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ABSTRACT
Tarig transform, whose fundamental properties are presented in this paper, is little known
and not widely used .Here Tarig transform used to solve ordinary differential equation with
variable coefficients without resorting to a new frequency domain.
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Introduction F(u) 1
A new integral transform, called Tarig transform defined for And T (t)]=—5>-=1(0)
functions of exponential order, is proclaimed. We Consider [ ()J u u
function in the set A, defined by: . . , TIG(t 1
W (ii) By(i) T[G'(t) =u—2_EG(O)' Let
A=1F(t):3M Ky ky >0 (1) < Me" if te(-1)' X [0,00) G(t)=f"'(t). then:
T(f'(t F
For a given function in the set A, the constant M must be T[f”(t)}:w—lf’(O)z%{&—lf(O)}lf’(O) and
finite number, and K, , K, may be finite or infinite. ! ! e )
Tarig transform defined by the integral equations, T[f"(t)}lf)—%f(o)—lf’(o)
u u

Tf(t)]= F(u)_—jf(t)eu dt , t>0,u=0

The generalization to nth order derivatives in (iii) can be proved
by using mathematical induction.

The variable Uin this transform is used to factor of the Theorem 2:
variable t in the argument of the function f . this transform has If T[f (t)} =G (u),and L[f (t)]: F(S) then:
deeper Connection with the Laplace transform. We also present F(ij )
many different of properties of this new transform and Sumudu G (u) = u? ) where F (S) is the Laplace transform of
transform. u

The purpose of this study is to show the applicability of
this interesting new transform and its efficiency to solving f (t)
differential equations with the variable coefficients. Proof
Theorem 1: roo " L

If T[f (t)]: F(u) then: T[f (t)}zj f (ut)e?dt =G(u) Let w=ut,thenwe
RN PR Tl C) N ey s ) (1) B 1., 0
(i) T[f (t)}: 2 ‘Uf(o) (ii) T[f (t)}=u74—u—3f(0)—af (0) have:
1
(i) 7| £ (1) Zn:uZ“ [ F(uZJ
H G(u)= [ (w)es” = =—2
Proof 0
1% -t Theorems 3:
T[#/(t)]==f'(t)evdt . Integrating by parts to find T
[f( uj Je ntegrating by parts to fin T ]_1If e dt F (u). then:
0 u

that: 0

T[f'(t)]=%{—f(0)+%T[f(t)]} - T[tf (t)]:%{ugiF(UHUZF(u)}
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Proof
1 F(u)=%Tf(t)e} dt
dFdl(Ju) =U—It f(t) e;dt—uizz f( )eu;:dt
%th(t)e”zdt 1[u3dz(u)+u2F(u)}
T[tf (t)} :%{lﬁ dFdﬁ“) +u2F(u):|
2-  Let

_f(())]+ F(u)-uf (0)1:;{@(1:(3&

u u

F(U)}

into (1) we have:

- ua;_u[ s, ;;<:3>1j+zs“z- = a?t]

U u U

( (I) n-1 f(l)
+Z(2n 2i - 1) Zn 2| 3 2n- 2| 3
i=0 U
F(u) F(u) E2mn-i-nf®
1) o0 Flu), ()+22<n i-119©)
2 du u2n u2n—2 — u2n—(2|+3)

>

I
o

Application of Tarig Transform to Ordinary Differential
Equations with Variable Coefficients
As stated in the introduction of this paper, the Tarig
transform can be used as an effective tool. For analyzing the
basic characteristics of a linear system governed by the
differential equation in response to initial data. The following
examples illustrate the use of Tarig transform in solving certain
initial value problems described by ordinary differential
equations with variable coefficients.
Example 1
Consider the following first order differential equation,
2y’ -y =3t
D With the initial condition:
y(0)=0
@
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Solution:
Taking Tarig transform of eq (1) we have:

25yt

Where that Y (u) is Tarig transform of y(t).
y'(u)—% y(u)=6u* ©)]

The solution ofeq (3) is ~ y(u)=2u’+cu®

y(t):F‘l[2u5+cu2J=t2+c\ﬁ @)
C is constant
Substituting eq (2) into eq (4) we get:

Example 2:
Consider the following second differential equation,

c=0then:y(t)=

v ®)
"+ Y =4t \with the initial condition:
y(0)=1 ()

Solution:
By using Tarig transform into eq (5) we have:

430,10, 200] 50 105 O
2 du ut u2 u u? u
y'(u) 1

:_UE y} =8u® or y(u)=2u®+cu

y(t)=
By using y(0)=1 weget: C=1 then: y(t)=1+t>

BExample 3:
Consider the following differential equation with variable
coefficients:

eq (7) can be written in the form

Then:

And F’1[2u5+qu:t2+c

ty"+2y'+ty =t +6t ®)
With the initial condition:
y(0)=0 ©)
Solution:
Applying Tarig transform to eq (8) yields:
1ed vy y(u) 2y(0))
2 du u* u? u
2y(u) 2y(0) 1f sd 2 7 e
———+—|Uu"—y(u)+u°y(u)|=6u’ +6u
TR TR DA C) +
Or
(l+u3j y'(u) +(i2+u2j y(u) =12u’ +12u®
u u
Or
y’(u)+£y:12u4 (10)
u

The solution of eq(10) is,
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y(u)=2u® +&  cisconstant.
u

Then: y(t):Fl{2u5+£}:t2+c5(t)
u

By using y(0)=0,weget: c=0,then: y(t)=t?

Conclusion:

Application of Tarig transform to Solution of ordinary
differential equation with variable Coefficients has been
demonstrated.
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Appendix Tarig Transform of Some Functions

S.NO. f (t) F(u)
1 1 u
2 t ud
3 el u
1-au?
tn n!u2n+1
t2 I'(a+1u®*
6 sinat au’
1+au*
7 cosat u
1+a%u?
8 sinhat au’
1-awu*
9 coshat u
1-a«u*
10 | H(t-a 2
( ) ueu
To-a) | 1,0
u




