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Introduction 

Fetch performance broadly depends on three factors: the 

number of instruction cache misses, the width of instructions 

fetched each cycle, and the branch prediction accuracy. The first 

two factors determine the speed at which instructions are 

provided to the processor, the third determines the quality of the 

instruction provided.  

Code reordering techniques are a known approach to the 

first two factors. The number of instruction cache misses 

depends on the code layout [6]. The performance loss due to 

branch instructions was first approached with static branch 

predictors, which always predicted the same outcome (always 

taken, or always as not taken) for a given branch. This prediction 

was obtained using very simple heuristics[1], static analysis[2], 

or profile information[3,4] and then moved on to dynamic 

predictors [1,5]. 

The current methods use speculative prediction to initially 

set up the supporting database (branch history table). This 

involves considerable resources. Also, the above said methods 

do not guarantee that unnecessary branches are not evaluated at 

the runtime, and cache miss rate is still considerably high. 

Further, when consequent executions of the branch statements 

form a pattern, the pattern behavior is not completely exploited. 

There is still scope left for dynamically changing the source 

code or the object code generated by the compiler based on the 

prediction history and the patterns derived from the execution. 

This paper proposes an improvement at the source code 

level for optimizing the code layout. A global data structure 

maintains the history of branch execution. This branch execution 

history is used to reorder the source code dynamically. At 

regular intervals, the efficiency of the currently running program 

in the immediate past few runs is being checked. If the 

efficiency is not in the acceptable range, the source program is 

reordered. This is done based on the execution statistics, such 

that the most frequently taken branches are at the top. This new 

source program is then compiled and then the new program 

starts running instead of the old (unordered) one. This can 

improve the performance by minimizing the evaluation of not-

taken branches. 

An example application scenario 

The application considered to demonstrate the concept is a 

condition-based equipment maintenance system. The input 

program is a system that monitors industrial equipments and 

detects faults in them. This program continuously keeps 

monitoring the equipments for any faults. When an equipment is 

found to be at fault, the module within the equipment that has 

faulted has to be located. 

In such a scenario, all the equipments and all modules have 

to be monitored, but the most frequently faulting ones need to be 

monitored first. This makes fault isolation efficient. This 

requires reordering of the conditions periodically, based on the 

previous execution of the conditions, assuming that the 

equipment and the module that has faulted frequently in the past 

is likely to fault again. 

A specific case of mutually independent branches that need 

to be executed in a sequence is considered here, but the idea can 

be extended to all kinds of branching statements. 

Paper Structure 

The reminder of this paper is structured as follows. Section 

2 contains a brief outline of the existing work in both branch 

prediction and code layout optimizations. Section 3 provides the 

system design and explains each step of the process in detail. 

Section 4 deals with results and performance evaluation. Section 

5 deals with conclusion and provides future directions and 

enhancements to the proposed system.   

Existing Work 

The related work can be classified into two regions, one on 

branch prediction and the other on layout optimization. Code
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layout optimizations mainly target the optimal layout of basic 

blocks while branch prediction techniques aim to improve the 

fetch performance. 

Branch Prediction Schemes 

To determine the outcome of a branch before it is known, 

processor may employ a branch prediction scheme. Branch 

prediction schemes are classified either as static or dynamic 

depending on when the branch’s predicted outcome is 

determined. 

In a static branch prediction scheme, the compiler predicts 

the same outcome for a branch, for example, as always taken 

[12]. Since this decision is made when a program is compiled, 

the branch’s predicted outcome does not change. Two common 

variations of the static branch prediction scheme use profile-

based and program-based heuristics. [1, 2, 3] 

In a dynamic branch prediction scheme, the processor 

predicts the outcome of a branch at run-time based on its recent 

behavior. Unlike static prediction schemes, dynamic branch 

prediction schemes can adapt to changes in the behavior of a 

particular branch. 

A common implementation of a dynamic branch prediction 

scheme is one that employs a branch prediction table (BPT) 

whose entries are n-bit counter values indexed by the lower 

portion of the branch’s address. This scheme works by 

incrementing the value of the corresponding n-bit counter every 

time the branch is taken, and decrementing the counter every 

time the branch is not taken. The counter is neither incremented 

nor decremented when it reaches its maximum or minimum 

value, respectively. When using an n-bit counter to predict the 

outcome of the branch, if the most-significant bit of the value 

represented by the counter is 1, the branch is predicted as taken; 

otherwise, the branch is predicted as not taken. 

Two-level adaptive branch predictors keep two levels of data 

about the branch behavior. The Level 1 table or the Branch 

History Table (BHT) keeps information about the past branch 

outcomes. This table indexes into the Level 2 table, composed of 

two-bit saturating counters managed as in the bimodal predictor. 

The Level 2 table is usually referred to as the Pattern History 

Table (PHT). A combination of both global and local execution 

information yields better accuracy. 

Prediction Methods for Branch Instructions of Different 

Behaviors 

The main idea here is that various prediction methods can 

be used for branch instructions of different behaviors. The 

compiler profiles and classifies all branch instructions into four 

different categories according to the behavioral history of the 

program during the profiling. The compiler encodes the 

classifications in 2-bit “hints”. Then, at runtime, the hardware 

treats the branch instructions in different ways according to the 

compiler’s hints. 

In profiling, the compiler analyzes and characterizes the 

behavioral history of every branch instruction. For branch 

instructions with behavioral histories of almost always “taken” 

or almost always “not-taken”, the hardware branch prediction 

mechanism will not be employed. The processor will use the 

compiler’s static predictions to direct the branches.  

The branch instructions other than the above two categories 

are classified into two categories: those with regular history 

patterns, and those with irregular history patterns. A hardware 

prediction scheme called switch counter has been proposed to 

predict such instructions with regular history patterns. The 

Switch-Counter can remember how many times the continuous 

“taken” or the continuous “not-taken” occurred when the last 

pattern switch happened. The branch predictions are made 

dynamically by the Switch Counter based on the values of the 

counters.  

For instructions that do not follow such a regular pattern, a 

two-level adaptive predictor can be used.  

Code Layout Optimization 

Layout optimization aim to efficiently layout the routines 

and blocks in a program to effectively use the instruction cache. 

[6, 7, 8, 9, 10, 11] 

One code layout optimization method is the Software Trace 

Cache (STC). The STC maps basic blocks so that sequentially 

executed basic blocks tend to be in consecutive memory 

positions, building basic block chains than may span multiple 

routines [13]. 

The effect of laying out basic blocks in a certain way and its 

effect on branch prediction has been dealt in great depth in [14]. 

However, this technique just uses the results from the initial 

profiling by running the program to obtain statistics, but does 

not take into consideration the dynamics of the system or 

program as it is running. This may provide valuable prediction 

hints in real-time systems. 

Proposed Methodology 

Here we propose a branch prediction and optimization 

component that reorganizes the source code such that the more 

probable conditions are evaluated before the ones with a lower 

probability. This can reduce the evaluation of not-taken branches 

thereby improving the performance. 

A preprocessor component creates a global data structure 

which maintains the branching history for a user-specified 

(application-specific) part of a program. This can be specified 

using a delimiter. This component scans the input program and 

creates the necessary data structures based on the input program. 

The preprocessor is specific for a programming language. This 

component also expands the input source program so that it can 

update the data structure that keeps track of the branch 

execution. The probability of execution of these branches is 

updated dynamically as  they get executed. 

 
Figure 1: Architecture 

At specified intervals, the current execution profile is 

compared against the global history data structure. If the 

currently running object code is not optimal, the source program 

is reordered based on the execution of the conditions and is 

recompiled. This reordered program now replaces the currently 

running program. A monitor component takes care of making 

the decision whether reordering, or just switching to another 

program needs to take place. The reorder module takes as input 

the expanded C program (output of the preprocessor) and creates 

a new expanded program with the conditions in the decreasing 
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order of the probability of execution. The reordering is done at 

each level of nesting. This reordering is done when the monitor 

signals this module to reorder. On completion of the reordering 

this module signals back the monitor module. 

New executables are generated from the source program 

each time reordering is done. Hence an object code (executable 

file) for each condition execution pattern is obtained. 

Over a period of time, as the program runs for a 

considerably large number of times, we can also arrive at the 

most optimal ordering of conditions. A pool of various source 

programs and the compiled object programs corresponding to 

the various execution profiles are obtained and a list of possible 

branching profiles get accumulated in the History table. As a 

result, the need for reordering minimizes after considerable time 

and just switching to the correct program happens. 

Data Structures Used 

The proposed system maintains two data structures. One to 

maintain the earlier patterns and the matching program for that 

pattern. This database table is termed the History and is created 

by the preprocessor. A new record gets inserted into this table 

whenever a new pattern of branching is obtained from the 

running program. 

The other data structure, here called the branching table, is 

initially created by the system developer. It keeps track of the 

count of each branch being taken as the program is running.  

This table, in real time scenarios could be the register file of the 

processor. The preprocessor allocates the space for each 

condition it encounters. The value of the count field is initialized 

to 0. This gets updated as the expanded program runs. 

The criteria for switching 

The reordering is done whenever the pattern in the most 

recent run differs from the earlier pattern beyond a certain 

threshold value. This difference calculation that has been 

implemented is the sum of the differences obtained for each 

branch. This is demonstrated below. 

If B1, B2, B3…Bn are n non-exclusive branching 

instructions, then the count that each of these branches are taken 

is recorded as the branches are evaluated. If at the end of a run, 

these values are c1, c2, c3 … cn  and the corresponding values in the 

History table for the currently running program are h2,  h3, h4, … hn 

, the difference is given by   

Difference = ∑ |hi – ci |    for i=1, 2…n       (Eq. 1) 

If this difference computed from equation Eq. 1 is beyond a 

fixed threshold value, the currently running program is not the 

most efficient. So, the monitor module looks for a match for a 

program from the History table. If found, the monitor switches 

to that program, otherwise reordering is done. Then, we switch 

to the newly reordered and compiled program. If the difference 

is below the threshold, the currently running program has an 

acceptable efficiency and it continues running. Here, the choice 

of the threshold value plays a crucial role. There are also other 

factors discussed in the next section. 

Evaluation and Results 

To evaluate the proposed technique as a measure of time the 

time taken for evaluating the conditions, each condition 

evaluation has been fixed to consume a time of 1 second. Hence, 

the time taken for running is directly proportional to the number 

of conditions evaluated. The earlier the desired condition is met, 

the lesser the number of unnecessary conditions that get 

evaluated and hence lesser time. This method provides a 

quantitative method to analyze the performance of the system.   

 
Figure 2: Results from 20 runs of the program with 

threshold 35 

The table in Figure 2 shows the results obtained from the 

proposed system for a program with 3 independent conditions 

each with 3 (or 4) nested independent conditions after 20 runs 

with constrained random input.  

With the crude measure for reordering as specified by 

equation Eq.1 and the time interval chosen as 100 iterations of 

the program, the performance showed slight variations.   

It can be inferred from the table in Figure 2 that the 

proposed system does not predict right and layout the conditions 

in the right way every time. On some occasions, there can be a 

downfall in the performance, as indicated by the negative values 

of performance in Figure 2. However an overall gain of about 

8% was achieved. This gain has been obtained in spite of the 

overhead in reordering and switching. The running of the 

original program for the same input for 10 runs took 7405 

seconds as against the proposed system, which took 6812 

seconds. It can thus be seen that he system can intelligently 

reorder the conditions to achieve an overall gain. The names  

sample1, sample2, etc are the names of the various reordered 

versions of the original program. 

Factors affecting the performance of the proposed technique 

The performance of this proposed methodology is governed 

by 1) The reordering and switching criteria 2) how often the 

efficiency of the currently running program is checked and the 

decision on reordering/switching made and 3) the threshold 

value.  

The reordering and switching criteria 

The formula for computing the difference between the 

currently running program and the pattern in the History 

database is given in Equation Eq.1. However, this formula for 

computation of the difference is crude and has its limitations in 

terms of performance and validity. The nesting of conditions has 

to be taken into consideration in deciding this measure. This 

measure has to be optimized to arrive at more accurate 

predictions. The more accurate this formula is, the more efficient 

the system. However, too much of complexity in the calculation 

of this measure can affect the performance in the adverse 

manner. 

The frequency of decision-making 

The running program's efficiency has to be monitored at 

regular intervals. However this value can't be too low or too 

high. Frequent evaluation can increase the overhead 

inadvertently. Doing it rarely destroys the whole aim of 

optimization. This depends totally on the behavior of the 

application and the size of the program. 

The threshold value 

The monitor module makes a decision of whether the 

currently running program is efficient or not, based on the 
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difference between the pattern in the History table and the most 

recent run. However, difference can be acceptable if it is below a 

certain threshold level.  

If this threshold level is too large, the system may be too 

lenient and if the threshold value is too low, it becomes 

idealistic. Also lower threshold values may mean frequent 

switching and reordering hence may not be desirable. 

 
Figure 3: Time Vs Threshold 

A graph showing the variation in performance with the 

threshold value is depicted in Figure 2. This has been obtained 

when the reordering frequency is 100 iterations of the program's 

conditions. The following inferences can be made from the 

graph shown in Figure 2.  

• For low values of threshold, the time taken for execution is 

high, i.e., the performance is low. This is because of the high 

overhead incurred in reordering and switching. The system 

behaves idealistic. 

• For high values, the performance is low; this is because the 

system is too lenient and allows for large deviations from the 

pattern in the History table. 

• For very high values of the threshold, there is a substantial 

decrease in time; this is because the overhead in switching or 

reordering is reduced. The system always predicts that the 

program running is the most efficient.  

• It can be seen that at a certain point (here at threshold 

value=35), the time taken is the least. 

 The choice of the threshold value has to be arrived at after 

careful experimentation and from domain expertise for which 

the application is being run. 

 However other techniques could be used to fix this value. 

This is discussed in the next section. 

Future Directions 

 In this paper, a novel method has been suggested for 

improving the performance of a branching intensive system. The 

performance gain thereby recorded has been dis cussed in the 

previous sections. Here we suggest some possible enhancements 

that can be made to the method proposed. 

 As stated in earlier section, the threshold value, the criterion 

for reordering and switching can further be optimized. For a 

given application, suitable learning algorithms can be adopted to 

learn the way the branches are taken.  

 The computation of the difference for the reordering criteria 

can be replaced by other statistical measures.  

 Also, for huge real-time systems, training can be 

incorporated using fuzzy systems that optimize this reordering 

criterion. 

 Similarly, the threshold value can be fixed by swarm 

intelligence techniques, making the system an intelligent one. 

This also increases the accuracy in the prediction and reordering.

 The frequency at which the efficiency of the currently 

running program is evaluated can also be fixed using similar 

techniques. 
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