
Satya Veni et al./ Elixir Elec. Engg. 38 (2011) 4533-4537

4533

Introduction

Power dissipation is recognized as a critical parameter in

modern VLSI design field. To satisfy MOORE‟S law and to

produce consumer electronics goods with more backup and less

weight, low power VLSI design is necessary.

Fast multipliers are essential parts of digital signal

processing systems. The speed of multiply operation is of great

importance in digital signal processing as well as in the general

purpose processors today, especially since the media processing

took off. In the past multiplication was generally implemented

via a sequence of addition, subtraction, and shift operations.

Multiplication can be considered as a series of repeated

additions. The number to be added is the multiplicand, the

number of times that it is added is the multiplier, and the result

is the product. Each step of addition generates a partial product.

In most computers, the operand usually contains the same

number of bits. When the operands are interpreted as integers,

the product is generally twice the length of operands in order to

preserve the information content. This repeated addition method

that is suggested by the arithmetic definition is slow that it is

almost always replaced by an algorithm that makes use of

positional representation. It is possible to decompose multipliers

into two parts. The first part is dedicated to the generation of

partial products, and the second one collects and adds them.

The basic multiplication principle is twofold i.e. evaluation

of partial products and accumulation of the shifted partial

products. It is performed by the successive additions of the

columns of the shifted partial product matrix. The „multiplier‟ is

successfully shifted and gates the appropriate bit of the

„multiplicand‟. The delayed, gated instance of the multiplicand

must all be in the same column of the shifted partial product

matrix. They are then added to form the product bit for the

particular form. Multiplication is therefore a multi operand

operation. To extend the multiplication to both signed and

unsigned numbers, a convenient number system would be the

representation of numbers in two‟s complement format.

The MAC(Multiplier and Accumulator Unit) is used for

image processing and digital signal processing (DSP) in a DSP

processor. Algorithm of MAC is Booth's radix-4 algorithm,

Modified Booth Multiplier, 34-bit CSA and improves speed.

MIPS was implemented as micro processors and permitted high

performance pipeline implementations through the use of their

simple register oriented instruction sets.

Figure 1: Array Multiplier

Although those algorithms (radix-4 algorithm, pipelining,

etc) are widely used technique for speeding up each part, the

MAC on specific processor cannot be run at 100% efficiency.

Due to the reasons of lower speed of MAC, MIPS instruction

"mul" (multiplication) takes longer time than any other

instruction in our MIPS processor. To improve speed of MIPS,

MAC needs to be fast and MIPS must have special algorithm for

"mul" instruction. One of the methods we chose was to design

multi-clock MAC instead of one-clock MAC which improved

the speed of MIPS. In general, the instruction set of MIPS

processor includes complex works like multiplication and

floating point operation which has multi execution stage.

Therefore, system clock of the processor was increased

Tele:

E-mail addresses: satya.genny@gmail.com
 © 2011 Elixir All rights reserved

A new VLSI architecture for low power high performance parallel multiplier-
accumulator based on radix-2 modified booth algorithm

R. Satya Veni and M. Prema Kumar

Department of Electrical and Communication Engineering, Shri Vishnu Engineering College for Women, Bhimavaram.

ABS TRACT

A new architecture of multiplier-and-accumulator (MAC) for high-speed arithmetic. In this

by combining multiplication with accumulation and devising a hybrid type of carry save

adder (CSA), the performance was improved. The CSA tree uses 1‟s -complement- based

radix-2. Modified Booth‟s algorithm (MBA) and has the modified array for the sign

extension in order to increase the bit density of the operands. The CSA propagates the

carries to the least significant bits of the partial products and generates the least significant

bits in advance to decrease the number of the input bits of the final adder. The MAC

accumulates the intermediate results in the type of sum and carry bits instead of the output of

the final adder, which made it possible to optimize the pipeline scheme to improve the

performance.

 © 2011 Elixir All rights reserved.

ARTICLE INFO

Article his tory:

Received: 22 August 2011;

Received in revised form:

26 August 2011;

Accepted: 31 August 2011;

Keywor ds

CSA,

FAs,

MBA,

MAC.

Elixir Elec. Engg. 38 (2011) 4533-4537

Electrical Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Satya Veni et al./ Elixir Elec. Engg. 38 (2011) 4533-4537

4534

efficiently. We applied 2 stage pipelining to the MAC to MIPS

processor and as a result we were able to get the result of matrix

multiplication which was used for image processing in our MIPS

processor that supports MAC.

MAC

Overview of MAC

A multiplier can be divided into three operational steps. The

first is radix-2 Booth encoding in which a partial product is

generated from the multiplicand X and the multiplier Y . The

second is adder array or partial product compression to add all

partial products and convert them into the form of sum and

carry. The last is the final addition in which the final

multiplication result is produced by adding the sum and the

carry. If the process to accumulate the multiplied results is

included, a MAC consists of four steps, as shown in Fig. 1,

which shows the operational steps explicitly. General hardware

architecture of this MAC is shown in Fig. 2. It executes the

multiplication operation by multiplying the input multiplier X

and the multiplicand Y . This is added to the previous

multiplication result Z as the accumulation step.

The N-bit 2‟s complement binary number can be expressed as

 ……..(1)

If (1) is expressed in base-4 type redundant sign digit form in

order to apply the radix-2 Booth‟s algorithm.

 ……………………….(2)

 …………………(3)

If (2) is used, multiplication can be expressed as

 ……..(4)

If these equations are used, the afore-mentioned multiplication–

accumulation results can be expressed as

 …(5)

Each of the two terms on the right-hand side of (5) is

calculated independently and the final result is produced by

adding the two results. The MAC architecture implemented by

(5) is called the standard design [6].

If -bit data are multiplied, the number of the generated

partial products is proportional to . In order to add them serially,

the execution time is also proportional to .

The architecture of a multiplier, which is the fastest, uses

radix-2 Booth encoding that generates partial products and a

Wallace tree based on CSA as the adder array to add the partial

products.

If radix-2 Booth encoding is used, the number of partial

products, i.e., the inputs to the Wallace tree, is reduced to half,

resulting in the decrease in CSA tree step. In addition, the signed

multiplication based on 2‟s complement numbers is also

possible. Due to these reasons, most current used multipliers

adopt the Booth encoding.

Proposed MAC Architecture

If an operation to multiply two N –bit numbers and

accumulate into a 2N -bit number is considered, the critical path

is determined by the 2 -bit accumulation operation. If a pipeline

scheme is applied for each step in the standard design of Fig. 1,

the delay of the last accumulator must be reduced in order to

improve the performance of the MAC. The overall performance

of the proposed MAC is improved by eliminating the

accumulator itself by combining it with the CSA function. If the

accumulator has been eliminated, the critical path is then

determined by the final adder in the multiplier. The basic

method to improve the performance of the final adder is to

decrease the number of input bits. In order to reduce this number

of input bits, the multiple partial products are compressed into a

sum and a carry by CSA. The number of bits of sums and carries

to be transferred to the final adder is reduced by adding the

lower bits of sums and carries in advance within the range in

which the overall performance will not be degraded. A 2-bit

CLA is used to add the lower bits in the CSA. In addition, to

increase the output rate when pipelining is applied, the sums and

carrys from the CSA are accumulated instead of the outputs

from the final adder in the manner that the sum and carry from

the CSA in the previous cycle are inputted to CSA. Due to this

feedback of both sum and carry, the number of inputs to CSA

increases, compared to the standard design and [17]. In order to

efficiently solve the increase in the amount of data, a CSA

architecture is modified to treat the sign bit.

Figure 2: Hardware architecture of Proposed MAC

High-Speed Booth Encoded Parallel Multiplier Design:

Modified Booth Encoder

In order to achieve high-speed multiplication, multiplication

algorithms using parallel counters, such as the modified Booth

algorithm has been proposed, and some multipliers based on the

algorithms have been implemented for practical use. This type

of multiplier operates much faster than an array multiplier for

longer operands because its computation time is proportional to

the logarithm of the word length of operands.

Figure 3: Detection logic circuits using an AND Gate

Booth multiplication is a technique that allows for smaller,

faster multiplication circuits, by recoding the numbers that are

multiplied. It is possible to reduce the number of partial products

by half, by using the technique of radix-4 Booth recoding. The

Satya Veni et al./ Elixir Elec. Engg. 38 (2011) 4533-4537

4535

basic idea is that, instead of shifting and adding for every

column of the multiplier term and multiplying by 1 or 0, we only

take every second column, and multiply by ±1, ±2, or 0, to

obtain the same results. The advantage of this method is the

halving of the number of partial products. To Booth recode the

multiplier term, we consider the bits in blocks of three, such that

each block overlaps the previous block by one bit. Grouping

starts from the LSB, and the first block only uses two bits of the

multiplier. Figure 3 shows the grouping of bits from the

multiplier term for use in modified booth encoding.

Figure 4: Grouping of bits from the multiplier term

Each block is decoded to generate the correct partial

product. The encoding of the multiplier Y, using the modified

booth algorithm, generates the following five signed digits, -2, -

1, 0, +1, +2. Each encoded digit in the multiplier performs a

certain operation on the multiplicand, X, as illustrated in Table 1

For the partial product generation, we adopt Radix-4

Modified Booth algorithm to reduce the number of partial

products for roughly one half. For multiplication of 2‟s

complement numbers, the two-bit encoding using this algorithm

scans a triplet of bits. When the multiplier B is divided into

groups of two bits, the algorithm is applied to this group of

divided bits.

Figure 4, shows a computing example of Booth multiplying

two numbers ”2AC9” and “006A”. The shadow denotes that the

numbers in this part of Booth multiplication are all zero so that

this part of the computations can be neglected. Saving those

computations can significantly reduce the power consumption

caused by the transient signals. According to the analysis of the

multiplication shown in figure 4, we propose the SPST-equipped

modified-Booth encoder, which is controlled by a detection unit.

The detection unit has one of the two operands as its input to

decide whether the Booth encoder calculates redundant

computations. As shown in figure 9. The latches can,

respectively, freeze the inputs of MUX-4 to MUX-7 or only

those of MUX-6 to MUX-7 when the PP4 to PP7 or the PP6 to

PP7 are zero; to reduce the transition power dissipation. Figure

10, shows the booth partial product generation circuit. It

includes AND/OR/EX-OR logic.

Figure 5: Illustration of multiplication using modified Booth

encoding

The PP generator generates five candidates of the partial

products, i.e., {-2A,-A, 0, A, 2A}. These are then selected

according to the Booth encoding results of the operand B. When

the operand besides the Booth encoded one has a small absolute

value, there are opportunities to reduce the spurious power

dissipated in the compression tree.

Figure 6: SPST equipped modified Booth encoder

Partial product generator

Figure 7: Booth Partial Product selector Logic

The multiplication first step generates from A and X a set of

bits whose weights sum is the product P. For unsigned

multiplication, P most significant bit weight is positive, while in

2's complement it is negative.

The partial product is generated by doing AND between „a‟

and „b‟ which are a 4 bit vectors as shown in fig. If we take, four

bit multiplier and 4-bit multiplicand we get sixteen partial

products in which the first partial product is stored in „q‟.

Similarly, the second, third and fourth partial products are stored

in 4-bit vector n, x, y.

Figure 8: Booth partial products Generation

The multiplication second step reduces the partial products

from the preceding step into two numbers while preserving the

weighted sum. The sough after product P is the sum of those two

numbers.

The two numbers will be added during the third step The

"Wallace trees" synthesis follows the Dadda's algorithm, which

assures of the minimum counter number. If on top of that we

impose to reduce as late as (or as soon as) possible then the

solution is unique. The two binary number to be added during

the third step may also be seen a one number in CSA notation (2

bits per digit).

Satya Veni et al./ Elixir Elec. Engg. 38 (2011) 4533-4537

4536

Spurious Power Suppression Technique

The former SPST has been discussed in [7] and [8].figure 2

shows the five cases of a 16-bit addition in which the spurious

switching activities occur. The 1st case illustrates a transient

state in which the spurious transitions of carry signals occur in

the MSP though the final result of the MSP are unchanged. The

2nd and the 3rd cases describe the situations of one negative

operand adding another positive operand without and with carry

from LSP, respectively. Moreover, the 4th and the 5th cases

respectively demonstrate the addition of two negative operands

without and with carry-in from LSP. In those cases, the results

of the MSP are predictable Therefore the computations in the

MSP are useless and can be neglected. The data are separated

into the Most Significant Part (MSP) and the Least Significant

Part (LSP).To know whether the MSP affects the computation

results or not. We need a detection logic unit to detect the

effective ranges of the inputs. The Boolean logical equations

shown below express the behavioral principles of the detection

logic unit in the MSP circuits of the SPST-based

adder/subtractor:

Figure 9: Spurious transition cases in multimedia/ DSP

processing

AMSP = A[15:8]; BMSP = B[15:8] ;

Aand = A[15] A[14] A[8];

Band = B[15] B[14] B[8];]

where A[m] and B[n] respectively denote the mth bit of the

operands A and the nth bit of the operand B, and AMSP and

BMSP respectively denote the MSP parts, i.e. the 9th bit to the

16th bit, of the operands A and B. When the bits in AMSP

and/or those in BMSP are all ones, the value of Aand and/or that

of Band respectively become one, while the bits in AMSP and/or

those in BMSP are all zeros, the value of Anor, and/or that of

Bnor respectively turn into one. Being one of the three outputs

of the detection logic unit, close denotes whether the MSP

circuits can be neglected or not. When the two input operand can

be classified into one of the five classes as shown in figure 1, the

value of close becomes zero which indicates that the MSP

circuits can be closed. figure 1. also shows that it is necessary to

compensate the sign bit of computing results Accordingly, we

derive the Karnaugh maps which lead to the Boolean equations

(7) and (8) for the Carr_ctrl and the sign signals, respectively. In

equation (7) and (8), CLSP denotes the carry propagated from

the LSP circuits.

Fig. shows a 16-bit adder/subtractor design example

adopting the proposed SPST. In this example, the 16-bit

adder/subtractor is divided into MSP and LSP between the

eighth and the ninth bits. Latches implemented by simple AND

gates are used to control the input data of the MSP. When

theMSP is necessary, the input data of MSP remain unchanged.

However, when the MSP is negligible, the input data of the MSP

become zeros to avoid glitching power consumption. The two

operands of the MSP enter the detection-logic unit, except the

adder/subtractor, so that the detection-logic unit can decide

whether to turn off the MSP or not. Based on the derived

Boolean equations (1) to (8), the detection-logic unit of SPST is

shown in Fig. 6(a), which can determine whether the input data

of MSP should be latched or not. Moreover, we propose the

novel glitch-diminishing technique by adding three 1-bit

registers to control the assertion of the close, sign, and carr-ctrl

signals to further decrease the transient signals occurred in the

cascaded circuits which are usually adopted in VLSI

architectures designed for multimedia/DSP applications. The

timing diagram is shown in Fig. 6(b). A certain amount of delay

is used to assert the close, sign, and carr-ctrl signals after the

period of data transition which is achieved by controlling the

three 1-bit registers at the outputs of the detection-logic unit.

Hence, the transients of the detection-logic unit can be

filtered out; thus, the data latches shown in Fig can prevent the

glitch signals from flowing into the MSP with tiny cost. The

data transient time and the earliest required time of all the inputs

are also illustrated. The delay should be set in the range of,

which is shown as the shadow area in Fig, to filter out the glitch

signals as well as to keep the computation results correct. Based

on Figs. 5 and 6, the timing issue of the SPST is analyzed as

follows.

Conclusion

A 16x16 multiplier-accumulator (MAC) is presented in this

work. A RADIX 4 Modified Booth multiplier circuit is used for

MAC architecture. Compared to other circuits, the Booth

multiplier has the highest operational speed and less hardware

count. The basic building blocks for the MAC unit are identified

and each of the blocks is analyzed for its performance. Power

and delay is calculated for the blocks. 1-bit MAC unit is

designed with enable to reduce the total power consumption

based on block enable technique. Using this block, the N-bit

MAC unit is constructed and the total power consumption is

calculated for the MAC unit. The power reduction techniques

adopted in this work. The MAC unit designed in this work can

be used in filter realizations for High speed DSP applications.

Table 12 summarizes the results obtained.

References

[1]A. D. Booth, “A signed binary multiplication technique,”

Quart. J.Math., vol. IV, pp. 236–240, 1952.

Satya Veni et al./ Elixir Elec. Engg. 38 (2011) 4533-4537

4537

[2] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE

Trans. Elec- tron Comput., vol. EC-13, no. 1, pp. 14–17, Feb.

1964.

[3] A. R. Cooper, “Parallel architecture modified Booth

multiplier,” Proc.

[4] Inst. Electr. Eng. G, vol. 135, pp. 125–128, 1988.

[5] N. R. Shanbag and P. Juneja, “Parallel implementation of a 4

4-bit multiplier using modified Booth‟s algorithm,” IEEE J.

Solid-State Cir- cuits, vol. 23, no. 4, pp. 1010–1013, Aug. 1988.

[6] G. Goto, T. Sato, M. Nakajima, and T. Sukemura, “A 54 54

regular structured tree multiplier,” IEEE J. Solid-State Circuits,

vol. 27, no. 9, pp. 1229–1236, Sep. 1992.

