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Introduction  

The Optimal Power Flow (OPF) was discussed by 

Carpentier in 1962.  OPF has been widely used in power system 

and management.  After restructuring the electricity sector OPF 

is a tool which is used to minimize the power production cost by 

adjusting the power system control variables.  The objective of 

OPF is to minimize the generation cost and / or transmission 

losses.  The optimal operation of power system is to determine 

the power schedule so that the total cost of operation is 

minimized with respect to operating constraints.  The constraints 

involved are the physical laws governing the power generation – 

transmission systems and operating limitations of the equipment.  

The power flow study in a power system is required for planning 

the operation of power systems with respect to existing 

conditions and its future expansion.  J.B. Gupta [1] has 

introduced the power flow for the active and reactive power. 

 

Fig:1 Optimization of Power Flow 

Active Power (P) 

Active power is drawn by loads from load buses. 

Reactive Power (Q) 

Reactive power is supplied (or) drawn from the load buses 

by shunt compensation elements like shunt capacitors, reactor 

elements, static VAR system.   

The load flow studies in essential for future system 

expansion to meet the increased load demand. 

Operation of the power grid at steady state is one of the most 

fundamental requirement of proper operation of a power system.  

The steady state operation of the power network is principally 

governed by the system voltage at the two ends, the transfer 

reactance of the line and the power angle between the two buses. 

 

Fig:2 classification of Buses 

Literature Review 

T.S. Chung et al. [2] has discussed recursive linear 

programming which minimizing line losses and finding the 

optimal capacitor allocation in a distribution system.  E. Lobatu 

et al. [3] proposed LP based OPF for minimization of 

transmission losses and generator reactive margins of the 

Spanish power system. 

S. Chen et al. [4] have designed a new algorithm based on 

Newton-Raphson (NR) method in order to solve emission 

dispatch in real tune.  X. Tong et al. [5] presented semi smooth 

Newton-type algorithms for solving OPF problems.  These 

algorithms separated inequality and bounded constraints. 

J.A. Momoh [6] has discussed the extension of basic Kuhn-

Tucker conditions and generalized quadratic-based model for 
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OPF. N. Grudinin [7] has designed a reactive power 

optimization model which is based on successive QP (SQP) 

methods.  These methods used to test 30 bus and 278 bus 

systems.Feasibility, convergence and optimal.  Execution time is 

reduced.  SQP methods provide more fast and reliable 

optimization. 

D.Pudjianto et al. [8] used LP and NLP based reactive OPF 

for allocating reactive power among competing generators  in a 

deregulated environment. G.L. Torres et al. [9] proposed the 

methods to calculated the price of reactive power support service 

in a multi-area power system.  Methods which are based on Cost 

Benefit Analysis (CBA) and linear convex network flow 

programming. 

LP method calculated the over all cost associated with the 

system reactive requirement.  It gives reasonably accurate.  NLP 

gives a faster computation speed and accuracy for the solution.  

The reactive power support benefits with respect to power 

delivery increases of tie lines. Generators individual 

commitment vary.  The convergence could not be guaranteed for 

every condition. 

Ding Xiaoying et al. [10] have discussed an Interior Point 

Branch and Cut Method (IPBCM) to solve decoupled OPF 

problem.  The Modern Interior Point Algorithm (MIPA) is used 

to solve Active Power Sub Optimal Problem (APSOP) and use 

IPBCM to iteratively solve linearization of Reactive Power Sub 

Optimal Problem (RPSOP).  Wei Yan et al. [11] presented the 

solution of the optimal reactive power flow (ORPF) problem by 

the Predictor Corrector Primal Dual Interior Point Method 

(PCPDIPM).  ORPF was designed as a model in rectangular 

formal the Hessian matrices in this model are constants, it has 

been evaluated only once in the entire optimal process. 

The variables and constraints of RPSOP are less than that of 

original OPF problem, which gives the fast calculation speed. 

N.I. Santoso et al. [12] have discussed a two-stage Artificial 

Neural Network (ANN) to control in real time the multi tap 

capacitors installed on a non conforming load profile such that 

the system losses are minimized.  Walters et al. [13] applied a 

genetic algorithm (GA) to solve an economic dispatch problem 

for valve point discontinuities.  T.C. Chung et al. [14] have 

proposed a Hybrid Genetic Algorithm (GA) method to solve 

OPF in corporating FACTS devices.  GA is integrated 

with conventional OPF to select the best control parameters to 

minimize the total generation fuel cost and keep the power flows 

with in the security limits.  It converged in a few iterations. 

H. Yoshida et al. [15] have discussed a particle swarm 

optimization (PSO) for reactive power and voltage / VAR 

control (CCV) considering voltage security assessment.  It 

determined an online VVC strategy with continuous and discrete 

control variables, Cui Ru Wang et al. [16] presented a modified 

particle swarm optimization (MPSO) algorithm to solve 

economic dispatch problem. I.K. Yu et al. [17] have proposed a 

novel cooperative agents approach, Ant colony search algorithm 

(ACSA) based scheme, for solving a short-term generation 

scheduling problem of thermal power systems. 

P. Somasundaram et al. [18] have discussed an algorithm 

for solving security constrained optimal power flow problem 

through the application of EP. The controllable system quantities 

in the base case state are optimized to minimize some defined 

objective function subject to the base-case operating constraints 

fitness function converges smoothly without any oscillations. 

Many researchers have discussed the solution of OPF by 

different optimization techniques. In this paper, the proposed 

model and methodology gives the appropriate schedule and the 

optimized value for the operation of power system. The model is 

designed with respect to various constraints and the objective is  

mainly to include slack buses that reduce the losses which 

minimize the total generation cost. 

Optimization techniques for the solution of OPF 

Genetic Algorithms 

GAs are general purpose optimization algorithms based on 

the mechanics of natural selection and genetics. They operate on 

string structures (chromosomes), typically a concatenated list of 

binary digits representing a coding of the control parameters 

(phenotype) of a given problem. Chromosomes themselves are 

composed of genes. The real value of a control parameter, 

encoded in a gene, is called an allele. 

Genetic evolution takes place by means of three basic genetics 

operators: 

1) parent selection; 

2) crossover; 

3) mutation. 

Parent selection is a simple procedure whereby two 

chromosomes are selected from the parent population based on 

their fitness value. Solutions with high fitness values have a high 

probability of contributing new offspring to the next generation. 

The selection rule used in our approach is a simple roulette-

wheel selection. 

Simple Genetic Algorithm (SGA) Flow Chart 

 
Crossover is an extremely important operator for the GA.  It 

is responsible for the structure recombination (information 

exchange between mating chromosomes) and the convergence 

speed of the GA and is usually applied with high probability 

(0.6–0.9). The chromosomes of the two parents selected are 

combined to form new chromosomes that inherit segments of 

information stored in parent chromosomes.  Until now, many 

crossover schemes, such as single point, multipoint, or uniform 

crossover have been proposed in the literature. Uniform 

crossover has been used in our implementation. While crossover 

is the main genetic operator exploiting the information included 

in the current generation, it does not produce new information.  

Mutation is the operator responsible for the injection of new 

information. With a small probability, random bits of the 
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offspring chromosomes flip from 0 to 1 and vice versa and give 

new characteristics that do not exist in the parent population. In 

our approach, the mutation operator is applied with a relatively 

small probability (0.0001-0.001) to every bit of the 

chromosome. 

The FF evaluation and genetic evolution take part in an 

iterative procedure, which ends when a maximum number of 

generations is reached, as shown in Fig. 1. When applying GAs 

to solve a particular optimization problem (OPF in our case), 

two main issues must be addressed: 

1) the encoding, i.e., how the problem physical decision 

variables are translated to a GA chromosome and its inverse 

operator, decoding; the definition of the FF to be maximized by 

the GA (the GA FF is formed by an appropriate transformation 

of the initial problem objective function augmented by penalty 

terms that penalize the violation of the problem constraints).  

Genetic Algorithm Solution to Optimal Power Flow 

A. Encoding 

There are four chromosome regions (one for each set of 

control variables), namely, 1) GP̂ ; 2) UG; 3) t; and 4) bSH. 

Encoding is performed using different gene-lengths for each set 

of control variables, depending on the desired accuracy. The 

decoding of a chromosome to the problem physical variables is 

performed as follows: 

1) continuous controls taking values in the interval ],[ maxmin
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where k is the decimal number to which the binary number in a 

gene is decoded and iuN is the gene length (number of bits) 

used for encoding control variable ui. 

Fitness Function (FF) 

GAs are usually designed so as to maximize the FF, which 

is a measure of the quality of each candidate solution. The 

objective of the OPF problem is to minimize the total operating 

cost. 

Therefore, a transformation is needed to convert the cost 

objective of the OPF problem to an appropriate FF to be 

maximized by the GA. The OPF functional operating constraints 

are included in the GA solution by augmenting the GA FF by 

appropriate penalty terms for each violated functional constraint. 

Constraints on the control variables (4) are automatically 

satisfied by the selected GA encoding/decoding 

scheme (a) and (b).  

Therefore, the GA FF is formed as follows: 
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where 

FF fitness function; 

A constant; 

Fi(PGi) fuel cost function of unit (in our case, a quadratic  

 function); 

wj weighting factor of functional operating  

 constraint j; 

Penj penalty function for functional operating  

 constraint j; 

hj(x, u)  violation of jth functional operating constraint, if  

 positive; 

H  Heaviside (step) function; 

NG number of units; 

NC number of functional operating constraints. 

Given a candidate solution to the problem, represented by a 

chromosome, the FF is computed as follows. 

Step 1) Decode the chromosome to determine the actual control 

variables, using (a) and (b). The computed control vector 

satisfies, by design, constraints. 

Step 2) Solve the power flow to compute the state vector, x. 

Step 3) Determine the violated functional constraints  and 

compute associated penalty functions (d). 

Step 4) Compute the FF using (c). 

In Step 2, a simple Fast Decoupled Load Flow (FDLF) is 

used with no PV-PQ bus-type switching, since generator 

reactive capabilities are incorporated in the functional operating 

constraints and no local control adjustments, such as tap and 

switchable shunts, since the settings of these controls are 

determined by the GA. Therefore, only a few load flow 

iterations are required for convergence. The FDLF and matrices 

are formed and factorized only once in the beginning and the 

effect of the changes of shunt admittances on the matrix is 

neglected. In case that, due to the random (yet within limits ) 

initial selection of the control variables, the load flow does not 

converge within a predefined number of iterations (set to 8), 

large penalty terms, proportional to the maximum active/reactive 

power mismatch, are added.  

Particle Swarm Optimization Method 

Particle swarm optimization (PSO) is a population based 

stochastic optimization technique developed by Dr. Eberharth 

and Dr. Kennedy in 1995. In PSO, the potential solutions called 

particles, fly through the problem space by the current optimum 

particles. 

Compromise of a given particle is formalized by the 

following equations: 

)()( 2221111 kkkk xprbxprbvav

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where: 

1kv


 the current velocity. 

a


 : The inertia weighting function. 

kv


: the previous velocity. 

21,bb


: the cognitive and the social parameters, respectively. 

21, rr


:  random numbers uniformly distributed within [0, 1]. 

1p


: the best previous position of the k
th

 particle. 

2p


: the global best in the k
th

 swarm. 

1kx


: the current position. 

kx


: the previous position. 

The first part of equation (e) is the inertia velocity of 

particle, which reflects the memory behavior of particle; the 

second part is cognition part, which represents the private 
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thinking of the particle itself; the third part is the social part, 

which shows the particle‟s behavior system from the experience 

of other particles in the population.  The particles find the 

optimal solution by cooperation and competition among the 

particles.   

Using the above equation, a certain velocity, that gradually 

gets close to 1p


 and 2p


, can be calculated.  The position of 

each particle (searching point in the solution space) can be 

modified. 

 The cost function is defined as: 

maxmin
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Minimize F is equivalent to getting a maximum fitness 

value in the searching process.  The particle that has lower cost 

function should be assigned a larger fitness value.  The objective 

of OPF has to be changed to the maximization of fitness to be 

used as follows: 






otherwise;0

? if;/ maxmax FfFf
fitness     (g) 

The PSO algorithm applied to OPF can be described in the 

following steps: 

Step 1: Input parameters of system, and specify the lower and 

upper boundaries of each variable. 

Step 2: Initialize randomly the particles of the population. 

Step 3: Calculate the evaluation value of each particle using the 

objective function. 

Step 4: Calculate the fitness value of objective function of each 

particle using (6), 1p


 is set as the k
th

 particle‟s initial position; 

2p


 is set as the best one of 1p


, and the current evolution is t = 

1. 

Step 5: Initialize learning factor ,, 21 bb


 inertia weight a


 and 

the initial velocity 1v


 

Step 6: Modify the velocity v


 of each particle according to 

(e). 

Step 7: Modify the position of each particle.  If a particle 

violates its position limits in any dimension, set its position at 

the proper limits.  Calculate each particle‟s new fitness, if it is 

better than the previous 2p


, the current value is set to be 2P


. 

Step 8: To each particles of the population, employ the 

Newton-Raphson method to calculate power flow and the 

transmission loss. 

Step 9: Update the time counter t = t + 1. 

Step 10: If one of the stopping criteria is satisfied then go to step 

11. Otherwise go to step 7. 

Step 11: The particle that generates the latest 2p


 is the Pareto 

optimal value. 

DE Optimization Method 

Initialization 

The first step in the DE optimization process is to create an 

initial population of candidate solutions by assigning random 

values to each decision parameter of each individual of the 

population. Such values must lie inside the feasible bounds of 

the decision variable and can be generated. In case a preliminary 

solution is available, adding normally distributed random 

deviations to the nominal solution often generates the initial 

population. 

 

Flow Chart for PSO 
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i=1, 2,…….. Np,      j=1, 2,…….. D 

where Yj
min and

 Yj
max

 are respectively, the lower and upper bound 

of the j th j is a uniformly distributed 

random number within [0,1] generated anew for each value of j . 

Mutation 

After the population is initialized, this evolves through the 

operators of mutation, cross over and selection. For crossover 

and mutation different types of strategies are in use. Basic 

scheme is explained here elaborately. The mutation operator is 

in charge of introducing new parameters into the population. To 

achieve this, the mutation operator creates mutant vectors by 

perturbing a randomly selected vector (Ya) with the difference of 

two other randomly selected vectors (Yb and Yc) according Eq. 

(i). All of these vectors must be different from each other, 

requiring the population to be of at least four individuals to 

Start 

Initialize  particles with random 

position and velocity vectors  

For each particle  position (p) 

evaluate the fitness 

If fitness (p) is better than fitness  

0 (pbest) then Pbest = p 

Set best of pbest as gbest 

Update particle velocity and position 

If g best is the  

optimal solution 

end 

NO  

YES 
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satisfy this condition. To control the perturbation and improve 

convergence, the difference vector is scaled by a user defined 

constant in the range [0, 1.2]. This constant is commonly known 

as the scaling constant (S). 

)(
)()()()(' G

c

G

b

G

a

G

i YYSYY    i=1, 2,…….. Np          (i) 

where Ya, Yb and  Yc are randomly chosen vectors {i = 1, 

2,…….. Np} and a  

Ya, Yb and Yc are generated a new for each parent vector, S is 

the scaling constant. For certain problems, it is considered  

a = i. 

Crossover 

The crossover operator creates the trial vectors, which are 

used in the selection process. A trail vector is a combination of a 

mutant vector and a parent (target) vector based on different 

distributions like uniform distribution, binomial distribution; 

exponential distribution is generated in the range [0, 1] and 

compared against a user defined constant referred to as the 

crossover constant. If the value of the random number is less or 

equal than the value of the crossover constant, the parameter will 

come from the mutant vector, otherwise the parameter comes 

from the parent vector as given in Eq. (j). 

The crossover operation maintains diversity in the 

population, preventing local minima convergence. The crossover 

constant (CR) must be in the range of [0, 1]. A crossover 

constant of one means the trial vector will be composed entirely 

of mutant vector parameters. A crossover constant near zero 

results in more probability of having parameters from the target 

vector in the trial vector. A randomly chosen parameter from the 

mutant vector is always selected to ensure that the trail vector 

gets at least one parameter from the mutant vector even if the 

crossover constant is set to zero. 

Xi,j
”(G)  
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’
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(G)
      

’
j ≤ CR   or j=q 

                   X
’
i,j

(G)
     otherwise 

where i=1, 2,…….. Np,      j=1, 2,…….. D                 (j) 

q is a randomly chosen index { i=1, 2,…….. Np} that 

guarantees that the trial vector gets at least one parameter from 

the mutant vector; η j is a uniformly distributed random number 

within [0, 1) generated anew for each value of j. 
)(

,

G

jiX is the 

parent (target) vector, 
)('

,

G

jiX  the mutant vector and 
)"(

,

G

jiX  the 

trial vector. 

Selection 

The selection operator chooses the vectors that are going to 

compose the population in the next generation. This operator 

compares the fitness of the trial vector and fitness of the 

corresponding target vector, and selects the one that performs 

better.  

 

Yi
(G+1) 

=         Yi 
“(G)

      if    f (Y 
“(G)

) ≤  f (Y 
(G)

) 

                     Y
’
i
(G)

     otherwise 

 i=1, 2,…….. Np                      (k)   

The selection process is repeated for each pair of target/ trail 

vector until the population for the next generation is complete.  

Application of DE to OPF 

Differential Evolution has been applied to problems from 

several areas. Some power engineering problems have been 

solved with DE including: Distribution systems capacitors 

placement, harmonics voltage distribution reduction and passive 

shunt harmonic filter planning. DE has also been used in the 

design of filters, neural network learning, fuzzy logic 

application, and optimal control problems, among others.   

The objective function of OPF 

 


)( 2

1

igiigii

Ng

i

iCOST cPbPaFF $/Hr              (l) 

subjected to the constraints g(x,u) = 0, h(x,u) ≤ 0 where g is the 

equality constraints and represent typical load flow equations. h 

is the system operating constraints  

Dependent Variables 

X is the vector of dependent variables consisting of slack 

bus power  PG1, load bus voltages VL , generator reactive power 

outputs Q G, and transmission line loadings  Sl . Hence, X can be 

expressed as  

],,[ 1 lGLG

T SQVPX  

i.e., 

],....,,......,,....,[ 1111 lNllGNgGLNpqLG

T SSQQVVPX           (m) 

where Nl, Ng, Npq are number of load buses, number of 

generators, and number of transmission lines, respectively. 

Independent Variables 

U is the vector of independent variables consisting of 

generator voltages G V, generator real power outputs G P, 

except at the slack bus 1 G P , and transformer tap settings T. 

Hence, U can be expressed as  

U= [VG,PG,T]  

i.e., 

 u
T
 = [VG1,…………..VG Ng, PG2……… PG Ng, T1……….TNt]         (n) 

Initialization 

The first step in this algorithm is to create an initial 

population. All the independent variables [VG,PG, T] have to be 

generated according to formula (3), where each independent 

parameter of each individual in the population is assigned a 

value inside the given feasible region of the generator. This 

creates parent vectors of independent variables for the first 

generation. As they have created within their limits, they readily 

satisfy the corresponding inequality constraints. To find 

dependent variables X
T
= [PG1, VL, QG,Sl], corresponding to each 

individual, Newton-Raphson power flow solution is 

implemented. 

After getting all vectors corresponding to dependent 

variables, constraint-handling method of penalty functions is 

applied to handle the inequality constraints related to dependent 

variables. Penalty factors corresponding to each dependent 

variable of each individual in population have to be calculated. 

If they violate a limit whether lower or upper, difference of that 

value and corresponding limit violated was taken as penalty 

index and it is multiplied with a constant so as to match with 

basic objective function i.e., fuel cost.  

The penalty functions for slack bus power, voltages of load 

buses, line flows and reactive power generations are considered 

to calculate fitness of each population member. Fitness includes 

fuel cost function and also penalties corresponding to dependent 

variables. Inclusion of these penalties in fitness gives us a great 

opportunity to assign better fitness to that particular population 

member whose control parameters are within the operational 

limits in addition to minimum fuel cost  


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where 

Slack bus penalty → Spf 

Line flow penalty → Lfpf  

QG Penalty → Qgpf  

Voltage penalty → Vpf  

Differential Evolution Algorithm 

1. Like any other evolutionary algorithm, DE also starts with a 

population of NP D-dimensional search variable vectors. 

2. The subsequent generations in DE will be represented by 

discrete time steps like t = 0, 1, 2,..., t, t+1, etc. 

3. Since the vectors are likely to be changed over different 

generations, the following notation may be adopted for 

representing the i th vector of the population at the current 

generation (i.e. at time t =t )as  

Xi(t) =[xi,1(t), xi,2(t), ..., xi,D(t)] 

These vectors are referred to as „genomes‟ or „chromosomes‟. 

4. Several optimization parameters must also be tuned. All 

needed parameters have joined together under the common 

name control parameters, although, as a matter of fact, there are 

only three real control parameters in the algorithm, which are: 

(a) differentiation (or mutation) constant F, 

(b) crossover constant CR, and (c) size of population NP. 

Mathematical Formulation for Optimal Power Flow Model 

The mathematical formulation for OPF is based on the control 

variables and operating conditions (or) constraints. 

Control Variables 

(a) Generators active power outputs  

(b) Generator bus voltages  

(c) Controllable reactive compensation elements 

(d) Transformer tap positions. 

Constraints 

Equality Constraints 

The equality constraints are the active and reactive power 

balance equations at all the bus bars in each and every bus which 

are itself the load flow equations. 

Inequality Constraints 

The equality constraints are basically operating limits and 

physical limits of each equipment.  That is active and reactive 

power limits, lines and transformers, transmission reactive 

power injection limits in the controlling tension bars and 

injection of active power in the reference bar. 

 
Figure 3: IEEE 30 bus test system 

Model Formulation  

Parameters 

NG   

i, j   

PGi  

QGi  ed reactive power output at bus i. 

ai, bi, ci 
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 generator. 
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power outputs at the bus i. 
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i
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reactive power outputs at the bus i. 
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Ti  ransformer tap settings at bus i. 
max
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i T,T          

setting at the bus i. 

 

QCi 

compensation at the bus i. 
max

i

min

i QC,QC  

compensation at the bus i. 

NL   

PDi   

QDi   

Min  




NG

1i

2

iiiii )PGcPGb(a  

Subject to 

NGi.......2,PDPG)θsinbθcos(gvv ii

NG

1j

ijijijijji 


         (1)                                                                                                         

NGnpvi ....1,QDQG)θcosbθsin(gvv ii

NG

1j

ijijijijji 


   (2)  

NG1,...,i,VGVGVG max

ii

min

i         (3) 

NG1,...,i,PGPGPG max

ii

min

i        (4) 

NG1,...,i,QGQGQG max

ii

min

i        (5) 

NT1,...,i,TTT max

ii

min

i          (6) 

NC1,...,i,QCQCQC max

ii

min

i         (7) 

Solution Methodology 

Lagrangian Relaxation Method 

Relaxing Equations (1) and (2), 

]QD[QGμ]PD[PGλ)PGcPGb(a

]μ,λ,QD,PD,QG,L[PG

iiiiii

NG

1i

2

iiiii

iiiiii




 

Subject to 

NG1,...,i,VGVGVG max

ii

min

i             (3) 

NG1,...,i,PGPGPG max

ii

min

i             (4) 

NG1,...,i,QGQGQG max

ii

min

i             (5) 

NT1,...,i,TTT max

ii

min

i              (6) 

NC1,...,i,QCQCQC max

ii

min

i             (7) 

Lagrangian Relaxation replaces the original problem with 

an associated Lagrangian problem whose optimal solution 

provides a bound on the objective function of the problem. This 

is achieved by eliminating (relaxing one or more) constraints of 
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the original model and adding these constraints, multiplied by an 

associated Lagrangian multiplier in the objective function.  

The main objective of this method is to relax the constraints 

that will result in a relaxed problem. When it gives the values of 

multipliers, it is much easier to solve optimally. The role of 

these multipliers is to derive the Lagrangian problem towards a 

solution that satisfies the relaxed constraints. 

The Lagrangian relaxation approach replaces the problem of 

identifying the optimal values of all the decision variables with 

one of finding optimal or good values for the Lagrangian 

multipliers.  Most Lagrangian-based heuristics use a search 

heuristic to identify the optimal multipliers .  A major benefit of 

Lagrangian-based heuristics is that they generate bounds (i.e., 

lower bounds on minimization problems and upper bounds on 

maximization problems) on the value of the optimal solution of 

the original problem.  For any set of values for the Lagrangian 

multipliers, the solution to the Lagangian model is less than or 

equal to the solution to the original model.  Therefore, the 

Lagrangian solution is a lower bound on the solution to the 

original problem. 

The solution to the Lagrangian problem for any given 

values of the Lagrangian multipliers will generally violate one or 

more of the relaxed constraints.  Many Lagrangian based 

algorithms incorporate additional heuristics to convert these 

infeasible solutions to feasible ones.  In this way, the researchers 

can produce good solutions to the original model.  The best 

feasible solution among those found by the procedure at any 

point, represents the upper bound on the value of the true 

optimal solution.  The difference between the upper and lower 

bounds is referred to as the “gap”.  If the gap reaches zero (or 

some minimum value based on the integer properties of the 

model) then the optimal solution should be found.  Otherwise, 

when the gap gets sufficiently small (e.g. less than 1%), the 

analyst may stop the procedure and be satisfied that the current 

best solution is within 1% of optimality. The general application 

of Lagrangian relaxation can be found in Fisher (1985).  An 

exposition of its use in location models is in the text by Daskin 

(1995). The proposed methodology has relaxed the power flow 

equations with respect to active power and reactive power. The 

Lagrangian function for OPF is minimize the total generation 

cost. 

Conclusion 

A Quadratic Programming (QP) model is designed for 

optimal power flow which can be decomposed by Lagrangian 

Relaxation Method.  The solution of OPF is obtained to 

minimize the real power generation cost using Lagrangian 

relaxation method.  The proposed methodology gives the 

appropriate power schedule for the operation of power system 

by minimizing the  electrical losses in the system. 
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