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Introduction 

It is very important for parameter estimation after time 

series ARMA model is determined. Parameter estimation plays a 

key role in establishing proper model. It effects not only the 

adaptability but also predicting results. Parameter estimate has 

an important position and has attracted many scholars’ attention 

to studying ARMA parameter estimation [1]. The method of 

parameter estimation can be roughly classified into three kinds  

[2].  

One is developed from timing theory itself, called timing 

theory parameters estimation method of ARMA model. Another 

kind is iterative algorithm of optimization theory, called 

optimization theory parameters estimation method of ARMA 

model. The third type is the difference model of control theory, 

called control theory parameters estimation method of ARMA 

mode. This paper discusses the optimization theory parameters 

estimation method and presents a novel algorithm for time series 

ARMA parameter estimation, denoted by neural networks with 

trust region strategy. The speed is accelerated and convergence 

properties of the method are proved under certain conditions. 

Hence, it improves the prediction performance of ARMA model.  

ARMA model 

Suppose the date { tx } ( nt ,,2,1  ) are observations 

from the causal invertible ARMA (p, q) process. Generally, 

ARMA (p,q) can be described as follows[3]. 

 qtqtttptpttt xxxx     22112211     (1)        
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Parameter estimation is to minimize )(S and obtains the 

solution of )(S , that is, )(min S . 
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Algorithm Process 

The trust region method is a kind of iterative method; a trial 

step is usually executed by solving the following quadratic 

model, called the trust region subproblem [4], 
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Where kd   , )( kk Sg  , kB is an nn  symmetric 

matrix which is the Hessian or its approximation of )(S  at 

the current iterate point, 0 k  is called the trust region 

radius, and   refers to the Euclidean norm. Solving (3) is a key 

work in the trust region method. Many authors have studied the 

problem and they have proposed a lot of methods [5-6]. 

Generally, it is costly, especially when kB  is large scale and 
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dense. 

Here, we present a new method, namely, neural networks 

with trust region strategy to solve the trust region subproblem. 

Artificial neural networks [7-8] have the merits of their 

rapidness and accuracy. Using relatively simple neural network 

architecture which has ability of high parallel computing, even 

relatively complex optimization problems can also be real-time 

solved.  

In formula (3), using 
2l  norm, the constrained condition 

equals to 02  k
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  Based on the augmented Lagrange multiplier method, 

Lagrange function of (4) is as follows. 
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where   is the Lagrange multiplier, K  is punishment 

parameter. 

(5) can be written to a more compact form 
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The renewal equation of neural networks is as follows. 
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where 0, d  denote learning rate parameters. 
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Hence, the motion equation of neural networks is  
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When kd  then stop, )1( kd  is the solution of 

(11), it is also the solution of (3). Or the motion equation of 

neural networks will be updated until it satisfies the condition.  

  At point k , let kd be the solution of (3). The actual reduction 

of the objection function is defined by  

 )()( kkkk dSSAred                                     (13) 

The predictive reduction is defined by 
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The ratio between these two reductions is defined by 
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As is known, the value of 
kr  plays a key role in the trust 

region method to decide whether the trial step 
kd  is accepted 

and to adjust the trust region radius. If 
kd  is successful, one 

accepts the trial step and enlarges the trust region radius; 

otherwise, one rejects the trial step, reduces the trust region 

radius and resolves the subproblem.  

Algorithm Model 

In this section, we will present the model of the new method. 

Algorithm 3.2.1 

Step 1 

Given 0 , ),0( o , 0 , 10 21   ,

21 10   , 0k ; 

Step 2 If kg ,then stop; else go to step 3; 

Step 3 Solve (11) giving kd . 

Step 4 Compute kr  by (13)-(15).  

Step 5 Update k , k by kr .Set  
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Step 6 Compute kkk ggy  1 ,if 0ky ,then stop and 

output optimal solution 1k  ; else update kB by BFGS 
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Step 7 Compute )( 1kS  ,if   )( 1kS ,then stop; else set 

1 kk , go to step 2. 

Convergences 

Before addressing some theoretical issues, we would like to 

make the following hypotheses. 

H1: Hessian or its approximation kB  is bounded, that is, there 

exists a positive constant M, such that MBk  . 

H2: The level set  )()()( 0 SSL   is bounded for 

any given 0  and )(S  is continuously differentiable 

in )(L  for any given 0  and bounded. 

H3: kkd    for a constant . 

Lemma 4.1 For the solution of (3), we have 
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where ]1,0(1  . 

Lemma 4.2 Suppose that H1-H3 hold 

and 0kg ,  k ,  is a small finite, then kk  1 . 

Theorem 4.3 Assume that H1-H3 hold, then sequence kg  

generated by Algorithm 3.2.1 satisfies 
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Proof: We prove by contradiction. If (16) is not true, there exists  

0  and a positive index K, such shat  
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Because )(S  is bounded, which implies  
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which gives a contradiction to Lemma 4.2. 

Then we assume that there only exists limited successful 

iteration, then we reduce the trust region radius, i.e. 0 k , 

which also gives a contradiction to Lemma 4.2. The proof is 

completed.  

Numerical Experiments 

In this section, we implement the new Algorithm 3.2.1 and 

compare it with Gauss-Newton algorithm for time series ARMA 

parameter estimation. The test problem comes from [1] and is 

written in MATLAB 7.0. 

We generate the ARMA（2,2）as follows with Monte Carlo 

method. 

2121 3.05.06.045.1   tttttt xxx   

We generate the dates using the above model and estimate 

the parameters with the new method proposed in this paper 

compared it with Gauss-Newton algorithm.  

For all algorithms, the initial value is 0, the error value is 

0.01. For Algorithm 3.2.1, we 

use 2.01  , 8.02  , 2,5.0 21   , )( 00 S . 

The numerical results are summarized in table 1 and table 2. 

It is seen from Table 1 that Algorithm 3.2.1 performs better 

than the Gauss-Newton algorithm. Therefore, Algorithm 3.2.1 is 

effective and improves the prediction performance of ARMA 

model. 

Conclusions 

Artificial neural networks posses inherent massively parallel 

processing and fast convergence. Much attention has been paid 

for to its application to optimization. This paper combines it 

with the trust region method and proposes a new method to 

estimate the parameters of ARMA model. Theoretical analysis 

and simulation both demonstrate the efficiency of the model. 
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Table 1 Parameter estimate of ARMA（2,2） 
parameters value 

of real model 
Gauss-Newton 

algorithm parameters 

evaluations 

absolute value between 
Gauss-Newton algorithm 

and real value 

Artificial neural network with 
trust region  strategy algorithm 

parameters evaluations 

absolute value between artificial 
neural network with trust region 

strategy and real value 

-1.45 -0.5824 0.8676 -1.2156 0.2344 

-0.6 -0.3669 0.2331 -0.4267 0.1733 

-0.5 0.4178 0.9178 -0.4387 0.0613 

0.3 -0.6152 0.9152 -0.0984 0.2016 

 

Table 2 Residual sum of squares of ARMA（2,2） 
Gauss-Newton algorithm neural network with trust region strategy algorithm 

31.4750 17.8043 

 


