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Introduction 

The complex social behaviors of insects have been 

intensively studied in science and in research of computer 

technology. The attempt in the research of computer technology 

is to develop algorithms inspired by insect behavior to solve 

optimization problems [1]. These behaviors patterns can offer 

models for solving difficult combinatorial (distributed) 

optimization problems. Real ants which can indirectly 

communicate by pheromone information without using visual 

cues are able of finding the shortest path between food sources 

and their nest. The ants release pheromone on the ground while 

walking from their nest to food and then go back to the nest. 

Since a shorter path has a higher amount of pheromone in 

probability, ants will tend to choose a shorter path. Artificial 

ants imitate the behavior of real ants how they forage the food 

[1], but can solve much more complicated problem than real ants 

can. One of search algorithms with such concept is Ant Colony 

Optimization (ACO) [3]. ACO has been widely applied to 

solving various combinatorial optimization problems such as 

Traveling Salesman Problem (TSP) [2, 4, 5], Quadratic 

Assignment Problem (QAP) [3], Weapon-Target Assignment 

problems (WTA) [31, 32] etc.  

Ant colony optimization (ACO) can be used to find the 

solutions of difficult combinatorial optimization problems. In 

ACO, artificial ants build solutions by moving on the problem 

graph and they deposit artificial pheromone on the graph in such 

a way that future artificial ants can build better solutions. 

Although ACO has very good searching capability in 

optimization problems, it has the problems of stagnation and 

premature convergence and those problems will be more 

obvious when the complexities of the considered problems 

increase. In this paper, I attempt to study issues in ACO so that 

the search efficiency can be improved. I consider the traveling 

salesman problem (TSP) as the benchmark. My approach differs 

from original ACO algorithms in two aspects. One is that I  

introduce a lower levels of pheromone trail bound into the ACO 

algorithm and the other is that the heuristic parameter used is not 

a pre-decided/fixed value.  

For the first issue, the pheromone evaporation can be seen 

as an exploration mechanism and with this mechanism the trails 

will decrease in an exponential speed [1]. Thus, after iterations, 

the pheromone amounts for some edges may decrease to close to 

zero. This phenomenon will lead to stagnation behavior and 

indicates that the search stops to explore new possibility and no 

better tour can be formed. In my algorithm, in order to avoid 

such a situation, a lower pheromone trail limit is proposed. The 

simulation results indeed show the effectiveness of the approach. 

For the other issue, ants select paths depending on pheromone 

trail and heuristic information (heuristic visibility) [2, 5] when 

constructing tours. The pheromone is deposited on paths, once 

ants pass the paths. However, the constructed tours are not really 

the optimal solution in the initial stage and ants already deposit 

pheromone on the tours. Thus, later ants will tend to select the 

paths that have a higher amount of pheromone. In order to 
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parameters based on entropy to improve the efficiency of ACO in solving Traveling 

Salesman Problems (TSPs). TSPs are NP-hard problem. Even though the problem itself is 
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it becomes very difficult to find the optimal solution in a short time. From my simulations, it 

can be found that the proposed algorithm indeed has superior search performance over 
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increase the diversity of paths in the initial stage, I propose to 

decrease the effects of the pheromone trails for paths selected in 

the early stage of learning. On the other hand, in the later stage 

of learning, the pheromone trails may have collected enough 

information to behavior as required and the effects of the 

pheromone trails may need to be emphasized. In this paper, I 

have proposed to use an adaptive heuristic parameter to resolve 

this dilemma. I shall discuss those ideas later. 

This paper is organized as follows: Section 2 gives an 

introduction toTSP. Reviews of ACO are given in section 

3. In section 4, the use of a lower pheromone trail bound is 

discussed. Then, a way of dynamically updating parameters 

based on entropy is also introduced in this section. In section 5, 

the proposed method is employed into several TSP problems and 

the results of our approach and of traditional ACO are reported. 

Finally, conclusions are given in section 6. 

Traveling Salesman Problems 

In computer science, the traveling salesman problem (TSP) 

is an old and well studied problem and is one of the 

combinatorial optimization problems. It is very easy to 

understand and to explain the behavior of the TSP. Nevertheless, 

when the problem size is large, it will become very difficult to 

find the optimal solution in a reasonable time. In fact, TSP is 

also known as a NP-hard problem.  

Intuitively, TSP is to find the shortest trip of a salesman for 

a finite number of cities. A salesman is asked to start from a 

random city by visiting each city exactly once and then to return 

to the starting city [21]. A complete weighted graph G =(N,E) 

can be used to represent a TSP, where N is the set of n cities and 

E is the set of edges (paths) fully connecting all cities. TSP is 

also called the Hamiltonian circuit, which is a closed tour 

visiting each city in G exactly once. Each edge (i, j)  E is 

assigned a cost di j, which is the distance between cities i and j. di 

j can be defined in the Euclidean space and is given as follows: 

di j =√ (xi-x j)
2
 +(yi-y j)

2
 . . . . . . . (1) 

where (x i, y i) and (x j, y j) are the coordinates of city i and of city 

j, respectively. The goal in TSP is to find a minimal length in the 

Hamiltonian circuit of the graph. In other words, TSP is to find a 

permutation π of the city indices {1,2,…,n} whose traveling 

length f (π) is the minimal, where f (π) is defined as  

 f(π) = ∑
n-1

i=1 d π(i) π(i+1) + d π(n) π(1) . . . . . (2) 

In a symmetric TSP, the Hamiltonian graph is fully 

connected and its distance matrix is symmetric; that is, the 

lengths of edges satisfy di j=dji. For an asymmetric TSP, the 

length of an edge connecting two cities i and  j depends on 

whether one goes from i to j or from j to i, and in general di j ≠dji. 

Symmetric TSP has many applications such as in very large 

scale integration chip fabrication [11], in drilling holes for 

printed circuit boards [13], or in the positioning of X-ray devices 

[12].  

Due to the simplicity of the TSP, it is easy to program an 

exhaustive search for the TSP. However, the complexities of the 

search space will rapidly grow with the city size. For n cities, it 

has (n-1)! solutions. For example, the 7-city problem has 360 

solutions easily solved by using an   exhaustive search method. 

However, the 100- city problem will have (n- 1)! ≈ √2π.(n-1) 

.[n-1/2.718]
n-1 

≈ 9.32×10
155

 solutions. For such a number of 

solutions, an exhaustive search method may become infeasible. 

Hence, an approximate (heuristic) method is usually employed 

to find near-optimal solutions at relatively low computational 

cost [22, 23].  

When the heuristic approaches are applied to the TSP, they 

can be classified as tour constructive heuristic and tour 

improvement heuristic (also called local optimization heuristics). 

Construction heuristic is an algorithm that determines a tour 

according to some construction rules, but does not try to 

improve upon this tour. Tour construction heuristic randomly 

chooses a city as the starting point and then utilizes some 

heuristic rules to add new cities on the tour so as to build a 

feasible TSP solution. For example, the ACO heuristic, the 

nearest neighbor heuristic and the greedy heuristic are three 

typical tour construction algorithms [29]. On the other hand, tour 

improvement heuristic utilizes some heuristic rules to exchange 

the edges on a tour so as to reduce the length of this tour until 

the optimal solution is found. Typical tour improvement 

heuristic is 2-opt, 3-opt [10] 

Ant Colony Optimization 

ACO algorithms [2–8] were firstly introduced by Dorigo 

and are novel metaheuristic optimization algorithms. ACO can 

be applied to solve distributed optimization problems among 

many cooperating simple agents that are not aware of their 

cooperative behavior. The study of ACO is to investigate the 

patterns derived from the observation of real ants’ behavior. 

Real ants can indirectly communicate by pheromone information 

without using visual cues and are capable of finding the shortest 

path between food sources and their nests [15, 27]. The ants 

release pheromone on the ground while walking through a path. 

Thus, a pheromone trail is formed on the traversed way. 

Supposedly, a shorter path should have a higher amount of 

pheromone in probability. As a consequence, ants may tend to 

choose a shorter path. Artificial ants imitate the behavior of real 

ants how they forage the food, but can solve much more 

complicated problems than real ants can. A search algorithm 

with such concept is called Ant Colony Optimization (ACO) 

[14].  

ACO is a metaheuristic in which a colony of artificial ants 

cooperates in finding good solutions of discrete optimization 

problems [19, 25, 26]. Cooperation is a key design component of 

ACO algorithms because the choice is to allocate the 

computational resources to a set of relatively simple agents 

(artificial ants) that communicate indirectly by pheromone 

information. The ACO metaheuristic is shown in pseudo code as 

follows : 

Procedure: ACO metaheuristic 

   while (not in termination condition) 

     Construct Ant solutions  

     Pheromone Update 

     Daemon Actions                         {optional} 

end while 

end procedure 

Construction Ants Solutions manages a colony of ant that 

cooperatively and interactively visit adjacent states of the 

considered problem by moving through feasible neighbour 

nodes of the graph. The movements are based on a local ant-

decision rule that makes use of pheromone trails and heuristic 

information. In this way, ants incrementally build solutions to 

the problem. Pheromone Update consists of pheromone 

evaporation and new pheromone deposition. Pheromone 

evaporation is a process of decreasing the intensity of 

pheromone trails over time. This process guides ants to explore 

possible paths, and it avoids too rapid convergence of the 

algorithm towards a suboptimal region. Pheromone Update is 

used to implement a useful form of forgetting which enables the 
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ants to forage the promising area of the search space. The 

Daemon Actions procedure is used to implement centralized 

actions which cannot be performed by a single ant. Daemon 

Actions are optional for ACO algorithms. The idea is to collect 

useful global information that can be used to decide whether it is 

useful or not and to deposit additional pheromone to bias the 

search process from a non-local perspective.  

In ACO, when located at city i, ant k chooses the next city j 

according to the so-called pseudorandom proportional (ant-

decision) rule given by 

 

 
where q is a random variable uniformly distributed in [0,1], q0 

(0≤ q0≤1) is a pre-defined parameter, τiu is the pheromone trail, 

ηiu = 1/diu is the heuristic information (heuristic visibility), α and 

β are referred to as the visibility and the trail intensity and are 

two adjustable positive parameters that control the relative 

weights of the pheromone trail and of the heuristic information, 

and allowedk(i) is the set of unvisited cities yet when ant k is 

located at city i. J is a random variable and is a tradeoff between 

visibility and trail intensity at iteration t. J is selected according 

to the transition probability given by  

 
Global update is performed after iteration. When all ants 

have completed their tours, only the shortest tour is allowed to 

increase pheromone by the following 

equation:

 
where 0≤ψ≤ 1 is a decay parameter,  Δτ 

elitist
 i j =(Lelitist) 

-1
, and 

Lelitist is the length of the globally best tour. In Eq. (5), the 

deposited pheromone is discounted by a factor ψ. Global update 

gives the best tour higher reinforcement for the pheromone trails 

and the amount of the pheromone increases on the edges of the 

tour. While constructing a tour, ant k is located at city i and 

selects city j  allowedk(t), the local update is performed by the 

following equation: 

τi j (t)=(1-ρ)τi j(t)+ρτ0 . . . . . . . (6) 

where 0≤ρ≤1 is a decay parameter, τ0=(n  Lnn )
-1

 

is the initial values of the pheromone trails, where n is the 

number of cities in the TSP and Lnn is the cost produced by the 

nearest neighbor heuristic [16]. Eq. (6) is mainly to avoid very 

strong pheromone paths to be chosen by other ants and to 

increase the explorative probability for other paths. Once the 

edge between city i and city j has been visited by all ants, the 

local updating rule makes pheromone level diminish on the 

edge.  

This rule enables the visited edges less and less attractive 

when ants traverse the edges and also indirectly increases the 

exploration of not yet visited edges. In other words, the role of 

the local updating rule is to shuffle the tours so that the early 

visited cities in one ant’s tour may be possibly explored later in 

other ants’ tours.  

The Proposed Mechanisms 

Although ACO has very good search capability for 

optimization problems, it may have the problems of stagnation 

and premature convergence. Those problems will be more 

evident when the complexities of the considered problems 

increase. In this research, two issues in ACO have been studied. 

The first one is to analyze the local update effects and the initial 

pheromone values. A lower pheromone trail bound is proposed  

in this research. The other is to investigate the characteristics of 

one heuristic parameter required in ACO. I then propose a way 

of dynamically modifying that parameter. This approach is 

based on the entropy measure of the pheromone in ACO.  

Analysis of Pheromone Trail Limit 

In ACO, the elitist strategy of global update enables  that the 

pheromone trails of the currently best tour will continuously 

obtain positive feedback and other trails in the pheromone 

matrix evaporate in the process. It is easy to see that such an 

elitist strategy may lead to a stagnation behavior because the 

currently best tour may be a suboptimal tour and thus, the edges 

of this suboptimal tour will have an excessive growth of 

pheromone. Because the evaporation of the pheromone trails is 

in an exponential speed, the amount of pheromone for some 

unvisited edges will decrease to close to zero after iterations. If 

those unvisited paths edges are in the optimal path, the algorithm 

may not be able to visit them in the later search process . In that 

case, 

I may say that the search is trapped into suboptimal 

solutions. In this study, in order to avoid such cases, a value       

τmin is considered as the minimal. I analyze two conditions  for 

the selection of τmin in the following. First, the initial values of 

pheromone are set to τ0= (n  Lnn )
-1

, where Lnn is produced by the 

nearest neighbour algorithm. Because the initial values of 

pheromone are the same for all trails, the tour length of the first 

iteration is close to Lnn. When the algorithm continues, Lelitist will 

be shorter and may exceed Lnn. As the number of cities 

increases, ants find it very hard to find the optimal solution in 

relatively short iterations. However, if we set the minimal bound 

to    τmin =(nLelitist) 
-1

, which is close to the initial pheromone 

values, this bound will not fulfill the principle of positive 

feedback because edges in poor solutions are also bounded to 

close to the initial value. 

Secondly, the effects of the local updating rule are to  make 

visited edges less and less attractive. In fact, for any τi j, it will 

satisfy 

lim k→∞ τi j (k) = τ0 . . . . . . . . . . . . . (7) 

where k is the number of ants, τ0 is the initial values of 

pheromone.  

Eq. (7) shows that τ0 is the lowest bound and is 

asymptotically converged when using the local updating rule. 

From this viewpoint, it strengthens my assertion about the 

minimal bound of the pheromone trails will rapidly reach τ0 in 

the first selection of τmin. In my implementation, τmin is selected 

as: 

τmin = 1/(c n2
 Lelitist ). . . . . . . . . . . (8) 

where Lelitist is the length of the currently best tour, n is the 

number of cities, and c is a constant and is determined 

heuristically. In my selection, I only give a value greater than 

zero and the minimal value of trails will decrease as  the number 

of cities increases in order to ensure complete search. In order to 

see which value for c is proper, three TSP instances KoA100, 

KroB150, and KroA200 taken from TSPLIB [30] are used as the 

benchmarks. The experimental results are shown in Table 1 and 
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a good value for c is found to be 2. It should be notice that the 

value of c makes no significant influence on the search 

performance as shown in the table.  

Figure 1 shows the change history of the pheromone value 

on an edge (edge(1,2)) in the KroA100 TSP instance while using 

different values for the minimal bound. The solid red line is the 

initial pheromone value τ0 and the bold dotted light-blue line is 

the lower pheromone trail bound τmin = (2 n
2
Llitist )

-1
. The 

purple, green and bold dotted blue lines are the variation of 

pheromone on edge (1,2) while using a lower bound, τmin = (2 

n
2
Llitist

 
)

-1
, and τmin =0 (i.e., no bound is used), τmin = (nLlitist )

-

1
, respectively. It can be found that when we set a suitably 

minimal bound, the pheromone amount (the purple line) is 

always higher than that of without a minimal bound (the green 

line) especially the portion marked in the figure (after 500 

iterations).  

The pheromone trail will become very small and close to 

zero after a period of updating when a minimal bound is not 

used. However, if a unsuitably minimal bound is used, the 

pheromone amount (the bold blue line) may exceed τ0 (the red 

line) after iterations and it will be bounded at τ0.  

Although the stagnation situation does not emerge, the 

pheromone information will not be able to guide ants to bias the 

search and ants will blindly search in a large solution s pace. 

Table 2 shows the search performance for different bounds used. 

In parentheses, it is the relative error to the best solution from 

TSPLIB.  

Those results are taken for an average for 30 runs. 

Obviously, the performance is worse than ACO does when an 

unsuitably minimal bound is set. 

 

 
In this implementation of the use of lower trail bounds, an 

interesting phenomenon exists. Table 3 shows the executing 

times for two TSP instances with the lower bound and without 

the lower bound. Their search performances    

 
Dynamic Heuristic Parameter 

      In ACO algorithms, Eq. (3) or (4) plays an important role in 

selecting solution paths. In the equation, there are two terms, the 

pheromone trail (τiu) and the heuristic information (ηiu). α and β 

are two adjustable positive parameters controlling the relative 

weights of the pheromone trail and of the heuristic information. 

The heuristic information is essential in generating superior 

quality tours in the initial search stages. It is because the values 

of the pheromone trails do not have much information in the 

early stage of learning and cannot guide the artificial ants in 

constructing good tours. In this situation, the heuristic parameter 

may be set to a large value. On the other hand, in the later stage, 

the heuristic parameter may need a small value because the 

pheromone trails may have collected enough information to 

behavior as required and the heuristic information may mislead 

the search due to its locality. Thus, in this situation, we may 

need a small value for the heuristic parameter. As mentioned 

earlier, the heuristic parameter is set as a constant in traditional 

ACO algorithms. In order to show the above phenomena, I 

consider several TSP instances for different fixed heuristic 

parameters. Fig. 2 shows the results from several TSP instances 

for different fixed heuristic parameters . Here, I have taken the 

average of 30 runs. In the initial phases  of the search, a high 

value of heuristic parameter can always  provide high quality 

tours. This means that the influence of pheromone is greatly 

reduced, and ants are able to search other paths in constructing 

feasible solutions. It is  evident that a small value of the heuristic 

parameter may result in bad performance in the early stage of 

learning. Nevertheless, a small value of the heuristic parameter 

can have good performance when the search process lasts long  

enough. Thus, it is intuitive to use an adaptive heuristic  

parameter for ACO. In this study, I intend to propose a way of 

designing an adaptive heuristic parameter for ACO such that the 

search performance can be better. 

      Now, the problem is how the heuristic parameter adapts. 

Traditionally, parameters required in learning are adapted based 

on iteration numbers [33]. However, the iteration number may 

not truly reflect the learning effects. In my study, I propose to 

use the concept of entropy of the pheromone trails to measure 

the learning status and then the heuristic parameter is adapted 

according to this entropy measure. 

The concept of entropy is known from Shannon’s 

information theory [17, 18]. It is a measure of uncertainty 

concerning an event and is used to denote the degree of disorder 

in a system. Shannon’s entropy represents the information 

regarding the probability of occurrence of an event. In ACO, 

pheromone is the basis of path selection, and the selection is 
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uncertain in nature. Thus, we propose to consider the entropy 

information in ACO to estimate the variation of the pheromone 

matrix. Each trail is a discrete random variable in the pheromone 

matrix. The entropy of a random variable X is defined as  

 
where X represents the trails in the pheromone matrix. 

For a symmetric n cities TSP, there are n(n-1)/2 distinct 

pheromone trails and r = n(n-1)/2. It is easy to see that when 

the probability of each trail is the same, H will be the maximum 

(denoted as Hmax) [20] and is given by 

 

 

 

 

 

 

 

The Proposed Algorithm 

By combining the use of a lower limit bound and the 

entropy based adaptive heuristic parameter, the proposed  ACO 

algorithm is given as follows: 

 

 
Experimental Results 

In order to demonstrate the superiority of the proposed  

method, I did not include local search [31, 31] in all ACO 

algorithms used. Several TSP problems are considered. They are 

st70, KroA100, KroB150, d198, KroA200, ts225, and lin318 

obtained from the TSPLIB website [30] and these instances are 

run via UBUNTU 10.04. In my experiment, the evaluation of the 

distance for those TSP instances  is computed with the floating-

point numbers. The parameters are set to the following values: ρ 

=ψ = 0.1,m = 30 (ant number), q0 = 0.7, α = 1, β = 2, 3, 4, or 5, 

and c = 2. Owing to the randomness of the ACO algorithms, I 

take the average of the overall distances of all runs. 

Nevertheless, the number of runs and the number of iterations 

are different for different city numbers to clearly demonstrate 

the performance. It is because when the city number increases, 

the computational complexity is exponentially explored. As a 

consequence, the optimal solution is very hard to found in a 

short time. In order to ensure the convergence of the ACO 

algorithm, I have conducted more iterations for the case with a 

large city number. 

The results are shown in Tables 4-10. All examples show 

that the proposed approach has much better search performance 
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than traditional ACO algorithm does. It should be noticed that 

the use of the proposed dynamic heuristic 

 

 

 

 

 

 

 
parameter will not introduce much computational burden into 

the algorithm. In my simulation, the CPU time of this approach 

is almost the same as that of using fixed heuristic parameter. 

Thus, the CPU times are not included in those tables.  

Conclusions 

In this paper, I have proposed a dynamic updating rule for 

the heuristic parameters based on entropy to improve the 

efficiency of ACO. I have also proposed to use a lower 

pheromone trail bound in the algorithm. Various analyses  are 

conducted n our study and reported in this paper. From my 

experimental results, the proposed method demonstrates 

excellent performance and is much better than traditional ACO 

algorithms. It can also be found that the proposed dynamic 

update of the heuristic parameters  based on entropy will 

generate high quality tours and it can guide ants toward the 

effective solutions space in the initial search stages.  
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