
Lavanya et al./ Elixir Comp. Sci. & Engg. 38 (2011) 4473-4476

4473

Introduction

The existing system, Delay Tolerant Networks (DTNs) [1]

have the unique feature for the connectivity, which makes

routing quite different from other wireless networks. Though

many routing algorithms that have been proposed to increase

data delivery reliability, they are clearly based on contact

opportunity; i.e., without considering users’ willingness and

assuming that all nodes are willing to forward packets for others.

In the real world, people are mostly selfish. In civilian DTNs

such as PeopleNet [2] and Pocket Switched Network [3], a node

may not be willing to forward packets for others. Then, previous

algorithms may not work well since some packets are forwarded

to nodes unwilling to relay, and will be dropped.

In this paper, we follow a new philosophy of, “design for

user” which considers social selfishness as a user demand and

allow socially selfish nodes to behave in the aforementioned

ways to satisfy such demand. Thus we have to formulate the

problem of how to enforce users’ social s elfishness in routing.

This is not easy since the routing performance may be affected

when social selfishness is considered.

We propose a Social Selfishness Aware Routing (SSAR)

algorithm to address these challenges. To maintain social

selfishness, SSAR allocates resources based on packet priority

which is related to the social relationship among nodes. To

maintain the routing performance, SSAR quantifies the relay’s

willingness to evaluateits forwarding capability. Moreover,

SSAR formulates the forwarding process as a Multiple

Knapsack Problem with Assignment Restrictions (MKPAR). It

forwards the most effective packets for social selfishness and

routing performance.

The following contributions are made,

Firstly, social selfishness into DTN routing is introduced.

A routing algorithm SSAR for DTNs, which follows the

philosophy of design for user is presented.

A routing algorithm SSAR for DTNs, which follows the

philosophy of design for user is incorporated.

Finally, the forwarding process as an MKPAR and provide a

heuristic based solution is formulated.

Section II presents an overview of SSAR. Section III gives the

detailed design. Section IV introduces the trace-driven

simulations and discusses the results.

SSAR Overview

In this section, firstly our design philosophy is introduced,

then discussion on models and assumptions, and finally an

overview of SSAR is given and how it works is explained.

Philosophy: Design for User

The existing literature has focused on addressing individual

selfishness such as using reputation-based, credit-based, or

game-theory based approaches to stimulate users to cooperate

and forward packets for others.

If the nodes cooperate with others, they will get help from

others as a return; if not they will be punished. However, these

incentive schemes may not be directly applied to deal with

social selfishness, as the incentive schemes do not consider

social selfishness.

By using incentives, every node will have to provide service

to others without considering that there is a social tie or not. As

a result, social selfishness is violated. We address this problem

from a different point of view. We allow users to behave as what

their social selfishness requires, but try to improve the routing

performance under the social selfish behaviour.

Our underlying philosophy is that social selfishness is a

kind of user demand that should be satisfied. It should be treated

as a design metric to measure the user satisfaction. We call such

design philosophy “design for user”.

Models and Assumptions

Network Graph, the socially selfish network as a fully-

connected weighted directed graph, where the vertex set V

consists of all the nodes and the edge set E consists of the social

links between nodes is designed.

The weight of edge A is A’s willingness to forward packets

for B. The weight of edge AB and that of BA may be different.

The value of willingness is a real number within [0, 1], where 0

means unwilling to forward and 1 means the most willing to

forward. The social willingness between two nodes depends on

the social tie between them. The stronger the social tie is, the

larger the social willingness is.

Tele:

E-mail addresses:

 © 2011 Elixir All rights reserved

Enforcing socially selfish awareness routing among users
S.Lavanya and R.Ramya

Department of Computer Science and Engineering, Dr Pauls Engg College, Villupuram Dist .

 ABS TRACT

In the real world, most people are socially selfish; i.e., they are willing to forward packets

with whom they have social ties but not to others, which varies with the strength of the

social tie. A Social Selfishness Aware Routing (SSAR) algorithm to allow user se lfishness

and for having better routing performance in an efficient way is proposed. To select a

forwarding node, SSAR considers both users’ willingness to forward and their contact based

approaches, which results in a better forwarding method than purely contact-opportunities.

SSAR also formulates the packet forwarding process as a Multiple Knapsack Problem with

Assignment Restrictions (MKPAR) to satisfy user demands for selfishness and performance.

Trace-based simulations show that SSAR allows users to maintain selfishness and it

achieves better routing performance with low transmission cost.

 © 2011 Elixir All rights reserved.

ARTICLE INFO

Article his tory:

Received: 22 August 2011;

Received in revised form:

26 August 2011;

Accepted: 31 August 2011;

Keywor ds

Delay Tolerant Networks (DTNs),

SSAR,

MKPAR.

Elixir Comp. Sci. & Engg. 38 (2011) 4473-4476

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Lavanya et al./ Elixir Comp. Sci. & Engg. 38 (2011) 4473-4476

4474

We assume that the willingness information is available.

This should be achievable since each node only needs to know

its willingness to forward for others. From the system

perspective, this can be done as one system configuration step,

in which the user assigns its willingness values for people he

knows via some user interface in the mobile device. The user

can set a default value (e.g., 0) for strangers. To be more user-

friendly, the interface can provide several willingness levels

such as “most”, “much”, “average”, “poor”, “none” for the user

to choose from. The willingness information is configured when

the user joins the network or migrates to a new mobile device,

and is updated when his social ties change. However, such

update is quite infrequent since social ties are usually stable.

Network Model In DTNs, nodes have limited bandwidth

and computational capability. We assume each node has

unlimited buffer for its own packets, but limited buffer for

others. As for data traffic, we only consider unicast, and assume

each packet has a certain lifetime (i.e., TTL). We further assume

bidirectional links, which can be provided by some MAC layer

protocols, e.g., IEEE 802.11.

Trust Model We assume the source of a packet is

anonymous to intermediate nodes. For example, the source ID

can be encrypted in a way so that only the destination can

decrypt. Then intermediate nodes provide data forwarding

service only based on the previous hop information. This

assumption is not essential to SSAR, and we add it just to

simplify the routing model. We also assume that some

authentication service is available so that one node can not

impersonate another. Otherwise, a node may claim to be

someone else to obtain forwarding services from that node’s

social ties. How to provide such authentication service has been

well studied Adversary Model In this paper, we only consider

socially selfish behaviors.

Architecture

Figure 1 shows the architecture of SSAR, which has the

following four components.

Packet priority manager It calculates a priority, which

measures the social importance of the packet for each buffered

packet based on the willingness between nodes that the packet

has traversed.

Delivery probability estimator It estimates a node’s

“delivery probability” of a packet, which is used to quantify the

node’s forwarding capability for that packet. Traditionally, the

quality of a relay is measured solely based on its contact

opportunity to the destination node. SSAR measures the delivery

probability of a node based on both of its contact opportunity to

the destination and its willingness to forward. Interestingly, a

node with a high contact opportunity but low willingness should

not be a relay either. This is illustrated in Figure 2(a). Suppose S

has a packet m1 to send to D, and it successively meets A,C, and

B. If only contact opportunity is considered, it will forward m1

to A. Unfortunately, A will drop m1 since it is unwilling to

forward for S (the edge weight is 0). SSAR will avoid such

forwarding. Though C is willing to forward m1,its willingness is

so low that m1 may suffer high risk of being dropped, so SSAR

will avoid such forwarding. As a result, B is the optimal

forwarder for m1 in this scenario, since it has high willingness to

forward and a high contact opportunity.

Forwarding set manager After a node determines a set of

packets that should be forwarded to a better relay, existing

routing protocols greedily transmit them no matter the receiver

has enough buffers to hold these packets or not [5]. Obviously,

bandwidth will be wasted if the transmitted packets are dropped

due to buffer overflow. To address this issue, the forwarding set

manager decides which packets to transmit by solving an

MKPAR formulation. It considers the buffer constraint and

transmits the packets that are most effective for social

selfishness and routing performance.

The Protocol

We use Figure 1 to illustrate how SSAR works in the following

five steps.

1) After neighbor discovery, node N and M deliver packets

destined to each other in the decreasing order of priority. During

packet delivery, they also exchange information related to their

willingness to forward.

2) If N’s willingness for M is positive, M sends N a summary

list of _destination ID, expiration time, priority for its buffered

packets.

3) From the priority information, N calculates the new priority

value for each packet (Section III-A). Based on the new priority

and other information in the summary list, N calculates its

delivery probability (Section III-B) and available buffer size

(Section III-C) for each packet in the list, and returns them to M.

4) M determines a candidate set of packets for which N has

higher delivery probabilities.

5) Considering the available buffer size information, M further

decides which candidates to transmit by solving the MKPAR

(Section III-C) formulation. Packets will be deleted after being

forwarded, so there is only one copy for each packet. Without

loss of generality, in the last four steps we only describe how

node M determines which packets to transfer to node N. Node N

does so in similar ways. Though not very frequent in

opportunistic DTNs, a node may be in contact with multiple

neighbors at the same time. Then it would be very difficult to

extend the MKPAR formulation to the whole neighborhood. As

a simple solution, the node contacts neighbors one by one.

Detailed Design

This section describes the detailed design of the packet

priority calculation, the delivery probability estimation, and the

forwarding set optimization.

Packet Priority

When a node receives and buffers a packet, it assigns a

priority p to the packet. We borrow the idea of transitive trust [5]

from the literature on reputation system and calculate packet

priority in a chained way. Formally:

pi = pi−1 ・ω i≥ 1 (1)

where pi is the packet’s priority in its ith hop and ω is the ith

hop’s willingness to forward the packets from the (i − 1)th hop.

The initial priority p0 is set by the source. Since source

anonymity is assumed, the packet source is not considered by

intermediate hops. The priority assignment method and the

buffer management policy are used to enforce social selfishness.

Lavanya et al./ Elixir Comp. Sci. & Engg. 38 (2011) 4473-4476

4475

First, packets that traverse stronger social edges tend to have

higher priorities. As shown in Figure 2(a), although m1, m2, and

m3 have the same priority in the previous hop, they will receive

different services in B after traversing different links. m3 will

not receive any forwarding service; m1 will receive better

service than m2. Second, packets from the same upstream node

are also differentiated. In this example, m2 receives better

service than m4 in B although they come from the same node.

Since priority is updated hop by hop, it may improve

cooperation in some cases. In Figure 2(a), if m3 from F arrives

at B via E, its priority becomes 0.36 (instead of 0 through direct

transmission) and will receive B’s service.

Delivery Probability Estimation

Suppose each packet has some expiration time, the question

is: at a given time t, how to estimate node N’s probability of

delivering packet m to its destination D before its expiration

time texp?

Overall Delivery Probability

The overall delivery probability by Pdelivery. By definition

the first and second dropping probability are given by P{texp ≤

tc} and P{tover ≤ tc}, respectively. Note that the temporal order

of tc and texp is determined by system parameters and the

mobility pattern of N and D, while the time of buffer overflow

depends on N’s traffic load. Thus we can assume that the two

dropping events are independent. Then we integrate them to get

the delivery probability:

Pdelivery = (1 − P{texp ≤ tc})(1 − P{tover ≤ tc}) (2)

In DTNs with unpredictable connectivity, when N makes such

estimation it is impossible to know the exact tc, and thus it is

impossible to compute the r.h.s of Eq. 2. So we have to make

some approximations. When texp > tc,

P{tover ≤ tc} ≤ P{tover ≤ texp} because the probability density

function of tover is nonnegative. After inserting this inequation

into Eq. 2, we get a conservative estimation:

Pdelivery ≥ (1 − P{texp ≤ tc})(1 − P{tover ≤ texp}) (3)

The above estimation of Pdelivery can be seen as determined by

two independent droppings,

P{texp ≤ tc} and P{tover ≤ texp}.

 The first one means that the packet expires before N’s next

contact with D, so we call it expiration dropping probability and

denote it by Pexp. The second one means that the packet

overflows before expiration, so we call it buffer overflow

dropping probability and denote it by Pover. Next, we discuss

how to estimate them individually.

Expiration Dropping Probability: To estimate Pexp, let

random variable X denote the inter-contact time between N and

the destination D. Assume that each inter-contact time is

independent, then according to Markov’s Inequality:

Pexp = P{X >texp − ˆt} ≤ E(X)/(texp − ˆt) (4)

where E(X) is the mean of X and ˆt is the most recent contact

time between N and D before the estimation time t. E(X) can be

approximated by the average of historical inter-contact times.

The value of Pexp should be bounded by 1. Eq. 4 intuitively

means that nodes with a lower average inter-contact time (i.e., a

higher contact frequency) with the destination have a lower

expiration dropping probability.

Buffer Overflow Dropping Probability: The most important

factor that affects Pover is m’s priority value p due to the buffer

policy. Other two minor factors are the current empty buffer size

L0 and the residual time tr = texp − t before expiration. L0 is

positively related to how long m can stay before being removed.

But tr is negatively related: the longer tr is, the more likely it

will be dropped due to buffer overflow. Whenever N drops or

forwards a packet, it generates a record < p,L0, tr, β >. With

data mining terminology, each record is called a sample, p, L0,

and tr are called feature dimensions and β is called class label. β

= 1 if N drops the packet due to buffer overflow and β = 0 if N

does not drop it or drops it due to expiration. Our basic heuristic

is that the probability that m will be dropped is similar to some

historical packets which have similar feature values when they

enter N’s buffer. Suppose we match m to a set S of similar

packets, and its dropped subset is Sdrop, then Pover is estimated

as:

Pover = |Sdrop|/|S| (5)

Figure 2(b) illustrates the idea in a two-dimensional space <

p,L0 >, where the historical packets in the dashed circle are the

matched ones. In this example, the estimated Pover of m1 and

m2 are 0.83 and 0.25, respectively. To match m to similar

packets, we choose the K-Nearest- Neighbour (KNN) [6]

algorithm from the data mining literature, which identifies the K

packets that have the shortest distance to m in the feature space.

However, KNN traverses all samples during matching, which

induces high online computation cost, and leaves less contact

duration time for data transmission. We combine KNN with the

Kcenter algorithm [19] to propose a two-phase solution:

• In the offline phase (when not in contact with others), nodes

use the K center algorithm to cluster samples into ˆK clusters

around ˆK points in the feature space.

• In the online phase, nodes scan the ˆK points in the increasing

order of their distances with m’s feature vector until K samples

are included in the scanned clusters.

Both the online and offline phase need to compute the

distance between two feature vectors. When doing so, L0

Forwarding Set Optimization

In this subsection, we solve the following problem: suppose

a node M contacts N, and M has determined a candidate packet

set C for which N has higher delivery probabilities

We follow two principles.

First, M will not forward a packet to N if N does not have

sufficient buffers for that packet. According to the buffer

management rule, N’s available buffer size Lm for m is:

Second, M tries to maximize its selfish gain through this

contact,

 The selfish gain g that M achieves by forwarding m to N is

the product of m’s priority p in M and the increment of delivery

probability, i.e.,

 g = p ・ ΔPdelivery.

According to the above two principles, the problem can be

formulated as:

Let Xij denote if packet i is packed into knapsack j (Xij = 1) or

not (Xij = 0), then Xij = 0 when i < j. Eq. 8 can be rewritten as

an MKPAR:

Lavanya et al./ Elixir Comp. Sci. & Engg. 38 (2011) 4473-4476

4476

Thus, we give a greedy algorithm, which ranks the packets

in the decreasing order of selfish gain weighted by packet size,

and packs them one by one until no more packets can be packed.

Performance Evaluations

In this section, we evaluate the performance of SSAR and

compare it to other existing routing algorithms.

The evaluation is based on the MIT Reality trace [7] has

validated the existence of the so-called “small-world”

phenomenon, a well-known phenomenon in social networks.

The graph is constructed in four steps:

1) We generate power-law distributed node degrees based on

several measurement studies [8].

2) We repeatedly assign those degrees to nodes in the trace, i.e.,

assign the largest degree to a node in such a way that node N’s

probability to be selected is fN/f∗ , and repeat this for the

remaining degrees and nodes. is normalized to [0, 1] based on

the total buffer size of N, and tr is normalized to [0, 1] based on

the packet TTL.

Then their distance is:

3) We generate weights for the social ties (edges) of each node.

The best empirical data we can find about social tie strength is

from one recent study in which participants rate their friendship

nearly uniformly between 0 and 1. Thus, we generate weights

for each node’s social ties that are uniformly distributed within

[0,1].

4) For each node N, we connect its ties to other nodes. We

connect the strongest tie to another node in a way that node M’s

probability to be connected is fNM/fN, and repeat this for the

other ties and not-connected nodes. In the end, for any ordered

node pair NM that has not been connected yet, the weight of

edge

−−→

NM is set 0.

To compare SSAR with other algorithms on how much

selfishness is allowed, we plot the SS metric in Figure 4. The

packet TTL is 25 days, and each node on average has 25 social

ties. SSAR allows better selfishness than the other three

algorithms. Algorithms [8], [9] have also been proposed for

finding the right relays for data forwarding in vehicular ad hoc

networks. Recently, several algorithms [10], [11] use social

metrics calculated from contacts. These approaches evaluate the

forwarding capability of a node purely based on its contact

opportunity. Individual selfishness has been widely studied in

mobile ad hoc networks [4] and even in DTN [12].

Conclusion

In this paper, we introduce social selfishness problem and

propose a routing algorithm SSAR following the philosophy of

design for user SSAR allows user selfishness and improves

performance by considering user willingness and contact

opportunity. SSAR can maintain social selfishness and achieve a

very good routing performance in an efficient way.

References

[1] K.Fall, “A delay-tolerant network architecture for challenged

internets,” Proc. SIGCOMM, pp. 27–34, 2003.

[2] M. Motani, V. Srinivasan, and P. Nuggehalli, “PeopleNet:

engineering a wireless virtual social network,” Proc. MobiCom,

pp. 243–257, 2005.

[3] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C.

Diot, “Pocket switched networks and human mobility in

conference environments,” SIGCOMM Workshops, 2005.

[4] J. J. Jaramillo and R. Srikant, “Darwin: Distributed and

adaptive reputation mechanism for wireless ad-hoc networks,”

Proc. MobiCom, 2007.

[5] A. Josang and S. Pope, “Semantic constraints for t rust

tansitivity,” Proceedings of the Asia-Pacific Conference of

Conceptual Modelling (APCCM) (Volume 43 of Conferences in

Research and Practice in Information Technology), 2005.

[6] G. Mclachlan, Discriminant Analysis and Statistical Pattern

Recognition. Wiley, 1992.

[7] A. Chaintreau, A. Mtibaa, L. Massoulie, and C. Diot, “The

diameter of opportunistic mobile networks,” Proc. ACM

CoNEXT, 2007.

[8] J. Zhao and G. Cao, “Vadd: Vehicle-assisted data delivery in

vehicular ad hoc networks,” Proc. IEEE INFOCOM, 2006.

[9] Y. Zhang, J. Zhao, and G. Cao, “Roadcast: A popularity

aware content sharing scheme in vanets,” IEEE International

Conference on Distributed Computing Systems (ICDCS), 2009.

[10] C. Boldrini, M. Conti, and A. Passarella, “Contentplace:

Social-aware data dissemination in opportunistic networks,”

Proc. MSWiM, 2008.

[11] W. Gao, Q. Li, B. Zhao, and G. Cao, “Multicasting in delay

tolerant networks: A social network perspective,” Proc. ACM

MobiHoc, 2009.

[12] F. Li, A. Srinivasan, and J. Wu, “Thwarting blackhole

attacks in distruption-tolerant networks using encounter tickets,”

Proc. IEEE INFOCOM, 2009.

