 

took off. In the past multiplication was generally implemented 

via a sequence of addition, subtraction, and shift operations. 

Multiplication can be considered as a series of repeated 

additions. The number to be added is the multiplicand, the 

number of times that it is added is the multiplier, and the result 

is the product. Each step of addition generates a partial product. 

In most computers, the operand usually contains the same 

number of bits. When the operands are interpreted as integers, 

the product is generally twice the length of operands in order to 

preserve the information content. This repeated addition method 

that is suggested by the arithmetic definition is slow that it is 

almost always replaced by an algorithm that makes use of 

positional representation. It is possible to decompose multipliers 

into two parts. The first part is dedicated to the generation of 

partial products, and the second one collects and adds them. 

The basic multiplication principle is twofold i.e. evaluation 

of partial products and accumulation of the shifted partial 

products. It is performed by the successive additions of the 

columns of the shifted partial product matrix. The „multiplier‟ is 

successfully shifted and gates the appropriate bit of the 

„multiplicand‟. The delayed, gated instance of the multiplicand 

must all be in the same column of the shifted partial product 

matrix. They are then added to form the product bit for the 

particular form. Multiplication is therefore a multi operand 

operation. To extend the multiplication to both signed and 

unsigned numbers, a convenient number system would be the 

representation of numbers in two‟s complement format. 

The MAC(Multiplier and Accumulator Unit) is used for 

image processing and digital signal processing (DSP) in a DSP 

processor. Algorithm of MAC is Booth's radix-4 algorithm, 

Modified Booth Multiplier, 34-bit CSA and improves speed. 

MIPS was implemented as micro processors and permitted high 

performance pipeline implementations through the use of their 

simple register oriented instruction sets. 

 
Figure 1: Array Multiplier 

Although those algorithms (radix-4 algorithm, pipelining, 

etc) are widely used technique for speeding up each part, the 

MAC on specific processor cannot be run at 100% efficiency. 

Due to the reasons of lower speed of MAC, MIPS instruction 

"mul" (multiplication) takes longer time than any other 

instruction in our MIPS processor. To improve speed of MIPS, 

MAC needs to be fast and MIPS must have special algorithm for 

"mul" instruction. One of the methods we chose was to design 

multi-clock MAC instead of one-clock MAC which improved 

the speed of MIPS. In general, the instruction set of MIPS 

processor includes complex works like multiplication and 

floating point operation which has multi execution stage. 

Therefore, system clock of the processor was increased 
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efficiently. We applied 2 stage pipelining to the MAC to MIPS 

processor and as a result we were able to get the result of matrix 

multiplication which was used for image processing in our MIPS 

processor that supports MAC. 

MAC 

Overview of MAC 

A multiplier can be divided into three operational steps. The 

first is radix-2 Booth encoding in which a partial product is 

generated from the multiplicand X and the multiplier Y . The 

second is adder array or partial product compression to add all 

partial products and convert them into the form of sum and 

carry. The last is the final addition in which the final 

multiplication result is produced by adding the sum and the 

carry. If the process to accumulate the multiplied results is 

included, a MAC consists  of four steps, as shown in Fig. 1, 

which shows the operational steps explicitly. General hardware 

architecture of this MAC is shown in Fig. 2. It executes the 

multiplication operation by multiplying the input multiplier X 

and the multiplicand Y . This is added to the previous 

multiplication result Z as the accumulation step. 

The N-bit 2‟s complement binary number can be expressed as  

            ……..(1) 

If (1) is expressed in base-4 type redundant sign digit form in 

order to apply the radix-2 Booth‟s algorithm.   

    ……………………….(2) 

      …………………(3) 

 

If (2) is used, multiplication can be expressed as  

               ……..(4) 

If these equations are used, the afore-mentioned multiplication–

accumulation results can be expressed as  

         …(5) 

Each of the two terms on the right-hand side of (5) is 

calculated independently and the final result is produced by 

adding the two results. The MAC architecture implemented by 

(5) is called the standard design [6]. 

If -bit data are multiplied, the number of the generated  

partial products is proportional to . In order to add them serially, 

the execution time is also proportional to .  

The architecture of a multiplier, which is the fastest, uses 

radix-2 Booth encoding that generates partial products and a 

Wallace tree based on CSA as the adder array to add the partial 

products.  

If radix-2 Booth encoding is used, the number of partial 

products, i.e., the inputs to the Wallace tree, is reduced to half, 

resulting in the decrease in CSA tree step. In addition, the signed 

multiplication based on 2‟s complement numbers is also 

possible. Due to these reasons, most current used multipliers 

adopt the Booth encoding. 

Proposed MAC Architecture 

If an operation to multiply two N –bit numbers and 

accumulate into a 2N -bit number is considered, the critical path 

is determined by the 2 -bit accumulation operation. If a pipeline 

scheme is applied for each step in the standard design of Fig. 1, 

the delay of the last accumulator must be reduced in order to 

improve the performance of the MAC. The overall performance 

of the proposed MAC is improved by eliminating the 

accumulator itself by combining it with the CSA function. If the 

accumulator has been eliminated, the critical path is then 

determined by the final adder in the multiplier. The basic 

method to improve the performance of the final adder is to 

decrease the number of input bits. In order to reduce this number 

of input bits, the multiple partial products are compressed into a 

sum and a carry by CSA. The number of bits of sums and carries 

to be transferred to the final adder is reduced by adding the 

lower bits of sums and carries in advance within the range in 

which the overall performance will not be degraded. A 2-bit 

CLA is used to add the lower bits in the CSA. In addition, to 

increase the output rate when pipelining is applied, the sums and 

carrys from the CSA are accumulated instead of the outputs 

from the final adder in the manner that the sum and carry from 

the CSA in the previous cycle are inputted to CSA. Due to this 

feedback of both sum and carry, the number of inputs to CSA 

increases, compared to the standard design and [17]. In order to 

efficiently solve the increase in the amount of data, a CSA 

architecture is modified to treat the sign bit. 

 
Figure 2: Hardware architecture of Proposed MAC  

High-Speed Booth Encoded Parallel Multiplier Design: 

Modified Booth Encoder 

In order to achieve high-speed multiplication, multiplication 

algorithms using parallel counters, such as the modified Booth 

algorithm has been proposed, and some multipliers based on the 

algorithms have been implemented for practical use. This type 

of multiplier operates much faster than an array multiplier for 

longer operands because its computation time is proportional to 

the logarithm of the word length of operands. 

 
Figure 3: Detection logic circuits using an AND Gate  

Booth multiplication is a technique that allows for smaller, 

faster multiplication circuits, by recoding the numbers that are 

multiplied. It is possible to reduce the number of partial products 

by half, by using the technique of radix-4 Booth recoding. The 
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basic idea is that, instead of shifting and adding for every 

column of the multiplier term and multiplying by 1 or 0, we only 

take every second column, and multiply by ±1, ±2, or 0, to 

obtain the same results. The advantage of this method is the 

halving of the number of partial products. To Booth recode the 

multiplier term, we consider the bits in blocks of three, such that 

each block overlaps the previous block by one bit. Grouping 

starts from the LSB, and the first block only uses two bits of the 

multiplier. Figure 3 shows the grouping of bits from the 

multiplier term for use in modified booth encoding. 

 
Figure 4: Grouping of bits from the multiplier term 

Each block is decoded to generate the correct partial 

product. The encoding of the multiplier Y, using the modified 

booth algorithm, generates the following five signed digits, -2, -

1, 0, +1, +2. Each encoded digit in the multiplier performs a 

certain operation on the multiplicand, X, as illustrated in Table 1 

 
For the partial product generation, we adopt Radix-4 

Modified Booth algorithm to reduce the number of partial 

products for roughly one half. For multiplication of 2‟s 

complement numbers, the two-bit encoding using this algorithm 

scans a triplet of bits. When the multiplier B is divided into 

groups of two bits, the algorithm is applied to this group of 

divided bits.  

Figure 4, shows a computing example of Booth multiplying 

two numbers ”2AC9” and “006A”. The shadow denotes that the 

numbers in this part of Booth multiplication are all zero so that 

this part of the computations can be neglected. Saving those 

computations can significantly reduce the power consumption 

caused by the transient signals. According to the analysis of the 

multiplication shown in figure 4, we propose the SPST-equipped 

modified-Booth encoder, which is controlled by a detection unit. 

The detection unit has one of the two operands as its input to 

decide whether the Booth encoder calculates redundant 

computations. As shown in figure 9. The latches can, 

respectively, freeze the inputs of MUX-4 to MUX-7 or only 

those of MUX-6 to MUX-7 when the PP4 to PP7 or the PP6 to 

PP7 are zero; to reduce the transition power dissipation. Figure 

10, shows the booth partial product generation circuit. It 

includes AND/OR/EX-OR logic. 

 
Figure 5: Illustration of multiplication using modified Booth 

encoding 

The PP generator generates five candidates of the partial 

products, i.e., {-2A,-A, 0, A, 2A}. These are then selected 

according to the Booth encoding results of the operand B. When 

the operand besides the Booth encoded one has a small absolute 

value, there are opportunities to reduce the spurious power 

dissipated in the compression tree. 

 
Figure 6: SPST equipped modified Booth encoder 

Partial product generator 

 
Figure 7: Booth Partial Product selector Logic 

The multiplication first step generates from A and X a set of 

bits whose weights sum is the product P. For unsigned 

multiplication, P most significant bit weight is positive, while in 

2's complement it is negative.  

The partial product is generated by doing AND between „a‟ 

and „b‟ which are a 4 bit vectors as shown in fig. If we take, four 

bit multiplier and 4-bit multiplicand we get sixteen partial 

products in which the first partial product is stored in „q‟. 

Similarly, the second, third and fourth partial products are stored 

in 4-bit vector n, x, y. 

 
Figure 8: Booth partial products Generation 

The multiplication second step reduces the partial products 

from the preceding step into two numbers  while preserving the 

weighted sum. The sough after product P is the sum of those two 

numbers.  

The two numbers will be added during the third step The 

"Wallace trees" synthesis follows the Dadda's algorithm, which 

assures of the minimum counter number. If on top of that we 

impose to reduce as late as (or as soon as) possible then the 

solution is unique. The two binary number to be added during 

the third step may also be seen a one number in CSA notation (2 

bits per digit). 
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Spurious Power Suppression Technique 

The former SPST has been discussed in [7] and [8].figure 2 

shows the five cases of a 16-bit addition in which the spurious 

switching activities occur. The 1st case illustrates a transient 

state in which the spurious transitions of carry signals occur in 

the MSP though the final result of the MSP are unchanged. The 

2nd and the 3rd cases describe the situations of one negative 

operand adding another positive operand without and with carry 

from LSP, respectively. Moreover, the 4th and the 5th cases 

respectively demonstrate the addition of two negative operands 

without and with carry-in from LSP. In those cases, the results 

of the MSP are predictable Therefore the computations in the 

MSP are useless and can be neglected. The data are separated 

into the Most Significant Part (MSP) and the Least Significant 

Part (LSP).To know whether the MSP affects the computation 

results or not. We need a detection logic unit to detect the 

effective ranges of the inputs. The Boolean logical equations 

shown below express the behavioral principles of the detection 

logic unit in the MSP circuits of the SPST-based 

adder/subtractor: 

 
Figure 9: Spurious transition cases in multimedia/ DSP 

processing 

AMSP          = A[15:8]; BMSP = B[15:8] ; 

Aand            = A[15] A[14] A[8]; 

Band            = B[15] B[14] B[8];] 

 
where A[m] and B[n] respectively denote the mth bit of the 

operands A and the nth bit of the operand B, and AMSP and 

BMSP respectively denote the MSP parts, i.e. the 9th bit to the 

16th bit, of the operands A and B. When the bits in AMSP 

and/or those in BMSP are all ones, the value of Aand and/or that 

of Band respectively become one, while the bits in AMSP and/or 

those in BMSP are all zeros, the value of Anor, and/or that of 

Bnor respectively turn into one. Being one of the three outputs 

of the detection logic unit, close denotes whether the MSP 

circuits can be neglected or not. When the two input operand can 

be classified into one of the five classes as shown in figure 1, the 

value of close becomes zero which indicates that  the MSP 

circuits can be closed. figure 1. also shows that it is necessary to 

compensate the sign bit of computing results Accordingly, we 

derive the Karnaugh maps which lead to the Boolean equations 

(7) and (8) for the Carr_ctrl and the sign signals, respectively. In 

equation (7) and (8), CLSP denotes the carry propagated from 

the LSP circuits. 

 
Fig. shows a 16-bit adder/subtractor design example 

adopting the proposed SPST. In this example, the 16-bit 

adder/subtractor is divided into MSP and LSP between the 

eighth and the ninth bits. Latches implemented by simple AND 

gates are used to control the input data of the MSP. When 

theMSP is necessary, the input data of MSP remain unchanged. 

However, when the MSP is negligible, the input data of the MSP 

become zeros to avoid glitching power consumption. The two 

operands of the MSP enter the detection-logic unit, except the 

adder/subtractor, so that the detection-logic unit can decide 

whether to turn off the MSP or not. Based on the derived 

Boolean equations (1) to (8), the detection-logic unit of SPST is 

shown in Fig. 6(a), which can determine whether the input data 

of MSP should be latched or not. Moreover, we propose the 

novel glitch-diminishing technique by adding three 1-bit 

registers to control the assertion of the close, sign, and carr-ctrl 

signals to further decrease the transient signals occurred in the 

cascaded circuits which are usually adopted in VLSI 

architectures designed for multimedia/DSP applications. The 

timing diagram is shown in Fig. 6(b). A certain amount of delay 

is used to assert the close, sign, and carr-ctrl signals after the 

period of data transition which is achieved by controlling the 

three 1-bit registers at the outputs of the detection-logic unit. 

Hence, the transients of the detection-logic unit can be 

filtered out; thus, the data latches shown in Fig can prevent the 

glitch signals from flowing into the MSP with tiny cost. The 

data transient time and the earliest required time of all the inputs 

are also illustrated. The delay should be set in the range of, 

which is shown as the shadow area in Fig, to filter out the glitch 

signals as well as to keep the computation results correct. Based 

on Figs. 5 and 6, the timing issue of the SPST is analyzed as 

follows. 

Conclusion  

A 16x16 multiplier-accumulator (MAC) is presented in this 

work. A RADIX 4 Modified Booth multiplier circuit is used for 

MAC architecture. Compared to other circuits, the Booth 

multiplier has the highest operational speed and less hardware 

count. The basic building blocks for the MAC unit are identified 

and each of the blocks is analyzed for its performance. Power 

and delay is calculated for the blocks. 1-bit MAC unit is 

designed with enable to reduce the total power consumption 

based on block enable technique. Using this block, the N-bit 

MAC unit is constructed and the total power consumption is 

calculated for the MAC unit. The power reduction techniques 

adopted in this work. The MAC unit designed in this work can 

be used in filter realizations for High speed DSP applications. 

Table 12 summarizes the results obtained. 
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