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Introduction 

Time series data are of growing importance in many new 

database applications such as data mining and data warehousing.  

A time series is a sequence of real numbers  each number 

representing a value at a time point. For example the sequence 

could represent stock or commodity prices, sales exchange rates, 

weather data, bio-medical measurements. Time series are 

typically huge as well as of high dimension . Therefore time 

series   analysis has been an important and challenging topic in 

machine learning and data mining.  

Recently there has been much interest in the problem of 

similarity search in time series databases. For e.g.  we may want 

to find the stocks  that behave in approximately  the same way or  

stocks that increased  linearly upto sometime  and then crashed; 

or  years when the temperature patterns  in two regions  of the  

world  were similar. In these type of queries approximate rather 

than exact  matching is required. 

The similarity between two time series is typically 

measured with Euclidean  distance which can be calculated very 

efficiently.  However the volume of data encountered 

exasperates the problem. Consider the MACHO project where 

database contains more than a terabyte of data and is updated at 

the rate of several GB a day.  

 Applications in forecasting involve predicting the future 

conditions using the last few measurements.  For example in the 

case of banner-hits data, the number of hits in the immediate 

past can be used to gauge the popularity of an advertisement. In 

fraud and security monitoring, the recent data has more 

predictive value compared to the old data. Therefore a system 

which maintains better approximations for the recent data is 

useful. The challenge is to maintain these biased approximations 

continuously as new data arrives in an online manner. So the 

most promising similarity search methods perform reduction on 

the data and then use an index structure for the data in the 

transformed space.  

The widely used data  reduction techniques are SVD, DFT, 

DWT, PIP, PAA etc., These data   reduction  strategies are 

specifically developed for time series analysis in general. 

However they are non-actionable in recent-biased analysis for 

streaming time series. This is because Traditional Time series 

analysis algorithms take recent data and old data as equally 

important. In recent-biased analysis, recent data are much more 

important than old ones. Most existing data  reduction 

techniques process time series in   a batch way(i.e.) the whole 

time series needs to be examined again on the arrival of new 

data. So they are very inefficient for processing online data 

streams. 

This leaves a big gap between the recent-biased analysis 

and traditional machinery available to data reduction. To bridge 

this gap  an  adaptive  framework is been used for recent-biased 

analysis over online data streams. In  this method  the time series 

is partitioned into segments and then data  reduction technique is 

applied to each segment where more coefficients  are kept for 

more recent data while fewer are kept for the older data. Thus, 

more details are preserved for recent data and fewer coefficients 

are kept for the whole time series which improves  the efficiency 

greatly. 

Our Contribution: 

First our idea is to apply a data reduction technique to 

different parts of time series and then more coefficients  are kept 

for more recent segments  with fewer coefficients for older 

segments referred as Adaptive Framework   for recent biased 

time series where  vari-DWT  are employed efficiently to obtain 

compact synopses of general relational tables. 

Second  we use  a class of transformations  that can be used  

in a query language  to express similarity in a fairly general way.   
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ABS TRACT 

A time series database is a collection of data that are generated in series as time goes on and 

constitutes a large portion of data stored in computers like stock-price movements, weather 

data, bio-medical measurements, video data etc., Two time sequences of same length are 

said to be similar if the Euclidean distance is less or equal to a given threshold. The main 

issue of similarity search in time series databases is to improve the search performance sin ce 

time sequences are usually of high dimension. So it is important to reduce the search space 

for efficient processing of similarity search in large time series databases.  We have used 

Adaptive Framework for the data reduction purpose which improves the search performance 

in Recent-Biased time series databases. We have applied a set of linear transformations on 

the reduced sequence that can be used as the basis for similarity queries on time series data. 

We have also formalized the intuitive notions of exact and approximate similarity in time 

series data. Our experiments show that the performance of this method is competitive to that 

of processing ordinary queries using the index and much faster than sequential scanning.   

                                                                                                  © 2011 Elixir All rights reserved. 
 

ARTICLE INFO    

Article his tory: 

Received: 22 August 2011; 

Received in revised form: 

26 August 2011; 

Accepted: 31August 2011;

 
Keywor ds  

Similarity search,  

Data Reduction,  

Recent-Biased Time series,  

Adaptive Framework. 

Elixir Comp. Sci. & Engg. 38 (2011) 4524-4529 

Computer Science and Engineering 

Available online at www.elixirpublishers.com (Elixir International Journal) 

 



Muruga Radha Devi et al./ Elixir Comp. Sci. & Engg. 38 (2011) 4524-4529 
 

4525 

Third we  provide syntax and semantics for similarity queries 

that account for approximate matching, scaling and shifting that 

have efficient indexing support.  

Background and Related Work 

In this section, research into various similarity search 

methods are first reviewed and then we briefly describe the 

recent biased time series analysis  and about the traditional data 

reduction methods. 

Similarity Search 

The presence of time component in data is what unifies such 

diverse datasets and classifies them as time series. So much 

research has been devoted recently to the efficient management 

of  time-series data. Analysis of time-series data is rooted in the 

ability to find  similar  series. 

Similarity is defined in terms of a distance metric, most 

often Euclidean distance or relatives of Euclidean distance.  

Given two time series Q =  (q1,q2,….. qn) and C = (c1,c2,….. cn), 

their Euclidean distance is  defined as  

D(Q,C) =  √ ∑ (qi   -   ci )
2            

                       ( 1 )  

 where i = 1,2….n   

       Two time sequences  of same length are said to be similar  if 

the Euclidean distance  is  less or equal to a given threshold. 

      Agrawal, Faloutsos and swami [1], first proposed the use of 

distance preserving transformation for dimensionality reduction. 

The transformations are applied to the original data and a few 

coefficients   of the transformed data are then indexed. Queries 

on the data are transformed into queries on these features that 

can efficiently be answered using the index. The answer in the 

feature space, when converted back to the data space, must be a 

superset of the original query answer.  

There are two ways in which the data is organized for 

similarity search namely: 

1) Whole matching: Here all sequences to be compared are of 

the same length 

Subsequence matching: Here we have a query sequence Q of 

length n and a longer sequence C of length m. The task is to  

find the subsequence in C  of length n, 

2) beginning at Ci, which best matches Q and report its offset 

within C. 

Whole matching requires comparing the query sequence to 

each candidate sequence by evaluating the distance function and 

keeping track of the sequence with the lowest distance. 

Subsequence matching requires that the query Q be placed at 

every possible offset within the longer sequence. 

There are two types of queries that we would like to support 

in time series database namely range queries and nearest 

neighbor query.  Range query returns  all sequences within an 

epsilon of the query sequence whereas nearest neighbour query 

returns k-nearest sequence to the query sequence.[5] The brute 

force approach  to answering these queries  is sequential 

scanning which requires comparing every time series Ci to Qi. 

This approach is unrealistic for large datasets. Similarity 

searching techniques that guarantee no false dismissals are 

exact, and techniques that do not have guarantee as approximate.  

Approximate techniques can still be very useful for exploring 

large databases,  when the probability of false dismissal is low 

[9]. 

Approximate Techniques for Similarity Searching 

Transforming the data with a lossy  compression schemes, 

then doing a sequential search on the compressed data. Existing  

techniques [9], suffer from  some limitation. (i.e.) they are all 

evaluated on small  datasets residing in  main memory, and it  is 

unclear if they can be made to scale to large datasets.  

Exact Techniques for Similarity Searching 

 A time series C = (c1,c2,….. cn) with n data points can be 

considered as a point in n-dimensional space which suggests that 

time series could be indexed by multidimensional index 

structure such as R-tree[8], so we need to perform 

dimensionality reduction in order to  exploit multidimensional 

index structure to index time series data. In order to guarantee 

no false dismissals the distance measure in the  index space must 

satisfy the following condition   

     D indexspace (A,B) <= Dtrue (A,B)            ( 2 )        

This is known as Contractive  Property. 

Rafiei and Mendelzon [12] propose a set of linear 

transformations  such  as moving average, time warping and 

reversing. These transformations can be used as the basis of 

similarity queries for time series data. In addition Rafiei[13] 

propose the method of processing queries that express similarity 

in terms of multiple transformations instead of a single one.  B-

K, Jagadish and Faloutsos [2] used time warping as distance 

function and present algorithms for retrieving similar time 

sequences under this function. However a time warping distance 

does not satisfy triangular inequality and can cause false 

dismissals. 

Recent-Biased Time Series Analysis  

In many applications, such as the  stock market, we care 

more about the recent data than what happened long ago. 

Besides the global trend, the recent data are very important for 

us to judge the similarity between time series and more 

significant for us to predict  and make decisions than the details 

of ancient data. For example, for a stock broker, the long-term 

trend of stock price  and the Tree) to process queries over data 

streams, that are biased towards the more recent values. 

Palpanas  et al [11] have proposed a technique for online 

amnesic approximation for streaming time series and the 

proposed representation of time series can represent  arbitrary 

user-specified amnesic functions. 

Popular Techniques for Data  Reduction 

Because of the high dimensionality of most time series, the 

direct indexing of time series is prohibitive. As a result Data  

Reduction  appears to be the most promising method for 

overcoming this problem.  

SVD(Singular  Value Decomposition) or PCA(Principal 

Component Analysis)[4] is a classic technique for dimension 

reduction  which keeps the Euclidean distance between the time 

series with singular values. SVD is a global transformation 

technique (i.e.) the entire data set  is examined to compute the 

axes. Popular feature extraction techniques  are  DFT(Discrete 

Fourier Transform) and DWT(Discrete Wavelet Transform) 

where the sequence is projected into the frequency 

domain(DFT) or tiling of the time frequency plane(DWT) [3].  

Keogh et al and Faloutsos et al[6] independently suggested  

approximating  a time series  by dividing it into  equal  length  

segments  and recording mean value of the data points that fall 

within the segment.  

The authors call it Piecewise Aggregate Approximation 

which is more competitive with more sophisticated transforms. 

If we allow the segments to have arbitrary lengths, we call that 

as Adaptive Piecewise Constant Approximation[7]  which 

requires two numbers per segment, the first number records the 

mean value of all the data points in the segment, the second  

number records the length.   
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Adaptive  Framework  For  Data Reduction 

In stream data analysis, users usually pay more attention to 

recent data than to old data, and are often interested in recent 

changes at a fine scale, but long-term variations at a coarse level.  

So it is  reasonable to process time series data with bias on 

recent values. [14] With bias on recent data, space requirement 

will be much reduced and the index and query on time series 

will be more efficient. 

Steps Involved in Adaptive Data Reduction 

i)Time series is divided into segments,  where recent data are 

partitioned into smaller segments  to keep more details and 

larger segments can be set for older data, so that less detail is 

kept for them. The size of the segments is set exponentially 

because it is more space efficient and DWT run fastest when the 

length of time series is the power of two. Therefore the length of 

segment S is set to n i = 2 for  i = 1,2,3….n or it can be set to 

any monotonously  increasing number sequences. 

ii)After partitioning  a data  reduction technique is applied to 

each segment and the same number of coefficients are kept for 

every segment.  

iii)If the coefficient  number for a segment is less than the 

coefficient number k, then all available coefficients are kept for 

that segment. Since older data are partitioned into larger 

segments, they are kept  at a coarser scale than more recent data. 

It is very easy  for this scheme to process online data streams. 

iv)When a new value arrives, a new segment is generated for it. 

Then the latest pair of neighbouring  segments that are of the 

same length, are merged into a single segment, At most one pair 

of segments are merged when a new value is added. 

v) Only the new segment generated by merging needs to be 

processed again with data  reduction techniques,  with other 

segments intact. (i.e) only a small part of the whole time series 

needs to be re-examined. 

Assume the length of segment Si  to be 2i  (i.e.) the length 

of segments  S3, S2,S1 are 4 , 2 and 1 from old data to recent 

data and almost eight coefficients are kept for almost all 

segments. When a new data  arrives, a new segment  S0 is   

created for it, so the  sizes of segments are 4, 2, 1 and 1. Since 

the last two segments are of same length they are merged while 

the  other two segments remains unchanged. Therefore there are 

3 segments left whose sizes are 4, 2 and 2 . When another data 

arrive, the size of the segments become 4,2, 2 and 1 so the two 

segments in the middle are merged and the sizes of segments 

become 4, 4 and 1. If another  data arrives the sizes of  segments 

become 4, 4, 1 and 1 so last two segments  are  merged  to have 

4, 4, and 2 where the first two segments are not merged because 

at a time only one pair of segments are merged when a new 

value arrives.  In the above  procedure almost one merge 

happens at each step. Only the new segment generated by 

merging needs to be processed again with data reduction 

techniques.  

Wavelet Decomposition 

Wavelet Decomposition of a function consists of a coarse 

overall approximation together with detail coefficients that 

influence the function at various scales. Haar wavelets are 

conceptually simple and very fast to compute and have been 

found to perform well in practice for a variety of applications 

ranging from image editing and querying. 

Suppose we are given a one-dimensional data vector  

containing the following eight  values A= [2,2,0,2,3.5,4,4],  the 

Haar  wavelet transform of  A  can be computed as follows. We 

first average the values together pair-wise to get a new “lower-

resolution” representation of the data with the following average 

values. In other words, the average of the first two values (that 

is, 2 and 2) is 2 and that of the next two values (that is, 0 and 2) 

is 1. Obviously, some information has been lost in this averaging 

process. To be able to restore  the original  values of the data 

array, we need to store some detail coefficients, that capture the 

missing information. In Haar wavelets, these detail coefficients 

are simply the differences of the (second of the) averaged values 

from the computed pair-wise average. 

We define the wavelet transform (also known as the wavelet 

decomposition) of A to be the single coefficient representing the 

overall average of the data values followed by the detail 

coefficients in the order of increasing resolution. Thus, the one-

dimensional Haar wavelet transform of  A is given by  WA = { 

2.75, -1.25, 0.5, 0, 0, -1, -1, 0)  Each entry in  WA  is called a 

wavelet coefficient. The main advantage of using WA  instead 

of the original data vector A  is that for vectors containing 

similar values most of the detail coefficients tend to have very 

small values. Thus, eliminating such small coefficients from the 

wavelet transform (i.e., treating them as zeros) introduces only 

small errors when reconstructing the original data, giving a very 

effective form of  lossy  data compression.  

The wavelet decomposition is very efficient 

computationally, requiring only O(N) CPU time and O(N/B)  

I/Os to compute for a signal of N values. No information  has 

been gained or lost by this process. The original signal has eight 

values and so does the transform. Given the transform, we can 

reconstruct the exact signal by recursively adding  and 

subtracting the detail coefficients from the next lower resolution. 

For compression reasons, the detail coefficients at each level of 

recursion are often normalized; the coefficients at the lower 

resolutions are weighted more heavily than the coefficients at 

the higher resolutions. One advantage of normalized wavelet 

transform is that in many  cases a large number of detail 

coefficients turn out to be very  small in magnitude.  Truncating 

these small coefficients from the representation  introduces only 

small errors in the reconstructed signal. We can approximate the 

original signal effectively by keeping the most significant  

coefficients. 

Similarity  Search  Methods 

The most basic problem in similarity search is First-

Occurrence Subsequence Matching which is defined as follows: 

Given a query sequence Q of length n and a longer sequence C 

of length N, find the first occurrence of a contiguous 

subsequence within C that matches Q exactly. A variant of the 

above problem involves finding all occurrences which is called 

as All occurrences Subsequence Matching problem. The above 

two problems have variants when the data consists of many 

sequences of same length as the query. The All occurrences 

whole sequence Matching problem is given a query sequence Q 

of length n  and a set of   N/n  data sequences , all of the same 

length find all  of the  data sequences that match Q exactly. 

Time series data in continuous domain is inherently inexact, due 

to the unavoidable imprecision of measuring devices  and 

clocking strategies. Given a tolerance є > 0 and a distance metric 

D between sequences, sequence S1 and S2 match approximately 

within tolerance є          when D(S1, S2) ≤  є. 

Transformations on Time Series Data 

In many cases, it is more natural to allow  the  matching of 

sequences that are not close to each other  in an Euclidean 

distance. For example, two companies may have identical  stock 

price fluctuations, but  one’s stock is worth twice as much as  
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the  other at all times. For another example, two sales patterns 

might be similar even if the sales volumes are different. We 

shall refer to the difference between these sequences as scale. In 

another example, the temperature on two different days may 

start at different values but then go up and down  in exactly the 

same way.  We shall refer to the difference between these 

sequences as shift. A good time series data mining mechanism 

should be able to find similar sequences up to scaling and 

shifting.  

Let G be a set of   transformations  then  two sets of points 

are similar if there exists a  transformation in G which maps one 

to the other.  Let D be the distance metric  between sequences 

and є > 0 a tolerance. Query sequence  Q is approximately 

similar within tolerance є to data sequences when there exists a 

similarity transformation T so that       D(Q, T(S))  <= є, when є 

is set to 0, we have exact similarity.  

We consider an object to be a point in a multidimensional 

space. For non-point objects we assume there is a mapping 

function that maps every object to a point in the multi-

dimensional space. Such a function is developed in many 

domains where multi-dimensional indexing has been  used. For 

(e.g.,) Fourier Transform, Discrete Wavelet  Transform  for time 

series are some instances of the mapping function. 

Similarity Transformations and Normal Forms 

An n sequence X is a sequence (x1,….xn) of real numbers. 

A pair of reals (a, b)  defines a similarity transformation  Ta,b  

over n-sequences by mapping each element xi to a × (xi  + b). 

We will assume that all similarity transformations are non-

degenerate; i.e, a ≠ 0. In fact, we will further assume that  a > 0, 

this restriction on a implies that a sequence symmetric to X  

w.r.t., x-axis is not considered similar to it. We say that X is 

similar to Y if there exists some (a, b)  є  (R+ × R) such that                               

X = Ta,b (Y)                                      (3) 

The similarity relation is reflexive, symmetric and transitive. 

Reflexivity: for any sequence X,  

X= T1,0(X)                                            (4)      

                [the identity transformation]. 

Symmetry: if X = Ta,b(Y)  then                          

Y = T1/a,-b/a(X) = T
-1

a,b(X)                      (5)   

[ The inverse of Ta,b  ] 

Transitivity: if X = Ta,b (Y) and Y = Tc,d (Z) then  

X =  Tac,ad+b(Z)  =  (Ta,b  × Tc,d )             (6)    

[ the non-commutative product of Ta,b  and  Tc,d ] 

Therefore, the set of all sequences similar to a given one 

constitutes an equivalence class, we shall denote the similarity 

class of X by X’. The similarity relation partitions all n -

sequences into similarity classes. 

An n-sequence x is normal if   α(x)= 0 and       σ(x) = 1 ,    

where   α(x)  is the average of x  and    σ(x) is the  standard 

deviation. Let x be normal and y be similar to x.                                                           

(i.e.) y = Ta,b (x) for some (a, b) є (R
+
 × R), then α(y)= b  and       

σ(y) = a. y  is normal only if      σ(y) = a = 1 and   α(y)= b  = 0; 

this is the identity transformation. This means that a similarity 

class has exactly one normal member, we will call it the normal 

form of all the members of the class. 

Given any sequence x,  V(x) denotes the normal form of  x.  

If α(x)  is the average of  x   and    σ(x) is the  standard deviation 

of x, then  x = σ(x)  × V(x) + α. Therefore we can compute V(x) 

from  x by the inverse transformation, 

           V(x) = T σ,α
-1

 (x) = T1/α, -α/α(x).       (7) 

In a transformation Ta,b , we call a as the scale factor and  b 

the shift factor. If a is 1, the transformation is a pure shift;  if b is 

0, it is a pure scaling. The identity transformation is a pure shift; 

the inverse of a shift is  a shift; and the product of two shifts is 

also a shift. This allows us to conclude that the set of all shifts of 

a given sequence is an   equivalence class. The same is true of 

the set of all   scaling. 

Semantics of  Similarity  Distance 

Given two sequences X and Y, the similarity distance 

between  X and Y is the distance between normal form of their 

respective similarity classes: 

DS (x,y) = DE ( V(x) ,V(y))                            (8) 

Where DE is the Euclidean distance. 

The similarity distance between any pair of sequences from 

x* and y* is the same; this gives us a distance metric for 

similarity classes:  

       DS (x*, y*) = DS (x,y)                                    (9) 

 A distance metric should be non-negative and symmetric; 

and it should obey the triangle inequality. A good distance 

metric should also be effectively computable. It is easy to see 

that the similarity distance satisfies all these criteria. By using 

similarity distance the similarity semantics for the All-

occurrences Subsequence Approximate Similarity is defined as 

follows: 

Given a query sequence Q, a time series S, a tolerance є ≥ 0, 

and a similarity relation, find  all  contiguous subsequences  S in 

the time series Š, such that  DS (Q, S)  ≤ є.       

Given a query sequence Q, a time series Š, and a similarity 

relation, find all contiguous subsequences S in the time series Š 

such that  Q and S are similar.[belong to the same equivalence 

class]. The exact case can be answered using the normal forms, 

because Q and S are in the same equivalence class if and only if  

V(Q) = V(S).  

Constraint-Based Syntax of Similarity Queries  

Constraint-based syntax for the general  similarity query 

which expresses  the queries is, Given Q,  є , (la, Ua) and       (lb, 

Ub) find all (S, a, b) such that  

D(Q, aS + b) ≤ є,                                          (10)  

where  la  ≤ a ≤ Ua    and  lb  ≤ b  ≤ Ub . 

If the user want to query for scaling transformations only  or for 

shift transformations only then : 

Scaling:  Find all [S, a] such that D(Q, aS)   ≤  є. 

Shifting: Find all [S,b] such that D(Q, S+b)   ≤  є. 

If the user want to use approximate matching queries or exact 

similarity queries then: 

Approximate Match: Find all S such   that   D(Q,S)  ≤  є. 

Exact Similarity: Find all [ S,a,b] such that  Q = aS  +  b. 

Experimental study 

In this section, we present the results of an extensive 

empirical study that we have conducted using the adaptive  

framework and  similarity search. The objective of this study is 

twofold: 

(1) to establish the effectiveness of our adaptive framework  for 

data   reduction in recent-biased time series 

 (2) to demonstrate the benefits of using  the similarity search 

methods for approximate and exact search queries. 

Data Sets 

Two data sets are used in our experiments. The first is time 

series “Teleccum” from MATLAB. It is real-world electrical 

consumption measured over the course of 5 days and the length  

of time series is 6000. The second is the time series of 

NASDAQ indices from Microsoft “MSFT”. The  daily  close, 

open, high and low prices of indices are chosen and each time 



Muruga Radha Devi et al./ Elixir Comp. Sci. & Engg. 38 (2011) 4524-4529 
 

4528 

series is composed  of 4,096 values from March 1986 to  

February 2006.  

Evaluation Criterion 

To evaluate  the effectiveness of our method, a criterion is 

designed to measure the precision of approximation after data  

reduction. Assume that S and S’ are the original and 

reconstructed time series. The error of approximation between S 

and S’ is defined as the following: 

  Err (S’ – S) = DistRB (S’ – S)  / DistRB ( S – 0)           (11)                 

Where DistRB  is the  recent-biased distance . 

Steps Involved in  Similarity Search 

i) Compress the stock data to get Open(O), High(H), Low(L) 

and Close(C)  value for a given compression period. 

ii) Calculate the Level L of the DWT needed based on number of 

samples N in C of step i      

iii) Perform a Level–L DWT on C based on results of step i and 

step ii  to get Di,             i = 1,2….L  

iv) Scan the relation of wavelet coefficient sequentially to 

compare every sequence S to all the sequence that are after S in 

the relation. All the transformations are applied to every 

sequence during this comparison. 

v) Do the sequential scanning as instructed  in the previous 

step, but stop the distance computation as soon as the distance      

exceeds є.  

Experimental Results  

We have experimentally evaluated our method  first on the  

Teleccum  data  streams.  The effectiveness of our framework is 

shown by the experimental result shown by a time series of 6000 

values.  

The  time series is transformed with vari -  DWT and then 

the time series is reconstructed from the reduced sequences.  

Secondly we have experimentally evaluated our method     

for recent-biased analysis over online data streams.  The 

effectiveness of our framework is shown by the experimental 

result shown by a time series of 512 values truncated from 

NASDAQ indices.  

The  time series is transformed with vari -  DWT and then 

the time series is reconstructed from the reduced sequences.  The  

original time series is partitioned into larger segments for older 

data, and the lengths of segments are 1,2,4,8,16,….   from recent 

to old data. At most four coefficients are kept for each segment 

in this method.  

For segments whose coefficients are less than four, all 

available coefficients are kept.  

The reconstructed time series after vari - DWT shows the 

effectiveness of capturing more details for recent data with 

smaller segments and long term changes at a coarser level.  By 

keeping larger coefficients the parts of high energy are 

preserved. 

 

 
Figure.1  showing the Experimental results on a time series 

of Nasdaq indices. It is from June 1998 to November 1999, 

with a point per day and the length of the time series is 512. 

The vertical dotted lines are boundaries of segments. (a) 

shows the original time series after normalization.  (b) shows 

The reconstructed time series  

Our experiments consider a wide range of queries executed 

on both data sets. The major findings of our study can  be 

summarized as follows. 

Low Synopsis Construction Costs: Our I/O-efficient 

wavelet decomposition algorithm is extremely fast and scales 

linearly with the size of the data.  

Fast Query Execution: Query execution-time speedups of 

more than two orders of magnitude are made possible by our 

method Thus, our experimental results prove that wavelets are a 

viable, effective tool for general purpose approximate query 

processing in DSS environments. 

 
Figure 2.  shows the comparison of execution  of two kinds of 

Queries 

       Figure 2  shows the comparison between  the execution time 

for two kinds of queries   such as range query with no 

transformation and range query with transformations by varying 

the length of sequences from 64 to 1024 while the no. of 

sequences are kept at 1000. 

 
Figure 3  shows the comparison between  the execution time 

for two kinds of queries   such as range query with no 

transformation by keeping  the sequence length  fixed to 128 hile 

the number of sequences  are  varied from 1000 to 12000.  

Conclusion 

The method used for data reduction is  Adaptive framework 

for online recent-biased time series  analysis  which  uses vari-

DWT, more details are kept for more recent data, while older 

data are kept at coarser level.  With this method, the dimension 

of time series can be reduced and the efficiency  can be greatly 

improved. Since only a small part of the time series needs to be 
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processed when a data value arrives, high efficiency is achieved. 

In this approach, Wavelet-coefficient synopses are built and 

using these synopses we can provide approximate answers to 

queries. The Query processing method operates directly with the 

wavelet-coefficient, thus allowing fast processing of arbitrary 

complex queries entirely in the wavelet coefficient domain.  A 

class of transformations  have been used in a query language to 

express similarity search. This class allows the expression of 

several practically important notions of similarity and queries 

using this class can be efficiently implemented. One potential 

application which is emphasized in the paper is stock data  

analysis.  The experiments show that the execution time of our 

method  is almost same as that of accessing the index with no 

transformations; our method has much better performance than 

sequential scanning and the performance gets better by 

increasing both the number and length of sequences. 
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Table.I. Shows  wavelet  decomposition 
Resolution Averages Detail Coefficients 

8 
4 
2 

1 

(2, 2, 0, 2, 3, 5, 4, 4) 
  (2, 1, 4, 4) 
    (1.5, 4) 

     (2.75) 

- 
(0,-1,-1,0) 
  (0.5,0) 

  (-1.25) 

 

Table 2. Shows the no of coefficients for original data, reduced data and their 

difference using vari-dwt 
 No. of   Coefficients 

T ime Series 1000 2000 4000 6000 

Original  data set 4.814 5.347 19.892 117.066 

Reduced data set 4.746 4.94 12.157 60.956 

Difference -0.068 -0.407 -7.735 -56.11 

 


