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Introduction 

A new integral transform, called Tarig transform defined for 

functions of exponential order, is proclaimed. We Consider 

function in the set A, defined by:          
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For a given function in the set A, the constant M must be 

finite number, and 1 2,k k  may be finite or infinite.  

Tarig transform defined by the integral equations,                                                                    
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The variable u in this transform is used to factor of the 

variable t  in the argument of the function .f  this transform has 

deeper Connection with the Laplace transform. We also present 

many different of properties of this new transform and Sumudu 

transform. 

The   purpose of this study is to show the applicability of 

this interesting new transform and its efficiency to solving 

differential equations with the variable coefficients. 

Theorem 1: 
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Proof: 

       
2

0

1
t

ui T f t f t e dt
u



      .  Integrating by parts to find 

that:  

     
1 1

0T f t f T f t
u u

 
         

 
 

  And                          
 

 
2

1
0

F u
T f t f

uu
      

     
 

 
2

1
0

T G t
ii By i T G t G

uu

       .    Let       

   .G t f t  then: 

 
  

 
 

   

 
 

   

2 2 2

4 3

1 1 1 1
0 0 0

1 1
0 0

T f t F u
T f t f f f and

u u uu u u

F u
T f t f f

uu u

  
          

  

      

 

The generalization to nth order derivatives in (iii) can be proved 

by using mathematical induction. 

Theorem 2: 

          If    T f t G u    , and    L f t F s     then: 
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 where  F s  is the Laplace transform of 

 .f t  

Proof:  
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          Let w ut , then we 

have: 
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Theorems 3: 
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Tarig transform, whose fundamental properties are presented in this paper, is little known 

and not widely used .Here Tarig transform used to solve ordinary differential equation with 

variable coefficients without resorting to a new frequency domain. 
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2-    Let    f t f t  in to (1) we get: 
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3-  let    f t f t  into (1) we get:          
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4-   Let      n
f t f t     into (1) we have:              
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Application of Tarig Transform to Ordinary Differential 

Equations with Variable Coefficients  

As stated in the introduction of this paper, the Tarig 

transform can be used as an effective tool. For analyzing the 

basic characteristics of a linear system governed by the 

differential equation in response to initial data. The following 

examples illustrate the use of  Tarig transform in solving certain 

initial value problems described by ordinary differential 

equations with variable coefficients.                       

Example 1: 

           Consider the following first order differential equation, 

                                        
22 3ty y t                                                                    

(1)                     With the initial condition: 

                                             (0) 0y                                                                      

(2)                          

Solution: 

            Taking Tarig transform of eq (1) we have:  
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Where that  y u  is Tarig transform of  .y t                                              

                                     42
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            (3)                                                                   

The solution of eq (3) is         5 22y u u cu   

                1 5 2 22y t F u cu t c t     
 

           (4) 

 c  is constant  

Substituting eq (2) into eq (4) we get:     20 :c then y t t                  

Example 2: 

Consider the following second differential equation, 

 

                          (5) 

With the initial condition:          

              0 1y                                                    (6)                                                                                

Solution:  

By using Tarig transform into eq (5) we have:  
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eq (7) can be written in the form          
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And           1 5 22y t F u cu t c     
 

 

By using  0 1y      we get:   1c    then:    21y t t                            

Example 3: 

Consider the following differential equation with variable 

coefficients: 
32 6t y y t y t t                   (8) 

With the initial condition:  

 0 0y                                                 (9) 

Solution:  

         Applying Tarig transform to eq (8) yields: 
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Or                                                                                                                                                                                                     
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The solution of eq(10) is,  

4ty y t  
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      c is constant. 

Then:                      1 5 22
c

y t F u t c t
u

  
    

 
 

By using  0 0y  , we get:   0c  , then:    2y t t  

Conclusion:  

Application of Tarig transform to Solution of ordinary 

differential equation with variable Coefficients has been 

demonstrated.  
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Appendix Tarig Transform of Some Functions 
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