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Introduction 

There are numerous integral transforms to solve differential 

equations and integral equations. Of these, the Laplace 

transformations  is the most widely used.  

In view of many interesting properties which make 

visualization easier, we introduced a new integral transform, 

named as Tarig transform and applied it to the solution of 

differential equations subsequently , we derived Tarig transform 

of different functions and derivatives use in engineering 

problems.  

In this paper we discussed the basic theory of Tarig 

transform with supporting examples and presented a table. 

Typically, Fourrier, Laplace, Sumudu and ELzaki transforms are 

the convenient mathematical tools for solving differential 

equations, also Tarig transform and some of its fundamental 

Properties are used to solve differential equations  

Anew transform called Tarig transform defined for function 

of exponential order. We consider functions in the set A defined 

by:          
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       (1) 

For a given function in the set A, the constant M must be 

finite number, and 1 2,k k  may be finite or infinite  

Tarig transform defined by the integral equations,                                                                            

     
2

0

1
, 0 , 0

t

uT f t F u f t e dt t u
u



        (2) 

The variable u in this transform is used to factor of the 

variable t  in the argument of the function .f  this transform has 

deeper Connection with the Laplace transform.  

We also present many different of properties of this new 

transform and Sumudu transform. 

The   purpose of this study is to show the applicability of 

this interesting new transform and its efficiency in solving the 

linear differential equations. 

 

Theorem 1: 

If  f t  is sectionally continuous is every finite 

interval0 t k  and of exponential order   for t k , then 

its Tarig transform  F u exists for all u  . 

Proof:  

We have for any positive number k ,      
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Since  f t  is sectionally continuous in every finite 

interval 0 t k  ,the first integral on the right side exists. 

Also the second integral on the right exists, since  f t  is of 

exponential order   for t k ,to see this we have only to 

observe that in such case .                 
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Theorem 2: 

If       ,T f t F u    then    
1

T f at F au
a

     

Proof:  

We have        
0

t

uT f a t e f au t d t

 

     .    Let ,x at  then 

we get:   

     
0

1 1
x
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Theorem 3: 

If ,a b  are any constants and  f t  and  g t are any 

functions, then: 
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Proof: 
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Then:                                
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Theorem 4: 

                 If       T f t F u     then:  
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Proof: 

       
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1
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      .  Integrating by parts to find 
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The generalization to nth order derivatives in (iii) can be 

proved by using mathematical induction. 

Theorem 5: 

If    T f t G u     and    L f t F s     then: 
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  where  F s  is Laplace transform of  .f t  

Proof:  
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Application of Tarig Transform of Ordinary Differential 

Equations 

As stated in the introduction of this paper, Tarig transform 

can be used as an effective tool. For analyzing the basic 

characteristics of a linear system governed by the differential 

equation in response to initial data. The following examples 

illustrate the use of Tarig transform in solving certain initial 

value problems described by ordinary differential equations.                                                                         

Example (1)  

            Consider the first – order ordinary differential equation.  

                                          , 0
dx

px f t t
dt

            (3)                                                           

 With the initial condition,  

                                         0x a                           (4)                                                              

 Application of Tarig transform  of  this equation we get: 
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1
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u F u au
x u
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Where   x u  is Tarig transform of  ( )x t  

The inverse Tarig transform leads  to the solution.                                

Example (2):  

       The second order linear ordinary differential equation has 

the general form, 

 2 , 0y py q y f x x                (5)                                                   

The initial conditions are  

                                0 , 0y a y b               (6)                                                         

Where , ,p q a  and b  are constants.  

Application of Tarig transform to this general initial value 

problem gives. 
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 The use of (6) leads to the solution for y as:   
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The inverse transform gives the solution.  

Example (3):            

Consider the first order differential equation,  

 0 , 0 1y y y     

Application of Tarig transform to this equation gives:  
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 Then:        xy x e  

 Where  F u  is the Tarig transform of  .y x  

Example (4):  

Solve the differential equation, 

 2 , 0 1y y x y     

Tarig transform of this equation is,  
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The inverse transform of this equation gives the solution in the 

form: 

  21 1 3

2 4 4

xy x x e    

Example (5):  

Let us consider the second – order differential equation.                                             

   0 , 0 0 1y y y y      

Application of Tarig transform to this equation gives.  
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The inverse Tarig transform of this equation simply obtained as  

  sin cosy x x x   

Example (6):    

Solve the boundary value problem: 

 9 cos , 0 1 , 1.
2

y y t if y y
 
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Since  0y  is not known, let  0 ,y c   and take Tarig 

transform of this equation and using the conditions, we have:                                   
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And invert to find the solution  
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Then: 
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Example (7):  

Consider the following differential equation,  

   33 2 4 , 0 3 , 0 5ty y y e y y         

Taking the Tarig transform of both sides of the differential 

equation.   
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Thus: 

  2 34 2 9t t ty t e e e    

Example (8):  

Find the solution of the following initial value problem.                                     

   4 9 , 0 0 , 0 7y y t y y      

Applying Tarig transform of this problem and using the given 

conditions we get,  
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 Inverting to find the solution in the form: 

 
9 19

sin 2
4 8

y t t t   

Conclusion 

The definition and application of the new transform "Tarig 

transform" to the solution of ordinary differential equations has 

been demonstrated.     
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 Appendix Tarig Transform of Some Functions 
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