
Krishna Kumar et al./ Elixir Appl. Math. 38 (2011) 4418-4422

4418

Introduction

Methods of attack on hash functions

The large number of possible attacks will be classified in

five types:

1. attacks independent of the algorithm,

2. attacks dependent on the chaining,

3. attacks dependent on an interaction with the signature

scheme,

4. attacks dependent on the underlying block cipher,

5. high level attacks.

One can make a distinction between the following cases,

depending whether the value of IV is different from the

specified value:

Preimage: here an attacker tries to find a preimage for a given

hashcode.

Second preimage: here an attacker tries to find a second

preimage for a given hashcode.

Pseudo-preimage: here an attacker tries to find a preimage for a

Second pseudo-preimage: here an attacker tries to find a second

case will not be discussed in the following).

Collision: here an attacker tries to find a collision.

Collision for different IV: here an attacker tries to find a

coll

Pseudo-collision: here an attacker tries to find for some IV/ and

IV// a pair X/, X//, such that hIV/(X/) = hIV//(X//).

It is clear from the definitions that finding a pseudo-

collision can be not harder than finding a pseudo-preimage, and

that finding a collision can be not harder than finding a (second)

preimage. A similar taxonomy was suggested in [1], but they

make no distinction between second preimage and preimage.

Their terminology for second (pseudo-) preimage is “(free-start)

target attack”, and the two last collision attacks are called “semi-

free-start” respectively “free-start collision attack”.

For a MAC the situation is more complicated. The proposed

taxonomy is equivalent to the taxonomy of [2] for digital

signature schemes. Depending on the information available to an

attacker, the following types of attacks are distinguished:

Known plaintext attack: here an attacker is able to examine

some plaintexts and their corresponding MAC.

Chosen plaintext attack: here an attacker is able to select a set of

plaintexts, and subsequently he will obtain a list of MAC‟s

corresponding to these plaintexts.

Adaptive chosen plaintext attack: this is the most general attack

where an attacker will choose a plaintext and immediately

receive the corresponding MAC: the choice of a plaintext can

depend on the outcome of previous questions.

“Breaking” a MAC can have different meanings:

Total break: this means that an attacker can determine the secret

key K.

Universal forgery: in this case an attacker can find an algorithm

that is functionally equivalent to the MAC evaluation algorithm.

Selective forgery: here an attacker can determine the correct

MAC for a particular plaintext chosen a priori by him.

Existential forgery: here an attacker can determine the MAC

for at least one plaintext. As he has no control over this

plaintext, it may be random or nonsensical.

An evaluation of a scheme for message authentication or a

digital signature strongly depends on the information at the

disposal of an adversary, the actions he can undertake and

finally on the consequences of both a successful and an

unsuccessful attack. In general, a conservative approach is

recommended. This implies that one assumes that a MAC will

be considered to be broken if an attacker can commit an

existential forgery based on an adaptive chosen message attack

with the only restriction on the number of plaintexts coming

from limited storage and computation capacities.

Attacks independent of the algorithm

This class of attacks depends only on the size of the

hashcode n and the size of the secret key k (for a MAC), and is

independent of the nature of the algorithm. It is assumed that the

hashcode is a uniformly distributed and independent random

variable: if this is not the case this class of attacks will be even

more successful.

Random attack

The opponent selects a random message and hopes that the

change will remain undetected. If the hash function has the

required random behavior, his probability of success equals 1/2
n

Tele:

E-mail addresses:
 © 2011 Elixir All rights reserved

Several types of defined attacks on cryptographic hash function
C. Krishna Kumar and G. Jai Arul Jose

Sathyabama University, Chennai.

ABS TRACT

Hash functions, also called message digests and one-way encryption, are algorithms that, in

some sense, use no key. Instead, a fixed-length hash value is computed based upon the

plaintext that makes it impossible for either the contents or length of the plaintext to be

recovered. Hash algorithms are typically used to provide a digital fingerprint of a file's

contents, often used to ensure that the file has not been altered by an intruder or virus. Hash

functions are also commonly employed by many operating systems to encrypt passwords.

Hash functions, then, provide a measure of the integrity of a file. The goal of this paper is to

give an overview of the known methods of attack on hash functions.

 © 2011 Elixir All rights reserved.

ARTICLE INFO

Article his tory:

Received: 22 August 2011;

Received in revised form:

26 August 2011;

Accepted: 31 August 2011;

Keywor ds

Hash functions,

Plaintext attack,

Preimage.

Elixir Appl. Math. 38 (2011) 4418-4422

Applied Mathematics

Available online at www.elixirpublishers.com (Elixir International Journal)

Krishna Kumar et al./ Elixir Appl. Math. 38 (2011) 4418-4422

4419

with n the number of bits of the hashcode. A major difference

between a MAC and an MDC is that for a MAC the attack has to

be carried out on-line, and hence the attack depends on two

elements:

• The number of trials T that can be carried out, which depends

on the speed of the implementation and on the time an attacker

has access to the system with the key in place. The number of

trials can be limited by undertaking a special action (e.g.,

perform manual verifications) if the number of erroneous results

exceeds a certain threshold. An example where a large number

of trials is possible, is the control of a satellite authenticated by a

MAC.

• The expected value V of a successful attack. In wholesale

banking this can be on the order of 100 million $ or even more.

The expected value of an attack equals then T · V/2
n
. If the

number of trials can be limited, or if the expected value is

limited like in retail banking, a value of n = 32 is sufficient.

However, for most applications it is recommended that the size

of the hashcode is at least 64 bits. For an MDC the attack can be

carried out off-line and in parallel. This means that the length of

the hashcode n should be at least 64 bits. If a significant number

of messages can be attacked at the same time, it is advisable to

select a larger value of n. In section 2.4.1 it has been shown that

finding a preimage for long messages is easier, unless the length

of the message is included in the padding.

Exhaustive key search

An exhaustive search for a key is only applicable to a MAC.

It is a known plaintext attack, where an attacker knows M

plaintext-MAC pairs for a given key. He will precompute the

MAC for every possible key in order to eliminate wrong keys.

The size of the key space is equal to k bits, and the expected

number of keys that remain will be denoted with Kexp. If M is

sufficiently large, it is possible to determine the key uniquely or

Kexp  1. The relation between Kexp, M and n can be

determined [3] under the assumption that the MAC is a random

mapping, and that no key clustering occurs, i.e., that there are no

equivalent keys. For the correct key, an attacker will perform M

MAC calculations, while for a bad key the probability that

exactly i trials are performed is equal to

The expected number of trials is given by the following

expression:

The total number of trials to identify the key is upper bounded

by

and the number of keys that remains is expected to be

This means that the number of plaintext-MAC pairs to

determine the key uniquely is slightly larger than k/n. After the

birthday attack it will be discussed how large k has to be in order

to offer sufficient security for the next decades.

Birthday attack

The idea behind this attack is that for a group of 23 people

the probability that at least two people have a common birthday

exceeds 1/2 [4] . Because this number of people is significantly

smaller than what one would expect, this has also been called

the “birthday paradox”. For some applications a related problem

is relevant: if two groups of people have 17 persons each, the

probability that two people in the two different groups have a

common birthday will also exceed 1/2. Note that these results

assume that birthdays are randomly distributed over the year; as

this is not the case the probability will be even higher. This can

be generalized as follows. If two samples of size r1 and r2 are

drawn from a set of n elements, and if r1r2 = n with r1, r2 =

O(n), then the probability of a match equals 1 − 1/e or 63%.

Note that if the attacker is unlucky, it is sufficient to increase the

size of r1 and r2 slightly, which will increase the success

probability significantly. If r1 +r2 has to be minimized, one can

show that this corresponds to r1 = r2 = n. This explains why

attacks based on this property have also been called “square

root” attacks. For a more detailed discussion of the probabilities

the reader is referred to appendix B. The first attack based on

this property was proposed by G. Yuval [5]. He showed how to

attack a digital signature scheme of Rabin [6], more in particular

he shows that it is easier to construct collisions for a one-way

function than to find a preimage of a given element in the range.

A collision can be produced in the following way.

• The adversary generates r1 variations on a bogus message and

r2 variations on a genuine message. This is very easy, even if r1

and r2 are large: it is sufficient to have log2(r1) respectively

log2(r2) positions where one has two alternatives or synonyms.

If r1 = r2 = r = n the probability of the existence of a match

will be 63%. Note that in case of a MAC the opponent is unable

to generate the MAC of a message. He could however obtain

these MAC‟s with a chosen plaintext attack. A second

possibility is that he collects a large number of messages and

corresponding MAC‟s and divides them in two categories,

which corresponds to a known plaintext attack.

The search for a match does not require r2 operations: after

sorting the data, which requires O(r log r) operations,

comparison is easy.

An algorithmic improvement has been the collision search

algorithm proposed by J.-J. Quisquater [7, 8]. It is based on

Pollard‟s _-method for finding cycles [9] in periodic functions

on a finite domain. It eliminates almost completely the storage

requirements if the attacker is able to call the function (it does

not work if a match has to be found in stored data). If a MAC is

attacked this corresponds to an adaptive chosen text attack. The

basic idea is that if a random mapping is iterated (the output is

fed back to the input), it will arrive after a tail with length λ into

a cycle with period μ. At the point where the tail enters the cycle

(the point of contact), one has found two values x and x̀ such

that f(x) = f(x̀). A graphical representation of this process will

correspond to the Greek letter ρ. The storage requirements can

be reduced to a negligible quantity by only storing points with

specific characteristics (distinguished points). The expected

number of function evaluations is equal to ρ = λ + µ =

(for a proof, see [10]). This result is

also applicable to several other attacks: it is possible to produce

pseudo-collisions for a single iteration step or collisions with

initial values chosen from a small set. Other extensions will be

discussed in the rest of this section.

 Feasibility An important problem is to decide which

computations should be considered feasible for the time being

and within 10 and 20 years from now. This discussion is

partially based on [11]. In terms of computations, one can start

from the following facts (mid 1992):

Krishna Kumar et al./ Elixir Appl. Math. 38 (2011) 4418-4422

4420

• a single PC or workstation is able to perform a function

evaluation in about 25 μsec, which corresponds to 2
40

 function

evaluations per year,

• a supercomputer like the Cray-3 or the Cray Y-MP C90 (both

with 16 processors) is capable of performing 16 Gigaflops on

64-bit words [12, 13]. If one function evaluation takes 64

operations, this corresponds to 2
52

 function evaluations per year.

Based on the observation that the speed of computers is

multiplied by four every three years this means that 21 years

from now (which seems a reasonable time scale for a number of

applications) a single super computer will be able to perform 2
66

function evaluations per year. It will require 4096 simple

processors to perform the same number of operations. However,

it can be expected that in the near future even inexpensive

computers will have many processors built in, as increasing the

number of processors is the most effective way to increase the

computational power without excessive increase of the cost

(economy of scale) [13]. Hence it is realistic to assume that this

computing power will be available in any small size

organization. It can be shown that many problems in

cryptanalysis can be easily adapted to such a distributed

environment [14]: it are probably the applications that will

achieve the highest performance on massive parallel machines.

These predictions can be extended to dedicated cryptanalytic

hardware, if one accepts the assumption that hardware will

remain about two orders of magnitude faster. This corresponds

to a factor of 2
6
 . . . 2

7
. The disadvantage of dedicated hardware

is the higher cost.

For memory requirements, the situation is more complex, as

the size of the available memory depends on the access time

[15]. Moreover the access time to memory decreases much

slower than the cycle time of the processor, and this can be

solved only partially by using cache memories. An efficient

attack will balance the use of different types of memories such

that the access times are comparable to the calculations that have

to be done in between. An example of such an attack using one

central hardware board that is connected to a large number of

PC‟s with a few Megabytes of memory has been described in

[16]. Predictions can be based on the observation that memory

devices increase in capacity by a factor of four every three years.

Today‟s supercomputers have a main memory of up to 32

Gigabytes, a disk capacity of 50−100 Gigabytes and a high-

performance mass storage system of 200 Gigabytes [13]. For

storage with still slower access, like tapes, capacity in the order

of several Terabytes is currently available, and in the next

decade this will become Pentabytes. The memory available in

workstations is much smaller. Fast cache memories have

currently a capacity between 256 and 512 Kbytes. For dynamic

RAMs, 4 Mbit chips are currently in mass production, which

means that main memory of 32 Megabytes is becoming the

standard in workstations. For disk storage, 1 Gigabyte can be

considered state of the art.

One can conclude that for attacks that require no storage, a

size of 128 bits corresponding to 2
64

 operations is sufficient for

the next 10 years, but it will be only marginally secure within 20

years. One can predict that a storage of about 64 Gigabytes with

an acceptable access time will be available on a single

workstation within 10 years. If one has 1024 machines of this

type available, this amounts to 64 Terabytes. With this

constraint, attacking a 64-bit hashcode requires only 2
21

operations, but

probably the access time to the memory would be dominant. For

a 96-bit hashcode this amounts to 2
54

 operations corresponding

to a few years on these machines, and to a few months if

dedicated hardware is available for the computations. For a 128-

bit hashcode this would require 2
86

 operations, which is

probably not realistic for the next 20 years (in fact the storage

capacity will be a factor 64 larger by then, which yields 2
80

operations). It is clear that a hashcode of 160 bits offers a

sufficient security level for 20 years or more.

Attacks dependent on the chaining

This class of attacks depends on some high level properties

of the elementary function f.

Meet in the middle attack

 This attack is a variation on the birthday attack, but instead

of the hashcode, intermediate chaining variables are compared.

The attack enables an opponent to construct a message with

a prespecified hashcode, which is not possible in case of a

simple birthday attack. Hence it also applies to a OWHF. The

opponent generates r1 variations on the first part of a bogus

message and r2 variations on the last part. Starting from the

initial value and going backwards from the hashcode, the

probability for a matching intermediate variable is given by the

same formula. The only restriction that applies to the meeting

point is that it can not be the first or last value of the chaining

variable. The probability to find a match as a function of r1 and

r2 is described in appendix B. The cycle finding algorithm by J.-

J. Quisquater can be extended to perform a meet in the middle

attack with negligible storage [7, 11]. The attack can be thwarted

by avoiding functions f that are invertible to the chaining

variable Hi−1 and to the message Xi (cf. section 2.4.2 and 2.4.3).

Constrained meet in the middle attack

This type of attack is based on the same principles as the

meet in the middle attack, but it takes into account certain

constraints that have to be imposed on the solution. Examples of

restrictions are that the sum modulo 2 of all blocks should be

constant, or that a block of the CBC encryption of the solution

with a given initial value and key should take a prespecified

value.

Generalized meet in the middle attack

This attack was extended [17, 18] to break the p-fold

iterated schemes. In these schemes the message is repeated p

times or p hash values are computed corresponding to p initial

values. With the extended attack, breaking these schemes does

not require but only operations. The size of

the message in this construction is 2 · 10
p−1

 blocks. Modest

trade-offs between time, storage, size of the message and

processing are possible.

Correcting block attack

This attack consists of substituting all blocks of the message

except for some block Xj . This block is then calculated such

that the hashcode takes a certain value, which makes it also

suitable to attack a OWHF. It often applies to the last block and

is then called a correcting last block attack, but it can also apply

to the first block or to some blocks in the middle. The hash

functions based on modular arithmetic are especially sensitive to

this attack.

A correcting block attack can also be used to produce a

collision. One starts with two arbitrary messages X and X` and

appends one or more correcting blocks denoted with Y and Y`,

such that the extended messages X||Y and X`||Y` have the same

hashcode.

Krishna Kumar et al./ Elixir Appl. Math. 38 (2011) 4418-4422

4421

One can try to thwart a correcting block attack by adding

redundancy to the message blocks, in such a way that it becomes

computationally infeasible to find a correcting block with the

necessary redundancy. The price paid for this solution is a

degradation of the performance.

Fixed point attack

The idea of this attack is to look for a Hi−1 and Xi such that

f(Xi,Hi−1) = Hi−1. If the chaining variable is equal to Hi−1, it is

possible to insert an arbitrary number of blocks equal to Xi

without modifying the hashcode. Producing collisions or a

second preimage with this attack is only possible if the chaining

variable can be made equal to Hi−1: this is the case if IV can be

chosen equal to a specific value, or if a large number of fixed

points can be constructed (if e.g., one can find an Xi for every

Hi−1). Of course this attack can be extended to fixed points that

occur after a number of steps. This attack can be prevented

easily: one can append a block count to the data or one can (fo r

theoretical constructions) encode the data with a prefix-free code

[19].

Key collisions

 This type of attack can only be applied to hash functions

based on block ciphers. If the chaining mode is poorly designed,

attacks can be launched based on key collisions. A key collision

is a pair of keys K1, K2 such that E(K1, P) = E(K2, P) for a

plaintext P. The number of collisions for a given plaintext can be

obtained from theorem B.2. In the case of DES [8, 108], with a

block length of 64 bits and a key size of 56 bits, the number of

k-fold collisions for a given P is indicated in table 2.2. Key

collisions can be constructed with an ordinary birthday attack,

but J.-J. Quisquater has shown how the efficient cycle

algorithms combined with the method of the distingu ished

points can produce a collision in about 233 operations and with

negligible storage.
K 2 3 4 5 6 7

47.0 37.4 27.4 17.1 6.5 -4.3

Table 2.2: Binary logarithm of the expected number of k-

fold key collisions for a given plaintext in the case of DES .

An important observation is that doubling the number of

operations yields a squaring of the number of different

collisions.

The attack can be extended to the case of double encryption.

In this case a key collision consists of two pairs of keys (K
1
,K

2
)

and (K`1 ,K`2) (with Ki≠ K`i) such that

E(K2,E(K1, P)) = E(K`2 ,E(K`1, P)) .

It is also possible to produce a single key pair such that

E(K2,E(K1, P)) = C for a given plaintext P and ciphertext C.

The collision search is feasible for any block cipher that

behaves as a random mapping if the key size is significantly

smaller than 128, but a good design of the hash function can

make the collisions useless. There is however no easy way to

guarantee this, and every scheme has to be verified for this

attack.

Differential attacks

Differential cryptanalysis is based on the study of the

relation between input and output differences and is applicable

to both block ciphers and hash functions. The attack is statistical

as one searches for input differences that are likely to cause a

certain output difference. If one is looking for collisions this

output difference should be equal to zero. In case of hash

functions based on block ciphers, the situation is slightly

different: depending on the mode one requires that the output

difference is zero or that the output difference is equal to the

input difference (in case of feed forward of the plaintext). It

applies only to iterated ciphers that satisfy particular conditions,

the so-called Markov ciphers. It turns out that most known

iterated ciphers are of this nature. For well designed block

ciphers this attack will find the key based on a large number of

plaintexts with a chosen difference, or an even larger number of

known plaintexts. One can remark that this class of attacks is in

fact more natural in case of an MDC, where there is no secret

information. A chosen message attack is the standard way of

attacking an MDC, and in this case all calculations can be

performed off-line and in parallel.

Analytical weaknesses

Some schemes allow manipulations like insertion, deletion,

permutation and substitutions of blocks. A large number of

attacks have been based on a blocking of the diffusion of the

data input: this means that changes have no effect or can be

cancelled out easily in a next stage. This type of attacks has been

successful for dedicated hash functions and for hash functions

based on modular arithmetic.

Attacks dependent on an interaction with the signature

scheme

In some cases it is possible that even if the hash function is

a CRHF, it is possible to break the signature scheme. This attack

is then the consequence of a dangerous interaction between both

schemes. In the known examples of such an interaction both the

hash function and the signature scheme have some

multiplicative structure.

Attacks dependent on the underlying block cipher

Certain weaknesses of a block cipher are not significant

when it is used to protect the privacy, but can have dramatic

consequences if the cipher is used in one of the special modes

for hashing. These weaknesses can be exploited to insert special

messages or to carry out well chosen manipulations without

changing the hashcode.

Complementation property

One of the first properties that was known of DES was the

symmetry under complementation:

It can reduce an exhaustive key search by a factor 2 but it

also allows to construct trivial collisions.

Weak keys

Another well known property of DES is the existence of 4

weak keys. For these keys, encryption equals decryption, or

DES is an involution. These keys are also called palindromic

keys. This means that E(K,E(K, P)) = P,  P. There exist also 6

pairs of semi-weak keys, for which E(K2,E(K1, P)) = P,  P.

This property can be exploited in certain hash functions to

construct fixed points after two iterations steps. Compared to

DES, LOKI had more weak keys, but LOKI91 has the same

number of weak and semi-weak keys.

It was remarked by B. den Boer that a similar property

holds for PES and IDEA: for the all zero key the cipher is an

involution.

Fixed points

Fixed points of a block cipher are plaintexts that are mapped

to themselves for a certain key. As a secure block cipher is a

random permutation, it will probably have fixed points (for

every key there is a probability of 1−e
−1

 that there is at least a

single fixed point). However, it should be hard to find these.

Under some conditions it is easy to produce fixed points:

• For DES, this can be done based on a property of the weak

keys: for every weak key Kp, there exist 2
32

 values of P that can

Krishna Kumar et al./ Elixir Appl. Math. 38 (2011) 4418-4422

4422

be easily found for which DES(Kp, P) = P. A similar property

holds for the anti-palindromic keys: these are 4 semi-weak keys

for which there exist 232 values of P that can be easily found for

which DES(Kap, P) =P.

• The block cipher LOKI has 256 simple fixed points where the

key is of the special form gggggggghhhhhhhhx, and the plaintext

is equal to iiiiiiiiiiiiiiiix, with i = g  h [22]. Here g, h and i are

4-bit numbers in hexadecimal notation. For every weak key

there exist 2
32

 fixed points.

High level attacks

Even if the above attacks would not be feasible, special care

has to be taken to avoid replay of messages and construction of

valid messages by combining others. For authentication of

transmitted messages, attacks at this level can be thwarted by

adding a nonce, this is a quantity that is never transmitted twice

in a given context, and through the use of sound cryptographic

protocols. It is essential to authenticate the integrity of the

nonces together with the message.

Timestamps: the date and time of the moment at which the

message is sent. If the resolution of the time is sufficiently high,

it will provide a unique identifier of the message. For a

resolution of one second, 5 to 6 bytes are sufficient. The two

main problems are the cost of maintaining reasonably well

synchronized clocks at both ends of the communication line and

of delays in communication channels.

Serial numbers: a unique number is assigned to every

message. A size of 4 bytes should be sufficient for most

applications, depending on the lifetime of the key. If every user

keeps a different sequence number for every user he

communicates with, the serial numbers should be consecutive,

and the deletion of a message can be detected. If every user has

only one sequence number for all his communications, one has

to check that the serial numbers form an increasing sequence.

This is only possible if every user stores the highest sequence

number of every communication. This system does not allow for

checking for deleted messages. A serial number is less

expensive than a time s tamp, but the timeliness of the

information can not be checked. This should be no problem for

applications like electronic mail.

Random numbers: a sufficiently long random number is

added to the message. To thwart a birthday attack on the

number, it has to be larger than the square of the maximal

number of messages that will be sent with a key. For most

applications this means a size of about 8 bytes. A random

number is not very useful if all previous random numbers have

to be stored to detect a replay. However, if the random number

is used in the next step of the protocol, it can offer an adequate

protection.

 In the case of stored information, a „replay‟ attack becomes

a „restore‟ attack. The serial numbers have to be replaced by

version numbers, and a separate file is necessary that contains a

single date and time stamp and for every file the current version

number. If rearrangements of units that are protected by a

different MAC is a problem, the address in the memory space

can be protected together with the stored information.

Conclusion

In this paper several types of cryptographic hash functions

have been defined, with the emphasis on the system based or

practical approach. It has been shown how cryptographic hash

functions provide an efficient way to protect integrity and to

speed up digital signatures. A general model has been

introduced that allows for a compact description of iterated hash

functions and attacks.

References

1) X. Lai and J.L. Massey, “Hash functions based on block

ciphers,” Advances in Cryptology, Proc. Eurocrypt‟92, LNCS

658, R.A. Rueppel, Ed., Springer-Verlag, 1993, pp. 55–70.

2) S. Goldwasser, S. Micali, and R.L. Rivest, “A digital signature

scheme secure against adaptive chosen-message attacks,” SIAM

Journal on Computing, Vol. 17, No. 2, 1988, pp. 281-308.

3) M. Nuttin, “Cryptanalyse van het DES Algoritme in de CFB

Mode (Cryptanalysis of the CFB Mode of the DES – in Dutch),”

ESAT Laboratorium, Katholieke Universiteit Leuven, Thesis

grad. eng.,1992.

4) W. Feller, “An Introduction to Probability Theory and Its

Applications, Vol. 1,”Wiley, 1968.

5) G. Yuval, “How to swindle Rabin,” Cryptologia, Vol. 3, 1979,

pp. 187–189.

6) M.O. Rabin, “Digitalized signatures,” in “Foundations of

Secure Computation,”R. Lipton and R. DeMillo, Eds., Academic

Press, New York, 1978, pp. 155-166.

7) J.-J. Quisquater and J.-P. Delescaille, “How easy is collision

search? Application to DES,” Advances in Cryptology, Proc.

Eurocrypt‟89, LNCS 434, J.-J. Quisquater and J. Vandewalle,

Eds., Springer-Verlag, 1990, pp. 429–434.

8) J.-J. Quisquater and J.-P. Delescaille, “How easy is collision

search. New results and applications to DES,” Advances in

Cryptology, Proc. Crypto‟89, LNCS 435, G. Brassard, Ed.,

Springer-Verlag, 1990, pp. 408–413.

9) R. Sedgewick, T.G. Szymanski, and A.C. Yao, “The

complexity of finding cycles in periodic functions,” SIAM

Journal Comput., Vol. 11, No. 2, 1982, pp. 376–390.

10) P. Flajolet and A.M. Odlyzko, “Random mapping

statistics,” Advances in Cryptology, Proc. Eurocrypt‟89, LNCS

434, J.-J. Quisquater and J. Vandewalle, Eds., Springer-Verlag,

1990, pp. 329–354.

11) J.-J. Quisquater, “Collisions,” E.I.S.S. Workshop on

Cryptographic Hash Functions, Oberwolfach (D), March 25-27,

1992.

12) G. Zorpette, “Large computers,” IEEE Spectrum, Vol. 29,

No. 1, 1992, pp. 33-35.

13) G. Zorpette (Ed.), “Special issue on supercomputing,” IEEE

Spectrum, Vol. 29, No. 9, 1992, pp. 26–76.

14) J.-J. Quisquater and Y. Desmedt, “Chinese lotto as an

exhaustive code-breaking machine,” Computer, November

1991, pp. 14-22.

15) W.E. Proebster, “The evolution of data memory and

storage: an overview,” in “Computer Systems and Software

Engineering,” P. Dewilde and J. Vandewalle, Eds., Kluwer

Academic Publishers, 1992, pp. 1–23.

16) R.R. Jueneman, “A high speed Manipulation Detection

Code,” Advances in Cryptology, Proc. Crypto‟86, LNCS 263,

A.M. Odlyzko, Ed., Springer-Verlag, 1987, pp. 327–347.

17) D. Coppersmith, “Another birthday attack,” Advances in

Cryptology, Proc. Crypto‟85, LNCS 218, H.C. Williams, Ed.,

Springer-Verlag, 1985, pp. 14–17.

18) M. Girault, R. Cohen, and M. Campana, “A generalized

birthday attack,”Advances in Cryptology, Proc. Eurocrypt‟88,

LNCS 330, C.G. G¨unther, Ed., Springer-Verlag, 1988, pp. 129–

156.

19) I.B. Damg°ard, “A design principle for hash functions,”

Advances in Cryptology, Proc. Crypto‟89, LNCS 435, G.

Brassard, Ed., Springer-Verlag, 1990, pp. 416–427.

