
Muruga Radha Devi et al./ Elixir Comp. Sci. & Engg. 38 (2011) 4524-4529

4524

Introduction

Time series data are of growing importance in many new

database applications such as data mining and data warehousing.

A time series is a sequence of real numbers each number

representing a value at a time point. For example the sequence

could represent stock or commodity prices, sales exchange rates,

weather data, bio-medical measurements. Time series are

typically huge as well as of high dimension . Therefore time

series analysis has been an important and challenging topic in

machine learning and data mining.

Recently there has been much interest in the problem of

similarity search in time series databases. For e.g. we may want

to find the stocks that behave in approximately the same way or

stocks that increased linearly upto sometime and then crashed;

or years when the temperature patterns in two regions of the

world were similar. In these type of queries approximate rather

than exact matching is required.

The similarity between two time series is typically

measured with Euclidean distance which can be calculated very

efficiently. However the volume of data encountered

exasperates the problem. Consider the MACHO project where

database contains more than a terabyte of data and is updated at

the rate of several GB a day.

 Applications in forecasting involve predicting the future

conditions using the last few measurements. For example in the

case of banner-hits data, the number of hits in the immediate

past can be used to gauge the popularity of an advertisement. In

fraud and security monitoring, the recent data has more

predictive value compared to the old data. Therefore a system

which maintains better approximations for the recent data is

useful. The challenge is to maintain these biased approximations

continuously as new data arrives in an online manner. So the

most promising similarity search methods perform reduction on

the data and then use an index structure for the data in the

transformed space.

The widely used data reduction techniques are SVD, DFT,

DWT, PIP, PAA etc., These data reduction strategies are

specifically developed for time series analysis in general.

However they are non-actionable in recent-biased analysis for

streaming time series. This is because Traditional Time series

analysis algorithms take recent data and old data as equally

important. In recent-biased analysis, recent data are much more

important than old ones. Most existing data reduction

techniques process time series in a batch way(i.e.) the whole

time series needs to be examined again on the arrival of new

data. So they are very inefficient for processing online data

streams.

This leaves a big gap between the recent-biased analysis

and traditional machinery available to data reduction. To bridge

this gap an adaptive framework is been used for recent-biased

analysis over online data streams. In this method the time series

is partitioned into segments and then data reduction technique is

applied to each segment where more coefficients are kept for

more recent data while fewer are kept for the older data. Thus,

more details are preserved for recent data and fewer coefficients

are kept for the whole time series which improves the efficiency

greatly.

Our Contribution:

First our idea is to apply a data reduction technique to

different parts of time series and then more coefficients are kept

for more recent segments with fewer coefficients for older

segments referred as Adaptive Framework for recent biased

time series where vari-DWT are employed efficiently to obtain

compact synopses of general relational tables.

Second we use a class of transformations that can be used

in a query language to express similarity in a fairly general way.

Tele:
E-mail addresses: Ptdurai58@yahoo.com, emrdevi@hotmail.com

 © 2011 Elixir All rights reserved

Similarity search in recent biased time series databases using adaptive
framework

D.Muruga Radha Devi
1
 and P.Thambidurai

2

1
Sathyabama University, Chennai-119, India

2
Department of CSE, PKIET, Karaikal, India.

ABS TRACT

A time series database is a collection of data that are generated in series as time goes on and

constitutes a large portion of data stored in computers like stock-price movements, weather

data, bio-medical measurements, video data etc., Two time sequences of same length are

said to be similar if the Euclidean distance is less or equal to a given threshold. The main

issue of similarity search in time series databases is to improve the search performance sin ce

time sequences are usually of high dimension. So it is important to reduce the search space

for efficient processing of similarity search in large time series databases. We have used

Adaptive Framework for the data reduction purpose which improves the search performance

in Recent-Biased time series databases. We have applied a set of linear transformations on

the reduced sequence that can be used as the basis for similarity queries on time series data.

We have also formalized the intuitive notions of exact and approximate similarity in time

series data. Our experiments show that the performance of this method is competitive to that

of processing ordinary queries using the index and much faster than sequential scanning.

 © 2011 Elixir All rights reserved.

ARTICLE INFO

Article his tory:

Received: 22 August 2011;

Received in revised form:

26 August 2011;

Accepted: 31August 2011;

Keywor ds

Similarity search,

Data Reduction,

Recent-Biased Time series,

Adaptive Framework.

Elixir Comp. Sci. & Engg. 38 (2011) 4524-4529

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Muruga Radha Devi et al./ Elixir Comp. Sci. & Engg. 38 (2011) 4524-4529

4525

Third we provide syntax and semantics for similarity queries

that account for approximate matching, scaling and shifting that

have efficient indexing support.

Background and Related Work

In this section, research into various similarity search

methods are first reviewed and then we briefly describe the

recent biased time series analysis and about the traditional data

reduction methods.

Similarity Search

The presence of time component in data is what unifies such

diverse datasets and classifies them as time series. So much

research has been devoted recently to the efficient management

of time-series data. Analysis of time-series data is rooted in the

ability to find similar series.

Similarity is defined in terms of a distance metric, most

often Euclidean distance or relatives of Euclidean distance.

Given two time series Q = (q1,q2,….. qn) and C = (c1,c2,….. cn),

their Euclidean distance is defined as

D(Q,C) = √ ∑ (qi - ci)
2

 (1)

 where i = 1,2….n

 Two time sequences of same length are said to be similar if

the Euclidean distance is less or equal to a given threshold.

 Agrawal, Faloutsos and swami [1], first proposed the use of

distance preserving transformation for dimensionality reduction.

The transformations are applied to the original data and a few

coefficients of the transformed data are then indexed. Queries

on the data are transformed into queries on these features that

can efficiently be answered using the index. The answer in the

feature space, when converted back to the data space, must be a

superset of the original query answer.

There are two ways in which the data is organized for

similarity search namely:

1) Whole matching: Here all sequences to be compared are of

the same length

Subsequence matching: Here we have a query sequence Q of

length n and a longer sequence C of length m. The task is to

find the subsequence in C of length n,

2) beginning at Ci, which best matches Q and report its offset

within C.

Whole matching requires comparing the query sequence to

each candidate sequence by evaluating the distance function and

keeping track of the sequence with the lowest distance.

Subsequence matching requires that the query Q be placed at

every possible offset within the longer sequence.

There are two types of queries that we would like to support

in time series database namely range queries and nearest

neighbor query. Range query returns all sequences within an

epsilon of the query sequence whereas nearest neighbour query

returns k-nearest sequence to the query sequence.[5] The brute

force approach to answering these queries is sequential

scanning which requires comparing every time series Ci to Qi.

This approach is unrealistic for large datasets. Similarity

searching techniques that guarantee no false dismissals are

exact, and techniques that do not have guarantee as approximate.

Approximate techniques can still be very useful for exploring

large databases, when the probability of false dismissal is low

[9].

Approximate Techniques for Similarity Searching

Transforming the data with a lossy compression schemes,

then doing a sequential search on the compressed data. Existing

techniques [9], suffer from some limitation. (i.e.) they are all

evaluated on small datasets residing in main memory, and it is

unclear if they can be made to scale to large datasets.

Exact Techniques for Similarity Searching

 A time series C = (c1,c2,….. cn) with n data points can be

considered as a point in n-dimensional space which suggests that

time series could be indexed by multidimensional index

structure such as R-tree[8], so we need to perform

dimensionality reduction in order to exploit multidimensional

index structure to index time series data. In order to guarantee

no false dismissals the distance measure in the index space must

satisfy the following condition

 D indexspace (A,B) <= Dtrue (A,B) (2)

This is known as Contractive Property.

Rafiei and Mendelzon [12] propose a set of linear

transformations such as moving average, time warping and

reversing. These transformations can be used as the basis of

similarity queries for time series data. In addition Rafiei[13]

propose the method of processing queries that express similarity

in terms of multiple transformations instead of a single one. B-

K, Jagadish and Faloutsos [2] used time warping as distance

function and present algorithms for retrieving similar time

sequences under this function. However a time warping distance

does not satisfy triangular inequality and can cause false

dismissals.

Recent-Biased Time Series Analysis

In many applications, such as the stock market, we care

more about the recent data than what happened long ago.

Besides the global trend, the recent data are very important for

us to judge the similarity between time series and more

significant for us to predict and make decisions than the details

of ancient data. For example, for a stock broker, the long-term

trend of stock price and the Tree) to process queries over data

streams, that are biased towards the more recent values.

Palpanas et al [11] have proposed a technique for online

amnesic approximation for streaming time series and the

proposed representation of time series can represent arbitrary

user-specified amnesic functions.

Popular Techniques for Data Reduction

Because of the high dimensionality of most time series, the

direct indexing of time series is prohibitive. As a result Data

Reduction appears to be the most promising method for

overcoming this problem.

SVD(Singular Value Decomposition) or PCA(Principal

Component Analysis)[4] is a classic technique for dimension

reduction which keeps the Euclidean distance between the time

series with singular values. SVD is a global transformation

technique (i.e.) the entire data set is examined to compute the

axes. Popular feature extraction techniques are DFT(Discrete

Fourier Transform) and DWT(Discrete Wavelet Transform)

where the sequence is projected into the frequency

domain(DFT) or tiling of the time frequency plane(DWT) [3].

Keogh et al and Faloutsos et al[6] independently suggested

approximating a time series by dividing it into equal length

segments and recording mean value of the data points that fall

within the segment.

The authors call it Piecewise Aggregate Approximation

which is more competitive with more sophisticated transforms.

If we allow the segments to have arbitrary lengths, we call that

as Adaptive Piecewise Constant Approximation[7] which

requires two numbers per segment, the first number records the

mean value of all the data points in the segment, the second

number records the length.

Muruga Radha Devi et al./ Elixir Comp. Sci. & Engg. 38 (2011) 4524-4529

4526

Adaptive Framework For Data Reduction

In stream data analysis, users usually pay more attention to

recent data than to old data, and are often interested in recent

changes at a fine scale, but long-term variations at a coarse level.

So it is reasonable to process time series data with bias on

recent values. [14] With bias on recent data, space requirement

will be much reduced and the index and query on time series

will be more efficient.

Steps Involved in Adaptive Data Reduction

i)Time series is divided into segments, where recent data are

partitioned into smaller segments to keep more details and

larger segments can be set for older data, so that less detail is

kept for them. The size of the segments is set exponentially

because it is more space efficient and DWT run fastest when the

length of time series is the power of two. Therefore the length of

segment S is set to n i = 2 for i = 1,2,3….n or it can be set to

any monotonously increasing number sequences.

ii)After partitioning a data reduction technique is applied to

each segment and the same number of coefficients are kept for

every segment.

iii)If the coefficient number for a segment is less than the

coefficient number k, then all available coefficients are kept for

that segment. Since older data are partitioned into larger

segments, they are kept at a coarser scale than more recent data.

It is very easy for this scheme to process online data streams.

iv)When a new value arrives, a new segment is generated for it.

Then the latest pair of neighbouring segments that are of the

same length, are merged into a single segment, At most one pair

of segments are merged when a new value is added.

v) Only the new segment generated by merging needs to be

processed again with data reduction techniques, with other

segments intact. (i.e) only a small part of the whole time series

needs to be re-examined.

Assume the length of segment Si to be 2i (i.e.) the length

of segments S3, S2,S1 are 4 , 2 and 1 from old data to recent

data and almost eight coefficients are kept for almost all

segments. When a new data arrives, a new segment S0 is

created for it, so the sizes of segments are 4, 2, 1 and 1. Since

the last two segments are of same length they are merged while

the other two segments remains unchanged. Therefore there are

3 segments left whose sizes are 4, 2 and 2 . When another data

arrive, the size of the segments become 4,2, 2 and 1 so the two

segments in the middle are merged and the sizes of segments

become 4, 4 and 1. If another data arrives the sizes of segments

become 4, 4, 1 and 1 so last two segments are merged to have

4, 4, and 2 where the first two segments are not merged because

at a time only one pair of segments are merged when a new

value arrives. In the above procedure almost one merge

happens at each step. Only the new segment generated by

merging needs to be processed again with data reduction

techniques.

Wavelet Decomposition

Wavelet Decomposition of a function consists of a coarse

overall approximation together with detail coefficients that

influence the function at various scales. Haar wavelets are

conceptually simple and very fast to compute and have been

found to perform well in practice for a variety of applications

ranging from image editing and querying.

Suppose we are given a one-dimensional data vector

containing the following eight values A= [2,2,0,2,3.5,4,4], the

Haar wavelet transform of A can be computed as follows. We

first average the values together pair-wise to get a new “lower-

resolution” representation of the data with the following average

values. In other words, the average of the first two values (that

is, 2 and 2) is 2 and that of the next two values (that is, 0 and 2)

is 1. Obviously, some information has been lost in this averaging

process. To be able to restore the original values of the data

array, we need to store some detail coefficients, that capture the

missing information. In Haar wavelets, these detail coefficients

are simply the differences of the (second of the) averaged values

from the computed pair-wise average.

We define the wavelet transform (also known as the wavelet

decomposition) of A to be the single coefficient representing the

overall average of the data values followed by the detail

coefficients in the order of increasing resolution. Thus, the one-

dimensional Haar wavelet transform of A is given by WA = {

2.75, -1.25, 0.5, 0, 0, -1, -1, 0) Each entry in WA is called a

wavelet coefficient. The main advantage of using WA instead

of the original data vector A is that for vectors containing

similar values most of the detail coefficients tend to have very

small values. Thus, eliminating such small coefficients from the

wavelet transform (i.e., treating them as zeros) introduces only

small errors when reconstructing the original data, giving a very

effective form of lossy data compression.

The wavelet decomposition is very efficient

computationally, requiring only O(N) CPU time and O(N/B)

I/Os to compute for a signal of N values. No information has

been gained or lost by this process. The original signal has eight

values and so does the transform. Given the transform, we can

reconstruct the exact signal by recursively adding and

subtracting the detail coefficients from the next lower resolution.

For compression reasons, the detail coefficients at each level of

recursion are often normalized; the coefficients at the lower

resolutions are weighted more heavily than the coefficients at

the higher resolutions. One advantage of normalized wavelet

transform is that in many cases a large number of detail

coefficients turn out to be very small in magnitude. Truncating

these small coefficients from the representation introduces only

small errors in the reconstructed signal. We can approximate the

original signal effectively by keeping the most significant

coefficients.

Similarity Search Methods

The most basic problem in similarity search is First-

Occurrence Subsequence Matching which is defined as follows:

Given a query sequence Q of length n and a longer sequence C

of length N, find the first occurrence of a contiguous

subsequence within C that matches Q exactly. A variant of the

above problem involves finding all occurrences which is called

as All occurrences Subsequence Matching problem. The above

two problems have variants when the data consists of many

sequences of same length as the query. The All occurrences

whole sequence Matching problem is given a query sequence Q

of length n and a set of N/n data sequences , all of the same

length find all of the data sequences that match Q exactly.

Time series data in continuous domain is inherently inexact, due

to the unavoidable imprecision of measuring devices and

clocking strategies. Given a tolerance є > 0 and a distance metric

D between sequences, sequence S1 and S2 match approximately

within tolerance є when D(S1, S2) ≤ є.

Transformations on Time Series Data

In many cases, it is more natural to allow the matching of

sequences that are not close to each other in an Euclidean

distance. For example, two companies may have identical stock

price fluctuations, but one’s stock is worth twice as much as

Muruga Radha Devi et al./ Elixir Comp. Sci. & Engg. 38 (2011) 4524-4529

4527

the other at all times. For another example, two sales patterns

might be similar even if the sales volumes are different. We

shall refer to the difference between these sequences as scale. In

another example, the temperature on two different days may

start at different values but then go up and down in exactly the

same way. We shall refer to the difference between these

sequences as shift. A good time series data mining mechanism

should be able to find similar sequences up to scaling and

shifting.

Let G be a set of transformations then two sets of points

are similar if there exists a transformation in G which maps one

to the other. Let D be the distance metric between sequences

and є > 0 a tolerance. Query sequence Q is approximately

similar within tolerance є to data sequences when there exists a

similarity transformation T so that D(Q, T(S)) <= є, when є

is set to 0, we have exact similarity.

We consider an object to be a point in a multidimensional

space. For non-point objects we assume there is a mapping

function that maps every object to a point in the multi-

dimensional space. Such a function is developed in many

domains where multi-dimensional indexing has been used. For

(e.g.,) Fourier Transform, Discrete Wavelet Transform for time

series are some instances of the mapping function.

Similarity Transformations and Normal Forms

An n sequence X is a sequence (x1,….xn) of real numbers.

A pair of reals (a, b) defines a similarity transformation Ta,b

over n-sequences by mapping each element xi to a × (xi + b).

We will assume that all similarity transformations are non-

degenerate; i.e, a ≠ 0. In fact, we will further assume that a > 0,

this restriction on a implies that a sequence symmetric to X

w.r.t., x-axis is not considered similar to it. We say that X is

similar to Y if there exists some (a, b) є (R+ × R) such that

X = Ta,b (Y) (3)

The similarity relation is reflexive, symmetric and transitive.

Reflexivity: for any sequence X,

X= T1,0(X) (4)

 [the identity transformation].

Symmetry: if X = Ta,b(Y) then

Y = T1/a,-b/a(X) = T
-1

a,b(X) (5)

[The inverse of Ta,b]

Transitivity: if X = Ta,b (Y) and Y = Tc,d (Z) then

X = Tac,ad+b(Z) = (Ta,b × Tc,d) (6)

[the non-commutative product of Ta,b and Tc,d]

Therefore, the set of all sequences similar to a given one

constitutes an equivalence class, we shall denote the similarity

class of X by X’. The similarity relation partitions all n -

sequences into similarity classes.

An n-sequence x is normal if α(x)= 0 and σ(x) = 1 ,

where α(x) is the average of x and σ(x) is the standard

deviation. Let x be normal and y be similar to x.

(i.e.) y = Ta,b (x) for some (a, b) є (R
+
 × R), then α(y)= b and

σ(y) = a. y is normal only if σ(y) = a = 1 and α(y)= b = 0;

this is the identity transformation. This means that a similarity

class has exactly one normal member, we will call it the normal

form of all the members of the class.

Given any sequence x, V(x) denotes the normal form of x.

If α(x) is the average of x and σ(x) is the standard deviation

of x, then x = σ(x) × V(x) + α. Therefore we can compute V(x)

from x by the inverse transformation,

 V(x) = T σ,α
-1

 (x) = T1/α, -α/α(x). (7)

In a transformation Ta,b , we call a as the scale factor and b

the shift factor. If a is 1, the transformation is a pure shift; if b is

0, it is a pure scaling. The identity transformation is a pure shift;

the inverse of a shift is a shift; and the product of two shifts is

also a shift. This allows us to conclude that the set of all shifts of

a given sequence is an equivalence class. The same is true of

the set of all scaling.

Semantics of Similarity Distance

Given two sequences X and Y, the similarity distance

between X and Y is the distance between normal form of their

respective similarity classes:

DS (x,y) = DE (V(x) ,V(y)) (8)

Where DE is the Euclidean distance.

The similarity distance between any pair of sequences from

x* and y* is the same; this gives us a distance metric for

similarity classes:

 DS (x*, y*) = DS (x,y) (9)

 A distance metric should be non-negative and symmetric;

and it should obey the triangle inequality. A good distance

metric should also be effectively computable. It is easy to see

that the similarity distance satisfies all these criteria. By using

similarity distance the similarity semantics for the All-

occurrences Subsequence Approximate Similarity is defined as

follows:

Given a query sequence Q, a time series S, a tolerance є ≥ 0,

and a similarity relation, find all contiguous subsequences S in

the time series Š, such that DS (Q, S) ≤ є.

Given a query sequence Q, a time series Š, and a similarity

relation, find all contiguous subsequences S in the time series Š

such that Q and S are similar.[belong to the same equivalence

class]. The exact case can be answered using the normal forms,

because Q and S are in the same equivalence class if and only if

V(Q) = V(S).

Constraint-Based Syntax of Similarity Queries

Constraint-based syntax for the general similarity query

which expresses the queries is, Given Q, є , (la, Ua) and (lb,

Ub) find all (S, a, b) such that

D(Q, aS + b) ≤ є, (10)

where la ≤ a ≤ Ua and lb ≤ b ≤ Ub .

If the user want to query for scaling transformations only or for

shift transformations only then :

Scaling: Find all [S, a] such that D(Q, aS) ≤ є.

Shifting: Find all [S,b] such that D(Q, S+b) ≤ є.

If the user want to use approximate matching queries or exact

similarity queries then:

Approximate Match: Find all S such that D(Q,S) ≤ є.

Exact Similarity: Find all [S,a,b] such that Q = aS + b.

Experimental study

In this section, we present the results of an extensive

empirical study that we have conducted using the adaptive

framework and similarity search. The objective of this study is

twofold:

(1) to establish the effectiveness of our adaptive framework for

data reduction in recent-biased time series

 (2) to demonstrate the benefits of using the similarity search

methods for approximate and exact search queries.

Data Sets

Two data sets are used in our experiments. The first is time

series “Teleccum” from MATLAB. It is real-world electrical

consumption measured over the course of 5 days and the length

of time series is 6000. The second is the time series of

NASDAQ indices from Microsoft “MSFT”. The daily close,

open, high and low prices of indices are chosen and each time

Muruga Radha Devi et al./ Elixir Comp. Sci. & Engg. 38 (2011) 4524-4529

4528

series is composed of 4,096 values from March 1986 to

February 2006.

Evaluation Criterion

To evaluate the effectiveness of our method, a criterion is

designed to measure the precision of approximation after data

reduction. Assume that S and S’ are the original and

reconstructed time series. The error of approximation between S

and S’ is defined as the following:

 Err (S’ – S) = DistRB (S’ – S) / DistRB (S – 0) (11)

Where DistRB is the recent-biased distance .

Steps Involved in Similarity Search

i) Compress the stock data to get Open(O), High(H), Low(L)

and Close(C) value for a given compression period.

ii) Calculate the Level L of the DWT needed based on number of

samples N in C of step i

iii) Perform a Level–L DWT on C based on results of step i and

step ii to get Di, i = 1,2….L

iv) Scan the relation of wavelet coefficient sequentially to

compare every sequence S to all the sequence that are after S in

the relation. All the transformations are applied to every

sequence during this comparison.

v) Do the sequential scanning as instructed in the previous

step, but stop the distance computation as soon as the distance

exceeds є.

Experimental Results

We have experimentally evaluated our method first on the

Teleccum data streams. The effectiveness of our framework is

shown by the experimental result shown by a time series of 6000

values.

The time series is transformed with vari - DWT and then

the time series is reconstructed from the reduced sequences.

Secondly we have experimentally evaluated our method

for recent-biased analysis over online data streams. The

effectiveness of our framework is shown by the experimental

result shown by a time series of 512 values truncated from

NASDAQ indices.

The time series is transformed with vari - DWT and then

the time series is reconstructed from the reduced sequences. The

original time series is partitioned into larger segments for older

data, and the lengths of segments are 1,2,4,8,16,…. from recent

to old data. At most four coefficients are kept for each segment

in this method.

For segments whose coefficients are less than four, all

available coefficients are kept.

The reconstructed time series after vari - DWT shows the

effectiveness of capturing more details for recent data with

smaller segments and long term changes at a coarser level. By

keeping larger coefficients the parts of high energy are

preserved.

Figure.1 showing the Experimental results on a time series

of Nasdaq indices. It is from June 1998 to November 1999,

with a point per day and the length of the time series is 512.

The vertical dotted lines are boundaries of segments. (a)

shows the original time series after normalization. (b) shows

The reconstructed time series

Our experiments consider a wide range of queries executed

on both data sets. The major findings of our study can be

summarized as follows.

Low Synopsis Construction Costs: Our I/O-efficient

wavelet decomposition algorithm is extremely fast and scales

linearly with the size of the data.

Fast Query Execution: Query execution-time speedups of

more than two orders of magnitude are made possible by our

method Thus, our experimental results prove that wavelets are a

viable, effective tool for general purpose approximate query

processing in DSS environments.

Figure 2. shows the comparison of execution of two kinds of

Queries

 Figure 2 shows the comparison between the execution time

for two kinds of queries such as range query with no

transformation and range query with transformations by varying

the length of sequences from 64 to 1024 while the no. of

sequences are kept at 1000.

Figure 3 shows the comparison between the execution time

for two kinds of queries such as range query with no

transformation by keeping the sequence length fixed to 128 hile

the number of sequences are varied from 1000 to 12000.

Conclusion

The method used for data reduction is Adaptive framework

for online recent-biased time series analysis which uses vari-

DWT, more details are kept for more recent data, while older

data are kept at coarser level. With this method, the dimension

of time series can be reduced and the efficiency can be greatly

improved. Since only a small part of the time series needs to be

Muruga Radha Devi et al./ Elixir Comp. Sci. & Engg. 38 (2011) 4524-4529

4529

processed when a data value arrives, high efficiency is achieved.

In this approach, Wavelet-coefficient synopses are built and

using these synopses we can provide approximate answers to

queries. The Query processing method operates directly with the

wavelet-coefficient, thus allowing fast processing of arbitrary

complex queries entirely in the wavelet coefficient domain. A

class of transformations have been used in a query language to

express similarity search. This class allows the expression of

several practically important notions of similarity and queries

using this class can be efficiently implemented. One potential

application which is emphasized in the paper is stock data

analysis. The experiments show that the execution time of our

method is almost same as that of accessing the index with no

transformations; our method has much better performance than

sequential scanning and the performance gets better by

increasing both the number and length of sequences.

References

[1] Agrawal, R. Faloutsos, C & Swami.A. 1993, Efficient

similarity search in sequence databases, Proceedings of the 4th

Conference on Foundations Of Data organization and

Algorithms.

[2] B-K,Yi,H.V. Jagadish and C. Faloutsos, Efficient Retrieval

of similar time sequences under time warping, in Proc. Int.

Conf. Data Engineering, Orlando, Florida, USA 1998, pp201-

208.

[3] K.P. Chan and A.W. Fu, 1999, Efficient Time Series

Matching by Wavelets, Proc. Int’l Conf on Data Eng.

(ICDE 99).

[4] L.Debnath and S.Nadarajah, Popular wavelet models, Int.

Journal of Wavelets &. Inf. Process, 4(4), 2006,pp 655 – 666.

[5] Dina Q Goldin, C. Kanellakis, 1995, On Similarity Queries

for Time-Series Data, In Proceedings of ACM SIGMOD Int.

Conf. Management of Data, pp37-153.

[6] Eamon Keogh, Kaushik Chakraborti, Michael Pazzani,

Sharad Mehrotra, 2002, Locally Adaptive Dimensionality

Reduction for indexing Large Time Series databases -ACM

Transactions on Database Systems.

[7] Eamon Keogh, Kaushik.Chakrabti, Michael Pazzani and

Sharad Mehrota, 2001, Dimensionality Reduction for Fast

Similarity Search in Large Time Series Databases, Knowledge

and Information Systems, vol 3, pp 263-286.

[8] A.Guttman, R-Trees: A dynamic index structure for spatial

searching, 1984, In Proceedings of ACM SIGMOD Int. Conf.

Management of Data, Boston, USA , pp 47-57.

[9] F.Korn, H.V.Jagadish and C.Faloutsos, Efficiently

supporting adhoc queries in large datasets of time sequences,

in Proc. ACM SIGMOD Int. Conf. Management of Data,

Tucson, Arizona, USA , 1997, pp 289-300.

[10] S.Kang, K.Jim, J.Chae, W.Choi, and S.Lee , Similarity

search using the polar wavelet in time series databases , in Proc.

Int. Conf. Intelligent Computing, Qingdao, China, 2007, pp.

1347-1354.

[11] T.Palpanas, M.Vlachos, E.Keogh, D.Gunopulos and W.

Truppel, 2004, Online Amnesic Approximation of streaming

Time Series”, Proc 20th Int’l Conf. on Data Eng.

[12] D.Rafiei and A.O.Mendelzon, Similarity based queries for

time series data, in Proceedings of ACM SIGMOD Int. Conf.

Management of Data, Arizona, USA 1997, pp 13-25.

[13] D.Rafiei , On Similarity based queries for time series data,

in Proceedings of Int. Conf Data, Engineering, Sydney,

Australia, 199, pp. 410-417.

[14] Yanchang Zhao, Shichao Zgang, 2006, Generalized

Dimension Reduction Framework For Recent-Biased Time

Series Analysis, IEEE Transactions on Knowledge and Data

Engineering, vol 18, No 2, February 2006.

Table.I. Shows wavelet decomposition
Resolution Averages Detail Coefficients

8
4
2

1

(2, 2, 0, 2, 3, 5, 4, 4)
 (2, 1, 4, 4)
 (1.5, 4)

 (2.75)

-
(0,-1,-1,0)
 (0.5,0)

 (-1.25)

Table 2. Shows the no of coefficients for original data, reduced data and their

difference using vari-dwt
 No. of Coefficients

T ime Series 1000 2000 4000 6000

Original data set 4.814 5.347 19.892 117.066

Reduced data set 4.746 4.94 12.157 60.956

Difference -0.068 -0.407 -7.735 -56.11

