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Introduction  

Methods of attack on hash functions 

The large number of possible attacks will be classified in 

five types: 

1. attacks independent of the algorithm, 

2. attacks dependent on the chaining, 

3. attacks dependent on an interaction with the   signature 

scheme, 

4. attacks dependent on the underlying block cipher, 

5. high level attacks. 

One can make a distinction between the following cases, 

depending whether the value of IV is different from the 

specified value: 

Preimage: here an attacker tries to find a preimage for a given 

hashcode. 

Second preimage: here an attacker tries to find a second 

preimage for a given hashcode. 

Pseudo-preimage: here an attacker tries to find a preimage for a 

 

Second pseudo-preimage: here an attacker tries to find a second 

case will not be discussed in the following). 

Collision: here an attacker tries to find a collision. 

Collision for different IV: here an attacker tries to find a 

coll  

Pseudo-collision: here an attacker tries to find for some IV/ and 

IV// a pair X/, X//, such that hIV/(X/) = hIV//(X//). 

It is clear from the definitions that finding a pseudo-

collision can be not harder than finding a pseudo-preimage, and 

that finding a collision can be not harder than finding a (second) 

preimage. A similar taxonomy was suggested in [1], but they 

make no distinction between second preimage and preimage. 

Their terminology for second (pseudo-) preimage is “(free-start) 

target attack”, and the two last collision attacks are called “semi-

free-start” respectively “free-start collision attack”. 

For a MAC the situation is more complicated. The proposed 

taxonomy is equivalent to the taxonomy of [2] for digital 

signature schemes. Depending on the information available to an 

attacker, the following types of attacks are distinguished: 

Known plaintext attack: here an attacker is able to examine 

some plaintexts and their corresponding MAC. 

Chosen plaintext attack: here an attacker is able to select a set of 

plaintexts, and subsequently he will obtain a list of MAC‟s 

corresponding to these plaintexts. 

Adaptive chosen plaintext attack: this is the most general attack 

where an attacker will choose a plaintext and immediately 

receive the corresponding MAC: the choice of a plaintext can 

depend on the outcome of previous questions. 

“Breaking” a MAC can have different meanings: 

Total break: this means that an attacker can determine the secret 

key K. 

Universal forgery: in this case an attacker can find an algorithm 

that is functionally equivalent to the MAC evaluation algorithm. 

Selective forgery: here an attacker can determine the correct 

MAC for a particular plaintext chosen a priori by him. 

Existential forgery: here an attacker can determine the MAC 

for at least one plaintext. As he has no control over this 

plaintext, it may be random or nonsensical. 

An evaluation of a scheme for message authentication or a 

digital signature strongly depends on the information at the 

disposal of an adversary, the actions he can undertake and 

finally on the consequences of both a successful and an 

unsuccessful attack. In general, a conservative approach is 

recommended. This implies that one assumes that a MAC will 

be considered to be broken if an attacker can commit an 

existential forgery based on an adaptive chosen message attack 

with the only restriction on the number of plaintexts coming 

from limited storage and computation capacities. 

Attacks independent of the algorithm 

This class of attacks depends only on the size of the 

hashcode n and the size of the secret key k (for a MAC), and is 

independent of the nature of the algorithm. It is assumed that the 

hashcode is a uniformly distributed and independent random 

variable: if this is not the case this class of attacks will be even 

more successful. 

Random attack 

The opponent selects a random message and hopes that the 

change will remain undetected. If the hash function has the 

required random behavior, his probability of success equals 1/2
n
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with n the number of bits of the hashcode. A major difference 

between a MAC and an MDC is that for a MAC the attack has to 

be carried out on-line, and hence the attack depends on two 

elements: 

• The number of trials T that can be carried out, which depends 

on the speed of the implementation and on the time an attacker 

has access to the system with the key in place. The number of 

trials can be limited by undertaking a special action (e.g., 

perform manual verifications) if the number of erroneous results 

exceeds a certain threshold. An example where a large number 

of trials is possible, is the control of a satellite authenticated by a 

MAC. 

• The expected value V of a successful attack. In wholesale 

banking this can be on the order of 100 million $ or even more. 

The expected value of an attack equals then T · V/2
n
. If the 

number of trials can be limited, or if the expected value is 

limited like in retail banking, a value of n = 32 is sufficient. 

However, for most applications it is recommended that the size 

of the hashcode is at least 64 bits. For an MDC the attack can be 

carried out off-line and in parallel. This means that the length of 

the hashcode n should be at least 64 bits. If a significant number 

of messages can be attacked at the same time, it is advisable to 

select a larger value of n. In section 2.4.1 it has been shown that 

finding a preimage for long messages is easier, unless the length 

of the message is included in the padding.  

Exhaustive key search 

An exhaustive search for a key is only applicable to a MAC. 

It is a known plaintext attack, where an attacker knows M 

plaintext-MAC pairs for a given key. He will precompute the 

MAC for every possible key in order to eliminate wrong keys. 

The size of the key space is equal to k bits, and the expected 

number of keys that remain will be denoted with Kexp. If M is 

sufficiently large, it is possible to determine the key uniquely or 

Kexp  1. The relation between Kexp, M and n can be 

determined [3] under the assumption that the MAC is a random 

mapping, and that no key clustering occurs, i.e., that there are no 

equivalent keys. For the correct key, an attacker will perform M 

MAC calculations, while for a bad key the probability that 

exactly i trials are performed is equal to 

 
The expected number of trials is given by the following 

expression: 

 
The total number of trials to identify the key is upper bounded 

by 

 
and the number of keys that remains is expected to be 

 
This means that the number of plaintext-MAC pairs to 

determine the key uniquely is slightly larger than k/n. After the 

birthday attack it will be discussed how large k has to be in order 

to offer sufficient security for the next decades. 

Birthday attack 

The idea behind this attack is that for a group of 23 people 

the probability that at least two people have a common birthday 

exceeds 1/2 [4] . Because this number of people is significantly 

smaller than what one would expect, this has also been called 

the “birthday paradox”. For some applications a related problem 

is relevant: if two groups of people have 17 persons each, the 

probability that two people in the two different groups have a 

common birthday will also exceed 1/2. Note that these results 

assume that birthdays are randomly distributed over the year; as 

this is not the case the probability will be even higher. This can 

be generalized as follows. If two samples of size r1 and r2 are 

drawn from a set of n elements, and if r1r2 = n with r1, r2 = 

O(n), then the probability of a match equals 1 − 1/e or 63%. 

Note that if the attacker is unlucky, it is sufficient to increase the 

size of r1 and r2 slightly, which will increase the success 

probability significantly. If r1 +r2 has to be minimized, one can 

show that this corresponds to r1 = r2 = n. This explains why 

attacks based on this property have also been called “square 

root” attacks. For a more detailed discussion of the probabilities 

the reader is referred to appendix B. The first attack based on 

this property was proposed by G. Yuval [5]. He showed how to 

attack a digital signature scheme of Rabin [6], more in particular 

he shows that it is easier to construct collisions for a one-way 

function than to find a preimage of a given element in the range. 

A collision can be produced in the following way. 

• The adversary generates r1 variations on a bogus message and 

r2 variations on a genuine message. This is very easy, even if r1 

and r2 are large: it is sufficient to have log2(r1) respectively 

log2(r2) positions where one has two alternatives or synonyms. 

If r1 = r2 = r = n the probability of the existence of a match 

will be 63%. Note that in case of a MAC the opponent is unable 

to generate the MAC of a message. He could however obtain 

these MAC‟s with a chosen plaintext attack. A second 

possibility is that he collects a large number of messages and 

corresponding MAC‟s and divides them in two categories, 

which corresponds to a known plaintext attack. 

The search for a match does not require r2 operations: after 

sorting the data, which requires O(r log r) operations, 

comparison is easy.  

An algorithmic improvement has been the collision search 

algorithm proposed by J.-J. Quisquater [7, 8]. It is based on 

Pollard‟s _-method for finding cycles [9] in periodic functions 

on a finite domain. It eliminates almost completely the storage 

requirements if the attacker is able to call the function (it does 

not work if a match has to be found in stored data). If a MAC is 

attacked this corresponds to an adaptive chosen text attack. The 

basic idea is that if a random mapping is iterated (the output is 

fed back to the input), it will arrive after a tail with length λ  into 

a cycle with period μ. At the point where the tail enters the cycle 

(the point of contact), one has found two values x and x̀  such 

that f(x) = f(x̀ ). A graphical representation of this process will 

correspond to the Greek letter ρ. The storage requirements can 

be reduced to a negligible quantity by only storing points with 

specific characteristics (distinguished points). The expected 

number of function evaluations is equal to ρ = λ + µ = 

(for a proof, see [10]). This result is 

also applicable to several other attacks: it is possible to produce 

pseudo-collisions for a single iteration step or collisions with 

initial values chosen from a small set. Other extensions will be 

discussed in the rest of this section. 

 Feasibility An important problem is to decide which 

computations should be considered feasible for the time being 

and within 10 and 20 years from now. This discussion is 

partially based on [11]. In terms of computations, one can start 

from the following facts (mid 1992): 
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• a single PC or workstation is able to perform a function 

evaluation in about 25 μsec, which corresponds to 2
40

 function 

evaluations per year, 

• a supercomputer like the Cray-3 or the Cray Y-MP C90 (both 

with 16 processors) is capable of performing 16 Gigaflops on 

64-bit words [12, 13]. If one function evaluation takes 64 

operations, this corresponds to 2
52

 function evaluations per year. 

Based on the observation that the speed of computers is 

multiplied by four every three years this means that 21 years 

from now (which seems a reasonable time scale for a number of 

applications) a single super computer will be able to perform 2
66

 

function evaluations per year. It will require 4096 simple 

processors to perform the same number of operations. However, 

it can be expected that in the near future even inexpensive 

computers will have many processors built in, as increasing the 

number of processors is the most effective way to increase the 

computational power without excessive increase of the cost 

(economy of scale) [13]. Hence it is realistic to assume that this 

computing power will be available in any small size 

organization. It can be shown that many problems in 

cryptanalysis can be easily adapted to such a distributed 

environment [14]: it are probably the applications  that will 

achieve the highest performance on massive parallel machines. 

These predictions can be extended to dedicated cryptanalytic 

hardware, if one accepts the assumption that hardware will 

remain about two orders of magnitude faster. This corresponds 

to a factor of 2
6
 . . . 2

7
. The disadvantage of dedicated hardware 

is the higher cost.  

For memory requirements, the situation is more complex, as 

the size of the available memory depends on the access time 

[15]. Moreover the access time to memory decreases  much 

slower than the cycle time of the processor, and this can be 

solved only partially by using cache memories. An efficient 

attack will balance the use of different types of memories such 

that the access times are comparable to the calculations that have 

to be done in between. An example of such an attack using one 

central hardware board that is connected to a large number of 

PC‟s with a few Megabytes of memory has been described in 

[16]. Predictions can be based on the observation that memory 

devices increase in capacity by a factor of four every three years. 

Today‟s supercomputers have a main memory of up to 32 

Gigabytes, a disk capacity of 50−100 Gigabytes and a high-

performance mass storage system of 200 Gigabytes [13]. For 

storage with still slower access, like tapes, capacity in the order 

of several Terabytes is currently available, and in the next 

decade this will become Pentabytes. The memory available in 

workstations is much smaller. Fast cache memories have 

currently a capacity between 256 and 512 Kbytes. For dynamic 

RAMs, 4 Mbit chips are currently in mass production, which 

means that main memory of 32 Megabytes is becoming the 

standard in workstations. For disk storage, 1 Gigabyte can be 

considered state of the art. 

One can conclude that for attacks that require no storage, a 

size of 128 bits corresponding to 2
64

 operations is sufficient for 

the next 10 years, but it will be only marginally secure within 20 

years. One can predict that a storage of about 64 Gigabytes with 

an acceptable access time will be available on a single 

workstation within 10 years. If one has 1024 machines of this 

type available, this amounts to 64 Terabytes. With this 

constraint, attacking a 64-bit hashcode requires only 2
21

 

operations, but 

probably the access time to the memory would be dominant. For 

a 96-bit hashcode this amounts to 2
54

 operations corresponding 

to a few years on these machines, and to a few months if 

dedicated hardware is available for the computations. For a 128-

bit hashcode this would require 2
86

 operations, which is 

probably not realistic for the next 20 years (in fact the storage 

capacity will be a factor 64 larger by then, which yields 2
80

 

operations). It is clear that a hashcode of 160 bits offers a 

sufficient security level for 20 years or more. 

Attacks dependent on the chaining 

This class of attacks depends on some high level properties 

of the elementary function f. 

Meet in the middle attack 

 This attack is a variation on the birthday attack, but instead 

of the hashcode, intermediate chaining variables are compared. 

The attack enables an opponent to construct a message with 

a prespecified hashcode, which is not possible in case of a 

simple birthday attack. Hence it also applies to a OWHF. The 

opponent generates r1 variations on the first part of a bogus 

message and r2 variations on the last part. Starting from the 

initial value and going backwards from the hashcode, the 

probability for a matching intermediate variable is given by the 

same formula. The only restriction that applies to the meeting 

point is that it can not be the first or last value of the chaining 

variable. The probability to find a match as a function of r1 and 

r2 is described in appendix B. The cycle finding algorithm by J.-

J. Quisquater can be extended to perform a meet in the middle 

attack with negligible storage [7, 11]. The attack can be thwarted 

by avoiding functions f that are invertible to the chaining 

variable Hi−1 and to the message Xi (cf. section 2.4.2 and 2.4.3). 

Constrained meet in the middle attack 

This type of attack is based on the same principles as the 

meet in the middle attack, but it takes into account certain 

constraints that have to be imposed on the solution. Examples of 

restrictions are that the sum modulo 2 of all blocks should be 

constant, or that a block of the CBC encryption of the solution 

with a given initial value and key should take a prespecified 

value. 

Generalized meet in the middle attack 

This attack was extended [17, 18] to break the p-fold 

iterated schemes. In these schemes the message is repeated p 

times or p hash values are computed corresponding to p initial 

values. With the extended attack, breaking these schemes does 

not require  but only  operations. The size of 

the message in this construction is 2 · 10
p−1

 blocks. Modest 

trade-offs between time, storage, size of the message and 

processing are possible. 

Correcting block attack 

This attack consists of substituting all blocks of the message 

except for some block Xj . This block is then calculated such 

that the hashcode takes a certain value, which makes it also 

suitable to attack a OWHF. It often applies to the last block and 

is then called a correcting last block attack, but it can also apply 

to the first block or to some blocks in the middle. The hash 

functions based on modular arithmetic are especially sensitive to 

this attack. 

A correcting block attack can also be used to produce a 

collision. One starts with two arbitrary messages X and X` and 

appends one or more correcting blocks denoted with Y and Y`, 

such that the extended messages X||Y and X`||Y` have the same 

hashcode. 



Krishna Kumar et al./ Elixir Appl. Math. 38 (2011) 4418-4422 
 

4421 

One can try to thwart a correcting block attack by adding 

redundancy to the message blocks, in such a way that it becomes 

computationally infeasible to find a correcting block with the 

necessary redundancy. The price paid for this solution is a 

degradation of the performance. 

Fixed point attack 

The idea of this attack is to look for a Hi−1 and Xi such that 

f(Xi,Hi−1) = Hi−1. If the chaining variable is equal to Hi−1, it is 

possible to insert an arbitrary number of blocks equal to  Xi 

without modifying the hashcode. Producing collisions or a 

second preimage with this attack is only possible if the chaining 

variable can be made equal to Hi−1: this is the case if IV can be 

chosen equal to a specific value, or if a large number of fixed 

points can be constructed (if e.g., one can find an Xi for every 

Hi−1). Of course this attack can be extended to fixed points that 

occur after a number of steps. This attack can be prevented 

easily: one can append a block count to the data or one can (fo r 

theoretical constructions) encode the data with a prefix-free code 

[19]. 

Key collisions 

 This type of attack can only be applied to hash functions 

based on block ciphers. If the chaining mode is poorly designed, 

attacks can be launched based on key collisions. A key collision 

is a pair of keys K1, K2 such that E(K1, P) = E(K2, P) for a 

plaintext P. The number of collisions for a given plaintext can be 

obtained from theorem B.2. In the case of DES [8, 108], with a 

block length of 64 bits and a key size of 56 bits, the number of 

k-fold collisions for a given P is indicated in table 2.2. Key 

collisions can be constructed with an ordinary birthday attack, 

but J.-J. Quisquater has shown how the efficient cycle 

algorithms combined with the method of the distingu ished 

points can produce a collision in about 233 operations and with 

negligible storage. 
K 2 3 4 5 6 7 

47.0 37.4 27.4 17.1 6.5 -4.3 

Table 2.2: Binary logarithm of the expected number of k-

fold key collisions for a given plaintext in the case of DES . 

An important observation is that doubling the number of 

operations yields a squaring of the number of different 

collisions. 

The attack can be extended to the case of double encryption. 

In this case a key collision consists of two pairs of keys (K
1
,K

2
) 

and (K`1 ,K`2 ) (with Ki≠  K`i) such that 

E(K2,E(K1, P)) = E(K`2 ,E(K`1, P)) . 

It is also possible to produce a single key pair such that 

E(K2,E(K1, P)) = C for a given plaintext P and ciphertext C. 

The collision search is feasible for any block cipher that 

behaves as a random mapping if the key size is significantly 

smaller than 128, but a good design of the hash function can 

make the collisions useless. There is however no easy way to 

guarantee this, and every scheme has to be verified for this 

attack. 

Differential attacks 

Differential cryptanalysis is based on the study of the 

relation between input and output differences and is applicable 

to both block ciphers and hash functions. The attack is statistical 

as one searches for input differences that are likely to cause a 

certain output difference. If one is looking for collisions this 

output difference should be equal to zero. In case of hash 

functions based on block ciphers, the situation is slightly 

different: depending on the mode one requires that the output 

difference is zero or that the output difference is equal to the 

input difference (in case of feed forward of the plaintext). It 

applies only to iterated ciphers that satisfy particular conditions, 

the so-called Markov ciphers. It turns out that most known 

iterated ciphers are of this nature. For well designed block 

ciphers this attack will find the key based on a large number of 

plaintexts with a chosen difference, or an even larger number of 

known plaintexts. One can remark that this class of attacks is in 

fact more natural in case of an MDC, where there is no secret 

information. A chosen message attack is the standard way of 

attacking an MDC, and in this case all calculations can be 

performed off-line and in parallel. 

Analytical weaknesses 

Some schemes allow manipulations like insertion, deletion, 

permutation and substitutions of blocks. A large number of 

attacks have been based on a blocking of the diffusion of the 

data input: this means that changes have no effect or can be 

cancelled out easily in a next stage. This type of attacks has been 

successful for dedicated hash functions and for hash functions 

based on modular arithmetic. 

Attacks dependent on an interaction with the signature 

scheme 

In some cases it is possible that even if the hash function is 

a CRHF, it is possible to break the signature scheme. This attack 

is then the consequence of a dangerous interaction between both 

schemes. In the known examples of such an interaction both the 

hash function and the signature scheme have some 

multiplicative structure. 

Attacks dependent on the underlying block cipher 

Certain weaknesses of a block cipher are not significant 

when it is used to protect the privacy, but can have dramatic 

consequences if the cipher is used in one of the special modes 

for hashing. These weaknesses can be exploited to insert special 

messages or to carry out well chosen manipulations without 

changing the hashcode. 

Complementation property 

One of the first properties that was known of DES was the 

symmetry under complementation: 

 
It can reduce an exhaustive key search by a factor 2 but it 

also allows to construct trivial collisions. 

Weak keys 

Another well known property of DES is the existence of 4 

weak keys. For these keys, encryption equals decryption, or 

DES is an involution. These keys are also called palindromic 

keys. This means that E(K,E(K, P)) = P,  P. There exist also 6 

pairs of semi-weak keys, for which E(K2,E(K1, P)) = P,  P. 

This property can be exploited in certain hash functions to 

construct fixed points after two iterations steps. Compared to 

DES, LOKI had more weak keys, but LOKI91 has the same 

number of weak and semi-weak keys. 

It was remarked by B. den Boer that a similar property 

holds for PES and IDEA: for the all zero key the cipher is an 

involution. 

Fixed points 

Fixed points of a block cipher are plaintexts that are mapped 

to themselves for a certain key. As a secure block cipher is a 

random permutation, it will probably have fixed points (for 

every key there is a probability of 1−e
−1

 that there is at least a 

single fixed point). However, it should be hard to find these. 

Under some conditions it is easy to produce fixed points: 

• For DES, this can be done based on a property of the weak 

keys: for every weak key Kp, there exist 2
32

 values of P that can 
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be easily found for which DES(Kp, P) = P. A similar property 

holds for the anti-palindromic keys: these are 4 semi-weak keys 

for which there exist 232 values of P that can be easily found for 

which DES(Kap, P) =P. 

• The block cipher LOKI has 256 simple fixed points where the 

key is of the special form gggggggghhhhhhhhx, and the plaintext 

is equal to iiiiiiiiiiiiiiiix, with i = g  h [22]. Here g, h and i are 

4-bit numbers in hexadecimal notation. For every weak key 

there exist 2
32

 fixed points. 

High level attacks 

Even if the above attacks would not be feasible, special care 

has to be taken to avoid replay of messages and construction of 

valid messages by combining others. For authentication of 

transmitted messages, attacks at this level can be thwarted by 

adding a nonce, this is a quantity that is never transmitted twice 

in a given context, and through the use of sound cryptographic 

protocols. It is essential to authenticate the integrity of the 

nonces together with the message. 

Timestamps: the date and time of the moment at which the 

message is sent. If the resolution of the time is sufficiently high, 

it will provide a unique identifier of the message. For a 

resolution of one second, 5 to 6 bytes are sufficient. The two 

main problems are the cost of maintaining reasonably well 

synchronized clocks at both ends of the communication line and 

of delays in communication channels.  

Serial numbers: a unique number is assigned to every 

message. A size of 4 bytes should be sufficient for most 

applications, depending on the lifetime of the key. If every user 

keeps a different sequence number for every user he 

communicates with, the serial numbers should be consecutive, 

and the deletion of a message can be detected. If every user has 

only one sequence number for all his communications, one has 

to check that the serial numbers form an increasing sequence. 

This is only possible if every user stores the highest sequence 

number of every communication. This system does not allow for 

checking for deleted messages. A serial number is less 

expensive than a time s tamp, but the timeliness of the 

information can not be checked. This should be no problem for 

applications like electronic mail. 

Random numbers: a sufficiently long random number is 

added to the message. To thwart a birthday attack on the 

number, it has to be larger than the square of the maximal 

number of messages that will be sent with a key. For most 

applications this means a size of about 8 bytes. A random 

number is not very useful if all previous random numbers have 

to be stored to detect a replay. However, if the random number 

is used in the next step of the protocol, it can offer an adequate 

protection. 

 In the case of stored information, a „replay‟ attack becomes 

a „restore‟ attack. The serial numbers have to be replaced by 

version numbers, and a separate file is necessary that contains a 

single date and time stamp and for every file the current version 

number. If rearrangements of units that are protected by a 

different MAC is a problem, the address in the memory space 

can be protected together with the stored information. 

Conclusion 

In this paper several types of cryptographic hash functions 

have been defined, with the emphasis on the system based or 

practical approach. It has been shown how cryptographic hash 

functions provide an efficient way to protect integrity and to 

speed up digital signatures. A general model has been 

introduced that allows for a compact description of iterated hash 

functions and attacks. 
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