
Sarath Chandran et al./ Elixir Comp. Sci. & Engg. 38 (2011) 4477-4480

4477

Introduction

Fetch performance broadly depends on three factors: the

number of instruction cache misses, the width of instructions

fetched each cycle, and the branch prediction accuracy. The first

two factors determine the speed at which instructions are

provided to the processor, the third determines the quality of the

instruction provided.

Code reordering techniques are a known approach to the

first two factors. The number of instruction cache misses

depends on the code layout [6]. The performance loss due to

branch instructions was first approached with static branch

predictors, which always predicted the same outcome (always

taken, or always as not taken) for a given branch. This prediction

was obtained using very simple heuristics[1], static analysis[2],

or profile information[3,4] and then moved on to dynamic

predictors [1,5].

The current methods use speculative prediction to initially

set up the supporting database (branch history table). This

involves considerable resources. Also, the above said methods

do not guarantee that unnecessary branches are not evaluated at

the runtime, and cache miss rate is still considerably high.

Further, when consequent executions of the branch statements

form a pattern, the pattern behavior is not completely exploited.

There is still scope left for dynamically changing the source

code or the object code generated by the compiler based on the

prediction history and the patterns derived from the execution.

This paper proposes an improvement at the source code

level for optimizing the code layout. A global data structure

maintains the history of branch execution. This branch execution

history is used to reorder the source code dynamically. At

regular intervals, the efficiency of the currently running program

in the immediate past few runs is being checked. If the

efficiency is not in the acceptable range, the source program is

reordered. This is done based on the execution statistics, such

that the most frequently taken branches are at the top. This new

source program is then compiled and then the new program

starts running instead of the old (unordered) one. This can

improve the performance by minimizing the evaluation of not-

taken branches.

An example application scenario

The application considered to demonstrate the concept is a

condition-based equipment maintenance system. The input

program is a system that monitors industrial equipments and

detects faults in them. This program continuously keeps

monitoring the equipments for any faults. When an equipment is

found to be at fault, the module within the equipment that has

faulted has to be located.

In such a scenario, all the equipments and all modules have

to be monitored, but the most frequently faulting ones need to be

monitored first. This makes fault isolation efficient. This

requires reordering of the conditions periodically, based on the

previous execution of the conditions, assuming that the

equipment and the module that has faulted frequently in the past

is likely to fault again.

A specific case of mutually independent branches that need

to be executed in a sequence is considered here, but the idea can

be extended to all kinds of branching statements.

Paper Structure

The reminder of this paper is structured as follows. Section

2 contains a brief outline of the existing work in both branch

prediction and code layout optimizations. Section 3 provides the

system design and explains each step of the process in detail.

Section 4 deals with results and performance evaluation. Section

5 deals with conclusion and provides future directions and

enhancements to the proposed system.

Existing Work

The related work can be classified into two regions, one on

branch prediction and the other on layout optimization. Code

Tele:

E-mail addresses: tesslyn7104@cse.ssn.edu.in

 © 2011 Elixir All rights reserved

Learning-based compiler level optimization of branching statement layout
using execution patterns and dynamic code reordering

Sarath Chandran, K.R., Tesslyn Antony, Sruti and S.Mathuri, G
Department of Computer Science and Engineering, Sri Sivasubramania Nadar College of Engineering, Kalavakkam 603110, TN, India.

ABS TRACT

Code layout is an important factor that determines the performance of any application. For

branching intensive loops where decisions have to be made among several branching paths

(as in real time systems), an optimized layout of the conditional statements can increase the

performance largely. Current methods can predict branches dynamically u sing speculative

execution which can be resource intensive. Static branch prediction techniques are not as

accurate. In this work a compiler based optimization for branching instructions by code

reordering has been proposed. The proposed design consists of a code reordering component

that along with the compiler can dynamically generate layout-optimized code, by reordering

the conditions in the source program. The reordering is done base on dynamic run -time

execution patterns. Based on the current execution pattern and the history, the most optimal

program can be run, minimizing evaluation of conditions.

 © 2011 Elixir All rights reserved.

ARTICLE INFO

Article his tory:

Received: 22 August 2011;

Received in revised form:

26 August 2011;

Accepted: 31 August 2011;

Keywor ds

Branching,

Reordering,

Layout,

Optimization,

Compiler,

Execution patterns.

Elixir Comp. Sci. & Engg. 38 (2011) 4477-4480

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Sarath Chandran et al./ Elixir Comp. Sci. & Engg. 38 (2011) 4477-4480

4478

layout optimizations mainly target the optimal layout of basic

blocks while branch prediction techniques aim to improve the

fetch performance.

Branch Prediction Schemes

To determine the outcome of a branch before it is known,

processor may employ a branch prediction scheme. Branch

prediction schemes are classified either as static or dynamic

depending on when the branch’s predicted outcome is

determined.

In a static branch prediction scheme, the compiler predicts

the same outcome for a branch, for example, as always taken

[12]. Since this decision is made when a program is compiled,

the branch’s predicted outcome does not change. Two common

variations of the static branch prediction scheme use profile-

based and program-based heuristics. [1, 2, 3]

In a dynamic branch prediction scheme, the processor

predicts the outcome of a branch at run-time based on its recent

behavior. Unlike static prediction schemes, dynamic branch

prediction schemes can adapt to changes in the behavior of a

particular branch.

A common implementation of a dynamic branch prediction

scheme is one that employs a branch prediction table (BPT)

whose entries are n-bit counter values indexed by the lower

portion of the branch’s address. This scheme works by

incrementing the value of the corresponding n-bit counter every

time the branch is taken, and decrementing the counter every

time the branch is not taken. The counter is neither incremented

nor decremented when it reaches its maximum or minimum

value, respectively. When using an n-bit counter to predict the

outcome of the branch, if the most-significant bit of the value

represented by the counter is 1, the branch is predicted as taken;

otherwise, the branch is predicted as not taken.

Two-level adaptive branch predictors keep two levels of data

about the branch behavior. The Level 1 table or the Branch

History Table (BHT) keeps information about the past branch

outcomes. This table indexes into the Level 2 table, composed of

two-bit saturating counters managed as in the bimodal predictor.

The Level 2 table is usually referred to as the Pattern History

Table (PHT). A combination of both global and local execution

information yields better accuracy.

Prediction Methods for Branch Instructions of Different

Behaviors

The main idea here is that various prediction methods can

be used for branch instructions of different behaviors. The

compiler profiles and classifies all branch instructions into four

different categories according to the behavioral history of the

program during the profiling. The compiler encodes the

classifications in 2-bit “hints”. Then, at runtime, the hardware

treats the branch instructions in different ways according to the

compiler’s hints.

In profiling, the compiler analyzes and characterizes the

behavioral history of every branch instruction. For branch

instructions with behavioral histories of almost always “taken”

or almost always “not-taken”, the hardware branch prediction

mechanism will not be employed. The processor will use the

compiler’s static predictions to direct the branches.

The branch instructions other than the above two categories

are classified into two categories: those with regular history

patterns, and those with irregular history patterns. A hardware

prediction scheme called switch counter has been proposed to

predict such instructions with regular history patterns. The

Switch-Counter can remember how many times the continuous

“taken” or the continuous “not-taken” occurred when the last

pattern switch happened. The branch predictions are made

dynamically by the Switch Counter based on the values of the

counters.

For instructions that do not follow such a regular pattern, a

two-level adaptive predictor can be used.

Code Layout Optimization

Layout optimization aim to efficiently layout the routines

and blocks in a program to effectively use the instruction cache.

[6, 7, 8, 9, 10, 11]

One code layout optimization method is the Software Trace

Cache (STC). The STC maps basic blocks so that sequentially

executed basic blocks tend to be in consecutive memory

positions, building basic block chains than may span multiple

routines [13].

The effect of laying out basic blocks in a certain way and its

effect on branch prediction has been dealt in great depth in [14].

However, this technique just uses the results from the initial

profiling by running the program to obtain statistics, but does

not take into consideration the dynamics of the system or

program as it is running. This may provide valuable prediction

hints in real-time systems.

Proposed Methodology

Here we propose a branch prediction and optimization

component that reorganizes the source code such that the more

probable conditions are evaluated before the ones with a lower

probability. This can reduce the evaluation of not-taken branches

thereby improving the performance.

A preprocessor component creates a global data structure

which maintains the branching history for a user-specified

(application-specific) part of a program. This can be specified

using a delimiter. This component scans the input program and

creates the necessary data structures based on the input program.

The preprocessor is specific for a programming language. This

component also expands the input source program so that it can

update the data structure that keeps track of the branch

execution. The probability of execution of these branches is

updated dynamically as they get executed.

Figure 1: Architecture

At specified intervals, the current execution profile is

compared against the global history data structure. If the

currently running object code is not optimal, the source program

is reordered based on the execution of the conditions and is

recompiled. This reordered program now replaces the currently

running program. A monitor component takes care of making

the decision whether reordering, or just switching to another

program needs to take place. The reorder module takes as input

the expanded C program (output of the preprocessor) and creates

a new expanded program with the conditions in the decreasing

Sarath Chandran et al./ Elixir Comp. Sci. & Engg. 38 (2011) 4477-4480

4479

order of the probability of execution. The reordering is done at

each level of nesting. This reordering is done when the monitor

signals this module to reorder. On completion of the reordering

this module signals back the monitor module.

New executables are generated from the source program

each time reordering is done. Hence an object code (executable

file) for each condition execution pattern is obtained.

Over a period of time, as the program runs for a

considerably large number of times, we can also arrive at the

most optimal ordering of conditions. A pool of various source

programs and the compiled object programs corresponding to

the various execution profiles are obtained and a list of possible

branching profiles get accumulated in the History table. As a

result, the need for reordering minimizes after considerable time

and just switching to the correct program happens.

Data Structures Used

The proposed system maintains two data structures. One to

maintain the earlier patterns and the matching program for that

pattern. This database table is termed the History and is created

by the preprocessor. A new record gets inserted into this table

whenever a new pattern of branching is obtained from the

running program.

The other data structure, here called the branching table, is

initially created by the system developer. It keeps track of the

count of each branch being taken as the program is running.

This table, in real time scenarios could be the register file of the

processor. The preprocessor allocates the space for each

condition it encounters. The value of the count field is initialized

to 0. This gets updated as the expanded program runs.

The criteria for switching

The reordering is done whenever the pattern in the most

recent run differs from the earlier pattern beyond a certain

threshold value. This difference calculation that has been

implemented is the sum of the differences obtained for each

branch. This is demonstrated below.

If B1, B2, B3…Bn are n non-exclusive branching

instructions, then the count that each of these branches are taken

is recorded as the branches are evaluated. If at the end of a run,

these values are c1, c2, c3 … cn and the corresponding values in the

History table for the currently running program are h2, h3, h4, … hn

, the difference is given by

Difference = ∑ |hi – ci | for i=1, 2…n (Eq. 1)

If this difference computed from equation Eq. 1 is beyond a

fixed threshold value, the currently running program is not the

most efficient. So, the monitor module looks for a match for a

program from the History table. If found, the monitor switches

to that program, otherwise reordering is done. Then, we switch

to the newly reordered and compiled program. If the difference

is below the threshold, the currently running program has an

acceptable efficiency and it continues running. Here, the choice

of the threshold value plays a crucial role. There are also other

factors discussed in the next section.

Evaluation and Results

To evaluate the proposed technique as a measure of time the

time taken for evaluating the conditions, each condition

evaluation has been fixed to consume a time of 1 second. Hence,

the time taken for running is directly proportional to the number

of conditions evaluated. The earlier the desired condition is met,

the lesser the number of unnecessary conditions that get

evaluated and hence lesser time. This method provides a

quantitative method to analyze the performance of the system.

Figure 2: Results from 20 runs of the program with

threshold 35

The table in Figure 2 shows the results obtained from the

proposed system for a program with 3 independent conditions

each with 3 (or 4) nested independent conditions after 20 runs

with constrained random input.

With the crude measure for reordering as specified by

equation Eq.1 and the time interval chosen as 100 iterations of

the program, the performance showed slight variations.

It can be inferred from the table in Figure 2 that the

proposed system does not predict right and layout the conditions

in the right way every time. On some occasions, there can be a

downfall in the performance, as indicated by the negative values

of performance in Figure 2. However an overall gain of about

8% was achieved. This gain has been obtained in spite of the

overhead in reordering and switching. The running of the

original program for the same input for 10 runs took 7405

seconds as against the proposed system, which took 6812

seconds. It can thus be seen that he system can intelligently

reorder the conditions to achieve an overall gain. The names

sample1, sample2, etc are the names of the various reordered

versions of the original program.

Factors affecting the performance of the proposed technique

The performance of this proposed methodology is governed

by 1) The reordering and switching criteria 2) how often the

efficiency of the currently running program is checked and the

decision on reordering/switching made and 3) the threshold

value.

The reordering and switching criteria

The formula for computing the difference between the

currently running program and the pattern in the History

database is given in Equation Eq.1. However, this formula for

computation of the difference is crude and has its limitations in

terms of performance and validity. The nesting of conditions has

to be taken into consideration in deciding this measure. This

measure has to be optimized to arrive at more accurate

predictions. The more accurate this formula is, the more efficient

the system. However, too much of complexity in the calculation

of this measure can affect the performance in the adverse

manner.

The frequency of decision-making

The running program's efficiency has to be monitored at

regular intervals. However this value can't be too low or too

high. Frequent evaluation can increase the overhead

inadvertently. Doing it rarely destroys the whole aim of

optimization. This depends totally on the behavior of the

application and the size of the program.

The threshold value

The monitor module makes a decision of whether the

currently running program is efficient or not, based on the

Sarath Chandran et al./ Elixir Comp. Sci. & Engg. 38 (2011) 4477-4480

4480

difference between the pattern in the History table and the most

recent run. However, difference can be acceptable if it is below a

certain threshold level.

If this threshold level is too large, the system may be too

lenient and if the threshold value is too low, it becomes

idealistic. Also lower threshold values may mean frequent

switching and reordering hence may not be desirable.

Figure 3: Time Vs Threshold

A graph showing the variation in performance with the

threshold value is depicted in Figure 2. This has been obtained

when the reordering frequency is 100 iterations of the program's

conditions. The following inferences can be made from the

graph shown in Figure 2.

• For low values of threshold, the time taken for execution is

high, i.e., the performance is low. This is because of the high

overhead incurred in reordering and switching. The system

behaves idealistic.

• For high values, the performance is low; this is because the

system is too lenient and allows for large deviations from the

pattern in the History table.

• For very high values of the threshold, there is a substantial

decrease in time; this is because the overhead in switching or

reordering is reduced. The system always predicts that the

program running is the most efficient.

• It can be seen that at a certain point (here at threshold

value=35), the time taken is the least.

 The choice of the threshold value has to be arrived at after

careful experimentation and from domain expertise for which

the application is being run.

 However other techniques could be used to fix this value.

This is discussed in the next section.

Future Directions

 In this paper, a novel method has been suggested for

improving the performance of a branching intensive system. The

performance gain thereby recorded has been dis cussed in the

previous sections. Here we suggest some possible enhancements

that can be made to the method proposed.

 As stated in earlier section, the threshold value, the criterion

for reordering and switching can further be optimized. For a

given application, suitable learning algorithms can be adopted to

learn the way the branches are taken.

 The computation of the difference for the reordering criteria

can be replaced by other statistical measures.

 Also, for huge real-time systems, training can be

incorporated using fuzzy systems that optimize this reordering

criterion.

 Similarly, the threshold value can be fixed by swarm

intelligence techniques, making the system an intelligent one.

This also increases the accuracy in the prediction and reordering.

 The frequency at which the efficiency of the currently

running program is evaluated can also be fixed using similar

techniques.

References

[1] J. E. Smith. A study of branch prediction strategies.

Proceedings o the 8th Annual Intl. Symposium on Computer

Architecture, pages 135-148, 1981.

[2] T. Ball and J. R. Lams. Branch prediction for free.

Proceedings of the ACM SIGPLAN Conference on

Programming Language Design And Implementation, pages

300-313, June 1993.

[3] J. A. Fisher and S. M. Freudenberger. Predicting conditional

branch directions from previous runs of a program. Proceedings

of the 5th International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 85-95,

1992.

[4] B. Calder, D. Grunwald, and D. Lindsay. Corpus-based

static branch prediction. Proc. ACM SIGPLAN Conf. on

Programming Language Design and Implementation, pages 79-

92, 1995.

[5] T. Y. Yeh and Y. N. Patt. Two-level adaptive branch

prediction. Proceedings o the 24th Annual ACMIIEEE

Intl.Symposium on Microarchitecture, pages 51-61, 1991.

[6] K. Pettis and R. C. Hansen. Profile guided code positioning.

Proc. ACM SIGPLAN Conf on Programming Language Design

and Implementation, pages 16-27, June 1990.

[7] A. H. Hashemi, D. R. Kaeli, and B. Calder. Efficient

procedure mapping using cache line coloring. Proc. ACM

SIGPLAN Conf on Programming Language Design and

Implementation, pages 171-182, June 1997

[8] N. Cloy, T. Blackwell, M. D. Smith, and B. Calder.

Procedure placement using temporal ordering information .

Proceedings of the 30th Annual ACMIIEEE Intl. Symposium on

Microarchitecture, pages 303-313, Dec. 1997.

[9] W.-M. Hwu and P. P. Chang. Achieving high

instructioncache performance with an optimizing compiler.

Proceedings of the 16th Annual Intl. Symposium on Computer

Architecture, pages 242-25 l, June 1989.

[10] J. Torrellas, C. Xia, and R. Daigle. Optimizing

instructioncache performance for operating system intensive

workloads. Proceedings o the 1st Intl. Conference on High

PerformanceComputer Architecture, pages 360-369, Jan. 1995

[11] A. Ramirez, J. L. Larriba-Pey, C. Navarm, J. Torrellas, and.

Valero. Software trace cache. Proceedings of the 13thIntl.

Conference on Supercomputing, June 1999.

[12] B. Calder and D. Grunwald. Reducing branch costs via

branch alignment. Proceedings of the 6th Intl. Conference on

Architectural Support for Programming Languages and

Operating Systems, pages 242-25 1, Oct. 1994.

[13] A. Ramirez, J. L. Larriba-Pey and M. Valero, The Effect

ofCode Reordering on Branch Prediction, Proceedings of

the2000 International Conference on Parallel Architectures And

Compilation Techniques, pages 189-198, 2000.

