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ABSTRACT

The wave propagation in an infinite, homogeneous transversely isotropic solid cylinder of
elliptic inner and outer cross-section immersed in a fluid is studied using the Fourier
expansion collocation method, within the framework of the linearized, three-dimensional
theory of elasticity. The equation of motion of solid and fluid are respectively formulated
using the constitutive equations of a transversely isotropic cylinder and the constitutive
equation of an inviscid fluid. Three displacement potentional functions are introduced to
uncouple the equation of motion. The frequency equations of longitudinal and flexural
(symmetric and antisymmetric) modes are analyzed numerically for an elliptic cross-
sectional transversely isotropic solid cylinder of elliptic inner and outer cross-section
immersed in a fluid. To compare the model with the existing literature, the results of a fluid -
loaded transversely isotropic cylinder are obtained and they are compared with the results of
Elastic rods loaded with fluid; Berlinear and Solecki (1996). It shows very good degree of agreement. The computed non-
Wave propagation in a cylinders dimensional wave numbers are presented in the form of dispersion curves for the material
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Introduction

In many structural applications requiring high strength-to-
weight and stiffness-to-weight ratios, the isotropic cylinders are
being replaced by the cylinders of composite materials. So the
study of frequency equations of wave propagation in anisotropic
cylinders must be developed. A through knowledge of various
wave propagation characteristics, as a function of material and
geometrical parameters is necessary for a wide range of
applications, from geophysical prospecting in cased holes, non-
destructive evaluation of oil and gas pipelines, to the insulated
fiber optic cables for data transmission.

The most general form of harmonic waves in a hollow
cylinder of circular cross section of infinite length has been
analyzed by Gazis (1959). Mirsky (1964) analyzed the wave
propagation in transversely isotropic circular cylinders of
infinite length and presented the frequency equation in Part | and
numerical results in Part 1l. A method, for solving wave
propagation in arbitrary cross-sectionl cylinders and plates and
to find out the phase velocities in different modes of vibrations
namely longitudinal, torsional and flexural, by constructing
frequency equations was devised by Nagaya (1982, 1983, 1984
and 1985) He formulated the Fourier expansion collocation
method for this purpose. Following Nagaya, Paul and
Venkatesan (1989) studied the wave propagation in an infinite
piezoelectric solid cylinder of arbitrary cross section using
Fourier expansion collocation method.

Guided waves in a transversely isotropic cylinder immersed
in a fluid is analyzed by Ahmad (2001). Following Ahmad,
Nagay (1995) have studied the longitudinal guided wave
propagation in a transversely isotropic rod immersed in fluid,
later, Nagy with Nayfeh (1996) discussed the viscosity-induced
attenuation of longitudinal guided waves in fluid-loaded rods.
Easwaran and Munjal (1995) reported a note on the effect of
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wall compliance on lowest-order mode propagation in fluid-
filled/submerged impedance tubes Sinha et. al. (1992) have
discussed the axisymmetric wave propagation in circular
cylindrical shell immersed in fluid, in two parts. In Part I, the
theoretical analysis of the propagating modes is discussed and in
Part Il, the axisymmetric modes excluding torsional modes are
obtained theoretically and experimentally and are compared.
Berlinear and Solecki (1996) have studied the wave propagation
in fluid loaded transversely isotropic cylinder. In that paper, Part
I consists of the analytical formulation of the frequency equation
of the coupled system consisting of the cylinder with inner and
outer fluid and Part Il gives the numerical results.
Venkatesan and Ponnusamy (2002, 2003) have obtained the
frequency equation of the free vibration of a solid cylinder of
arbitrary cross section immersed in a fluid using Fourier
expansion collocation method. The frequency equations are
obtained for longitudinal and flexural vibrations and are studied
numerically for elliptical and cardioidal cross-sectionl cylinders.

In this paper, the wave propagation in a cylinder of elliptic
inner and outer cross section immersed in an invicid fluid is
analyzed. The frequency equations of longitudinal and flexural
modes are analyzed numerically for cylinders with elliptic cross-
section using Fourier expansion collocation method. The
computed non-dimensional plotted in the form of dispersion
curves.
Formulation of the problem

We consider a homogeneous transversely isotropic infinite
cylinder of both inner and outer elliptic cross-section immersed
in inviscid fluid. The system is assumed to be linear so that the
linearized three-dimensional stress equation of motion is used
for both the cylinder and the fluid. The system displacements
and stresses are defined by the cylindrical
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coordinates r,@ and z.

dimensional stress equations of motion and strain-displacement
relations in the absence of body force for a linear elastic medium
are

-1 -1
O-rr,r +r O-ra,a + O-rz,z +r (O-rr

In cylindrical coordinates, the three-

_O-ee) =puU (a)

1 1
Crgr H1 Cppo+ 0y, +2I70,, = plUy, (1b)

Cpy +170, .40, +1 0, =pU,, (L)
where
O, =C,€, +C,€y +C3E, (2a)
Ogg = C12€ +C3€4 +C13€5, (2b)
O, =C3€,, +C3€y +CxE, (2c)
Opp = 2C€.y. Oy, = 2C14€,,, O, = 2C,E,, (2c)

where o, 0, O,, Oy Oy, O,

., are the stress components,

€ €0.€, €19 €y, €, are  the  strain

C11!C121C13ac33xc44 and C66:(Cll_012)/2 are the five
independent elastic moduli, p is the mass density of the
material.

The strain €; are related to the displacements are given by

components,

-1
err = ur,r’ e9€ =r (ur +u€,6)’ ezz = uz,z' (3&)

2e, =(u,, +u,, ). 2, =(u,+r'u,,) (30

in which U, Ujand U,
along radial, circumferential and axial directions respectively.
The comma in the subscripts denotes the partial differentiation
with respect to the variables.

Substituting the Egs. (3) and (2) in the Eq. (1), results in the
following three-dimensional equation of motion are obtained as
follows:

C11 (ur,rr + r_lur,r - r-zur ) - r-z (C11 + Cse )ua,a + r_zceeur,ea (4a)
+CUy , +(Cyy +Ci3 ) Uy, + r (Cos +Ciz )Ug g = Py
-1 2 -1 2
r (C12+066)ur‘r6‘+r (066+C11)ur‘€+066(u€,rr+r Ua‘r_r uﬂ)
2 -1
ul 011U9,99+C44U9,zz+r (C44+C13)Uz,9z:pu9,n
-1 -2
C44 (uz,rr +r uz,r +r uz,09)+r (CM +C13)(U +u0 Bz)
+(C44 +C‘13>ur rz +C uz z = puz,tt
Solution to the equation of motion
The Eq. (4) is coupled partial differential equations of the
three displacement components. This systemof equations can be
uncoupled by eliminating two of the three displacement
components through two of the three equations, but these results
in partial differential equations of fourth order. To uncouple the

Eq. (4), we follow Mirsky (1964) and assuming the solution of
Eq. (4) as follows:

ur(r’ 01 Z’t) = ign I:(¢n,r + rill//nﬂ) (¢n et r V/n 9)j| faet (52)
n=0

A L Y | LD

are the displacement components

(4b)

(4c)

0

U, (r,0,2,t) Zen[(
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u,(r,6,z,t)= I/a ign [Wn +V_VnJei(kz+wt)
n=0

where gn:% for n=0, ¢, =1 for n>1, i=\/—_1, K is

the wavenumber, @ is the frequency, ¢n(r,0), Wn(r,Q),
l//n(l’,H), &n(l’,ﬁ), V_Vn(r,H), and y_/n(rﬁ) are the

displacement potentials and a is the geometrical parameter of
the cylinder.
By introducing the dimensionless quantities such as ¢ =ka,

Q* = pw'a’[c,,, Cu= Cu1/Cus G = Cis/Cas »
Cs =Cy/C, T =tyfc,,/pla and X=r/aand
substituting Eq. (5) in Eqg. (4), we obtain
(cuV?+(2*~5)) ¢ —(1+cis )W, =0 (6a)
g(1+513)¢n +(V2 +(Q2 —Essgz))Wn =0 (6b)
and

(V2+(Qz—g2)/666)l//n=0 @)

where V2 =0 /ox® + X 8/ox+x2 62 /06°

Eliminating W, from the Eq.(6), we obtain
(AV4+BV2+C)¢n:O ®)
where

A=cu, B= —‘:(14—611)(22 +¢? ((_3123 +2C13 —C11Caa )} :
C Z(QZ _gz)(Qz —(_333g2) ©)

Solving the Eq.(8), the solution for the symmetric mode are
obtained as

é =i[Aan(aiax )+B,Y, (eax) [cosng

W, Zd [ AJ, (erax)+B,Y, (e;ax) Jcosnd

where Jn and Y, are Bessel functions of the first and second
kind of order n. The solution for the antisymmetric modes ¢,

and W » are obtained by replacing COSNé by Sinné in Eq.
(10).

Here (aia)z >0, (i
equation
A(aa)' —B(aa) +C=0.

The Bessel functions J, and Y, are used when the roots
(@) (i

function | and

(eva)”.(i

=1,2) are the roots of the algebraic

:l,2) are real or complex and the modified Bessel

K,are used when the roots

=1 2) are imaginary.
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The constants di defined in the Eq. (10b) can be calculated
from the equation

d, :[Qz —-¢° —((,Xia)2 611}/g(1+613), 1=12 (12)

Solving the Eg. (7), the solution to the symmetric mode is
obtained as

v, = A,J, (a:3x)+B,,Y, (azax) Jsinng (13)

3n Tn
where (0(38.)2 =(Q2 —g? )/Eee | (a3a)2 <0, the Bessel
functions J,and Y, are replaced by the modified Bessel
function |, and K, . The solution for the antisymmetric mode
y_/n is obtained from Eq. (13) by replacing Sinn@ by cosng.

Equation of motion of the fluid

In cylindrical polar coordinates r, & and z the acoustic
pressure and radial displacement equation of motion for an
invicid fluid (Achenbach (1973)) are of the form

f f f -1 f f f
p =-B (ur,r-'_r (ur +u€,6)+uz,z)
and

-2, f
Cf ur,tt :A’r

respectively where B', is the adiabatic bulk modulus, pf is

the density, ch = 4/Bf/pf is the acoustic phase velocity in
the fluid, and (Urf ,u; ,uzf ) is the displacement vector.
A=(u!, +ri +uy,)+u,,)
Substituting
f f f -1 4 f f
U =¢,, U, =I"¢,and U, =9,
and seeking the solution of (15) in the form
0 —f . .
$'(roz)=>¢, M (r)cosng + g, (r)sin ne}e'“‘“m),
n=0

the oscillating waves propagating in the inner fluid located in
the annulus is given by

f
¢n = AAan(é‘laX)

2 /TRl 2. o f
where (51a) =Q /p1 B —¢%, in which p, =p,/p",
—f
Br =B /u, p/is the density of inner fluid, B, acoustic
bulk modulus of inner fluid. |f(51a) <0, the Bessel function

J, in (19) is to be replaced by modified Bessel function |, .

Similarly, for the outer fluid that represents the oscillatory
waves propagating away is given as

¢nf = B4n HrEZ) (52ax)

2 —f =
Where (6,a) :QZ/,D2 B. —¢?, in which
—-f f of  pf £ .
£, —,02/,0 ,B2 =B, /,u, P, is the density of outer
fluid, 52f acoustic bulk modulus of outer fluid. Hr(]z) is the

Hankel function of the second kind. If (5,8)> <0, then the

Hankel function of second kind is to be replaced by K, , where
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K, is the modified Bessel function of the second kind. By

substituting Eq.(17) in (14) along with (19) and (20), the
acoustic pressure for the inner fluid can be expressed as

b = A0 p,J, (5% cosnge' )
and for the outer fluid is

p} =B, Q% p,H!?(5,ax) cosnde
In the case of antisymmetric mode, the solutions for the inner
and outer fluid are obtained by replacing C0SNné by Sinn@in
the Egs. (21) and (22).

Boundary conditions and frequency equations

The frequency equation of the system is developed by
coupling the cylinder to the fluid through the boundary
conditions at the cylinder inner and outer surfaces. This
approach is used to deal with the solid-fluid interfaces. The
boundary conditions for the inner and outer boundaries of an
infinite cylinder are obtained as follows:

For the inner boundary, the boundary conditions are

(o + P )i =(ow )i :(Gzp)i = (u - )i =0

and for the outer boundary, the boundary conditions are

(o + P2 )i =(ow), = (o), = (u- )i =0

where p is the coordinate normal to the boundary and q is the

i(sz+aT,)

coordinate in the tangential direction, Gpp is the normal stress,

Gy and G, are the shearing stresses and ( )i is the value at

the i —th segment of the boundary. The first and last conditions

in Eqs. (23) and (24) are due to the continlgjﬂ@ of the stresses and
displacements of the cylinder and fluid on the curved surfaces.
Since the boundary of the cross section is(i'%agular in shape, it is
difficult to satisfy the boundary conditions along both inner and
outer surfaces of the cylinder directly. Hence, to satisfy the
boundary conditions, the Fourier expansign collocation method

due to Nagaya (1982, 1983, 1984 and 1985)°is applied. If y; is

the angle between normal to the segment and the reference axis
is assumed to be constant, then the transformed expressions for
the stresses are

(19)
o-M:(cncosz(e—yi)+clzsin2(9—y‘))u”+r’l(cnsinz(e—yi)%lzcosz(ﬂ—yi))(ur+u(,‘(,) (252)
+cas(r‘1(ué,—u,‘f,)—uﬁ,r)sin2(0—y‘)+clauz‘Z
0,y = (U 17Uy +U,)SIN20-7) + (1 (U, -U,) +u, )eos2(0- 7)) (25D)
0 =y (U, +1,,)C05(0-7) = (U, +10,,)sin(6-7,))- (25¢)

Substituting equations (5), (10), (13), (21) and (22) in the
boundary conditions (23) and (24), the boundary conditions for
the inner surface are transformed as follows :

_(Six ), +(§lxx ) Jeema _g (20)

_(Siy )i N (giy )i ) ei(gE+QTa) =0

(s2),+(5) e <o

_(Si)i + (51 ) } gl€70m) = (26)

and for the outer surface
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(S0, +(5x), Jem ™ <0,
:(Sxy )i +(§xy )i Jeugama) -0
:(Szx)i +(Sx )i}ei@%) -0,

(s.),+(5) Je“ﬁ*‘”a) =0 (27)
v;here
Six = O-S(eéAio +e§|310 +e§Azo +engo +eg B30)
. (28a)
+) (€A, +€B, +elA, +€1B, +E A, +eB, +eB, )
n=1
Sy =0. (f01A10+ fo2Blo+ f03A20+ fOABzo)
+Z( fnlAin + fnzBln + 1:nsAQn + 1:n‘lBZn + anASn + fneB3n)
n=1 (28b)
iz = 0-5(géA10 + 902810 + ggAzo + gngo)
© (28c)
+Z(giA1n + ngm t gr?AZn + g:BZn + ggABn + gI?B3I'I)
n=1
5y =05(%A +HiBy + Ay +yBy 1Y A
® (28d)
+ ) (G A+ 0B, + 0y, + 01y, + GiA, +07B, +1TA, )
n=1
05( 0A10+e§Bm+e§A20+e§BZO+e§B3O)
+Z(e Ain +e§Bln +er?A2n +e:B2n +er?A3n +er?B3n +er8184n)
n=l (29a)
S, =05(fyA + 7By + 7A, + 1By
+Z( flAin + fn2 Bln u fnaAZn u anBZn t fnsA':m t fn683n)
n=1 (29b)
=0 (goAm u goBlo t goAzo + go 20)

(29¢)
+Z(g Aln-l—gnBln-}'g A2n+gnBZn +g A& +gn 3n)
05(h0A\0+hOBm+h3Am+h B+ A )
+Z(gr11A1n+g§ +g A2n+gnBZn+g A3n+gnB +hBA4n)

" (29d)
glxx :0.5(62K30+62E30)
+i(axln +é§§1n +éix2n +gr:§2n +éixﬁn +éi§3n +§;K5n)
" (30)
5, =0.5(?ZZ\30 Jf;aso)
+Z(Tlnﬂ1n +T§Em +?i_Azn +?§§2n +?i/_\3n +T:§3n)
n=1 (30b)

—1 —5— —6—
Sx =0.5(g0A30+gOBao)

. (300)
—1—  —2= —3—  —4=  —5—  —f—
+Z(gnA1n +gnBln+gnA2n+gnBZH +gnA3n+gnBsn)
n=1
§1r = 0.5(52'_%0 +Hg§30)
+Z(Hﬁﬂ1n +H§ Eln +Hi£2n +H‘r:§2n +Hix3n +Hg §3n +H; KSn)
"~ (30d)
Sy =0. 5(60&0 +égE30)
(31a)
S[1— =2 -3—  —4= =5 —6— 8=
+Z(en Aun +enBln +€n Aan +€n B2n +enA3n +€nBan +€n BSn)
n=1
§xy = 0.5(?22\30 +TZ§30)
e (31b)
+Z(f P+ 1B+ T, o+ 1B+ 1 A+ 1B
S = 0.5(goA3o + gOBso)
v (31c)
Z(g A1n+g Bm+g A2n+g BZn+g A, +0, B3n)
n-1
S, = 0.5(ho Az +Hg§30)
(31d)

+Z(h A +10Bun 41 A+ Ban 41 A+ Bon + 1B
n=1
—8
The equations for eﬁ ~ hn are given in Appendix A. The

boundary conditions along both the inner and outer arbitrary
surface cannot be satisfied directly. Therefore, performing the
Fourier series expansion to (23) and (24) along the boundary, the
boundary conditions are expanded in the form of double Fourier
series. In the symmetric mode, the necessary boundary
conditions for the inner surface are obtained as

iem[E:mAm + El;oB10 + EamoAZO + ELAmoBZ0 + EZnOASO
) (32a)
+Z(E:nn A” + E’;n Bln + E’ramAZn + E:m BZn + E’Zn&n + E’rﬁm BSn + E;n Asn )]COS mi=0

n=1

i [Fl:no/-\o + F‘;oBm + Flfno:%o + P;OBZO
T (32b)
+Z(p’mnAm + BB, + FonA, + B, + FA, +FuB, )]sin mo=0

n=1

Z ‘9m[@'1m0A0 +Gf”°Bm +@;°Azo t GﬁﬂoBm

i (32c)
z 1 2 3 4 5 6

+Z(Gmn Am + Gmn Bln + Gmn A2n + @mn B2n + GmnAgn + G’mn BSn )] cos m9 = 0
n=1

i&m[i'lfmo/-\m + leznoBm + HL;OAZO + HL:OBZO + HL;OASO

m=0

d 1 2 3 4 5 6 7 (32d)
+Z(HlmnAn + M Bln + HLmnAZn + M an + HlmnAgn + M BSn + Hl'mm%n )] cosmd=0

n=1
and for the outer surface
25 [E oAt E2 Byt ESOAZO t E;OBZO + EioBso
(333)
+Z<Er1nn Am + Erfm Bln + Erin AZn + E:m BZH t Ersnn ASn t Er?m B3n + Ersm BSn )]COS mé=0
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Z [FIT]I.OALU t FrTfOBl(] t Fr:OAZO t Fr:OBZO t
" (33b)
+Z(FrinAin + Fn%nBln + Fr:nAZn u Fr:nBZn + FEnA3n u Fn?nB3n )]Sin mo=0

m
n=1

Z n [Grlnvo + Grio By+ GrsnoAzo u G:lo By
i (33c)
+Z(Gim Aln + G:m Bln u Grf\n AZn + G:n BZn + Gr?m &n u Grf\n BSn )] cosmg =0

n=1

ng[H;on + anuoBlo + H;OAQO + H;OBZO +HnamBso
m=0

m m

+Z(H;mAin t Hrmeln +HSHAZn + H:’IHBZH t HsnAzn +HI§1HB3n t HrinBEH)]Cosmezo (33d)
n=1

Similarly, for the anti symmetric mode, the boundary conditions
for the inner surface are

o =5 _ —6 _

Z [Bro Ax + BroBy

= (342)
o (—1 _ -2 _ -3 _ —4 _ =5 _ —6 _ =1 _

+Z(Emn A+ B Brn + B Agn + B Ban + B Acn + B Ban + B Aen j]sin mg=0
n=1

o =5 _ —6 _

z [Pono Aap + oo Bao

" (34b)
o (—1 _ —2 _ -3 _ —4 _ —5 _ —6 _

+Z(pmn Aun + Fon Ban + Fon Aon + B Ban + Fon Agy + B Ban ]]COS mé=0
n=1

—6 _
[@mo Ax +BoBa

s

3
n
[N

o (—1 _ —2 _ -3 _ —4 _ —5 _ —6 _ (34C)

+Z(Gmn Aln +G’mn Bln +Gmn AZn +Gmn BZn +Gmn ASn +G’mn an j]Sin me = 0

n=1

o —5 _ —6 _

Z (Mo Aw + Mo Ban

" (34d)
o (—1  —2_ =8 _ —4_ =5 _ —5_ —1_

+Z[Hlmn Am + M Bin + i Aon + K Ban + Mo Asy + Hn Ban + Hin Aso j]sian:O

)

and for the outer surface are

z [E;oﬁso +Eri|0§30

" (352)
o=l — =2 =8 - 4= 5= =6~ =8\

+Z(Emn Aun + Emn Bin + Emn Aon + Em Ban + Emn Asa + Em Ban + Emn Bsn)]SIan:O

n=1

o =5 — =6 —

Z [FroAs + FroBaxo

"0 (35h)
(=l — —2 - =3 — 4= =5— —b—

+Z(an At + F o Bin + F o Azn + Fan Ban + Frn Asn + Fn BSn)]CosmH =0

n=1

e TR

Z[GmoA30+GmoBao

m (35¢)
(1 — =2 — =3 —  —4— =5 —  —§— \

+Z(Gmn Aun +Gmn Bin + G Azn + Gmn Ban + G Asn + G Ban )]Sln mg =0

n=1

o =6 =

Z [HnoAs + HmoBao

" (35d)
D=t - 3= —4— 5= —f = g — |

+Z(HmnAln+HmnBln+HmnA2n+HmnBZn+HmnA3n+HmnB3n+HmnB5n)]S|nm9:0

n=1

Ponnusamy/ Elixir Mech. Engg. 39 (2011) 5033-5040

The frequency equations are obtained from the inner and
outer boundary conditions of the equations (32) and (33), for the
symmetric mode, and for the antisymmetric mode, the frequency
equations are obtained from the equations (34) and (35) by
truncating the series to N+1 terms, and equating the determinant

of the coefficients of the amplitudes A, ,B,,, Ain and Bin

(i=ZL 2,3,4) to zero. Thus the frequency equation for the
symmetric mode is obtained as

2 7

T,
-
i
m,
-

Egn [ EZa E;n E’;n 0 E%1 L E1DN Ew 0 L 0
M M M MMM M ML M M M M M M
N R | 1 5 § 7 7

By Er;u Er;n Bvw Bw 0 Bu L B B L B B L Bw 0 L 0
1 4 | | 5 §

Fo Fo Po By 0 0 K L Ry LBy 0L 0 0L 0
NN A R
Foo Fo Pio Pjo 0 0 Fu L Fa P L P 0L 0 0L 0
A 1 1 5 §

Bo G G B 0 0 G L B L 8y 0L 0 0L 0
M M M MMM M ML M M M M M M
T2 3 1 1 5 5

B Go G G 0 0 Bu L Bw Bu L BB 0L 0O 0L 0
R N i | 5 57 7

Hy Hy Mo Mo Mo 0 Hy L Hoy Mo L M My L Mw 0 L 0
M M MMM MM ML M M M M M M 0
N | § i 7 =
Ho H"r;u H‘gm Hyo  Hio 05 K L H;w lesﬂ L H‘Q{N Hio L Hw 0e L (8)
1 4 1 1

B, Ey, Ey E 0 E E L E E, L E, 0 L 0 E L E,
M M M M M MM ML M M M M M M
o Ew By Ey 0 By By L By By L Ey 0L 0 E L E
Fp By R Fp 0 0O R LR R LF 0L 0 0L 0
M M M MMM M ML M M M M M M
Fl, FL FOF! SR FEoL OF L L

GNlo GNZ“ GNSU Gb’JD g 8 GNll L G'fN GNﬁl L GhéN g L 8 g L g
w G By By oy oy o1 oy

M M M MM M M ML M M M M M M
Gy Gy Gy G, 0 0 G, L Gy G, L Gy, 0L 0 0L 0
AR R R 0 W KL R UK o Lo WL K (3p)
M M M M M M ML M M M M M M
Hio Hio Hi Hip 0 Hi Hy LoHy o HL LOHG 0L 0 Hy LOH,

Similarly, the frequency equation for antisymmetric mode
of vibration is given by

-5 - -1 —6 - =7 —
B Bo By L By By L By Bx L By 0 L 0
M M M M L M M M M M M
—5 —6 -1 -1 —6 —6 =1 =1
Er;u g»éu gzu L E;w ggl L EZN B L Bw 0 L 0
By Fo Fu L P Fo L PFo 0 L 0 0 L 0
M M M M L M M M M M M
- = -1 — —5 —5
Fvo P Fu L P By L Pa 0 L 0 0 L 0
-5 = -1 —i —5 —5
G G G L By G L & 0 L 0 0 L 0
M M M M L M M M M M M
-5 = -1 — —5 —5
G G B L Bu G L G 0 L 0 0 L 0
- =  —1 — —5 — =1 —7
Ho Moy Hu L Hy My L Hw Hy L My 0 L 0
M M M M L M M M MM M
—s - — — —s — =1 —7 -0
H"rsw Hléu Hu L Hiw ”‘241 L sz Ha L Hiw Oa L (g
— — -1 =1 = — — —
En Ew Eu L Ew Ex L Ew 0 L 0 En L Ew
M M M M L M M M M M M
Eo Ew Eu L Ew Eo L Ew 0 L 0 Eu L Ew
Fu Fu Fu L Fo Fo L F 0O L 0 0 L 0
M M M M L M M M M M M
—5 =5 1 —5 —5
Fu Fw Fu L Fm Fu L Fw 0 L 0 0 L 0
5 =6 =1 —i —5 —5
Go Go Gu L Gw Gu L Gw 0 L 0 0 L 0
M M M M L M M M M M M
G Gw Gu L G B & oL o oL o G0
5 5 1 =1 5 =5 —8 —8
Ho Ho Hu L Hw H: L Hw 0 L 0 Hu L Huw
M M M M L M M M M M M
N T —1 —5 —5 —8 —3
HNU HNU HNl L HNN HNl L HNN 0 L 0 HNl L HNN
where
f |
i L
— J
B = (ZSH/H)ZIB K (R‘. , 9)cos mede,,
i=1
i |
J & i .
Fon =(2¢, /”)ZL f) (RL. , 0)sm modo
I:l -1
f |
i G
G =(2¢,/7)D. . J (R. , 9)cos medeo .
i=1
h I
] 6 .
M = (26, /7) X[} 1! (R,0)cos mode (38)
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1
E) :(zgn/n)ZJj el (R,0)cosmada,

=1~
|

Fi =(25,/7)> (" 1) (R,6)sin mode
i=1 "

|
Gl :(Zgn/ﬂ)z‘[:l ] (R, 6)cosmade
i=1 "
|
H, =(2¢,/7) X[ 0 (R,.6)cos made (39)
="t

where j=1,2,3,4,5,6,7 and 8, &, =1/2 for m=0 and

&, =1 for m>0, |is the number of segments, P%,L is the

coordinate r at the inner boundary, and R; is the coordinate r
at the outer boundary. The equations for Etrjnn ~ Hl”rjnn can be
obtained by replacing cOSn@ by Sinnd and sinné by
cosné in Eqgs.(38) and (39).
Particular case

For an isotropic materials ¢; =C33 =A+2u,Cyy =C3=41,

C, =Cgand Cg =(Cy—C,)/2, where Aand g are Lames’

constants. Using the values in various relevant relations and
equations, the preceding analysis will be reduced to free
vibrations of an isotropic hollow cylinder of both inner and outer
arbitrary cross section immersed in fluid.
Numerical resultsand discussion

In order to illustrate the nature and general behavior of the
solution, some numerical examples are considered in this
section. The resulting frequency equations of the symmetric and
antisymmetric cases of the cylinder of general cross section
immersed in a fluid is given in (36) and (37) are transcendental
in nature with respect to the dimensionless frequency €2 and
dimensionless wavenumber ¢ . The analysis is carried out for

elliptic, cardioid cross sections by fixing the dimensionless
frequencies €2 and the dimensionless complexwavenumbers ¢

are obtained. The computation of cylindrical Bessel functions of
complex arguments are performed using the method provided by
Zhang and Jin (1996). The computation of Fourier coefficients
given in (38) and (39) are carried out using the five point
Gaussian quadrature. To obtain the roots of the frequency
equation, the secant method applicable for the complex roots
(Antia (2002) ) is employed. The material chosen for the
numerical calculation is Zinc, its properties are as follows: for
the solid the elastic constants

are ¢, =1.628x10"Nm2, ¢, = 0.362x 10" Nm 2,

¢, =0.508x10" Nm™2, ¢,y = 0.627x10" Nm™?
c,, =0.385x10" Nm™ and density p=7.14x10*kgm™= and for
the fluid the density p" =1000kgm™ and phase velocity

¢ =1500ms™. The same fluid is assumed to be inside and
outside the cylinder for the numerical calculations.

In the present problem, three kinds of basic independent
modes of wave propagation have been considered, namely, the
longitudinal and two flexural (symmetric and antisymmetric)
modes for geometries having more than one symmetry. For
geometries having only one symmetry, two modes of wave
propagations are studied since the two flexural modes are
coupled in this case.
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Hliptic cross-section with elliptic cavity

The geometrical relations of an elliptic cross-sectional
cylinder given by Nagaya (1983) and are used for numerical
calculation and are given below:

R,/bl :(az/bl)/[cosz9+(a2/b2)2 sin? HT/Z

" :;r/2—tan’1[(bz/az)z/tanﬁl*] ,for 6 <7/2
n=n/2, 5’|*=77/2

7 =7x/2+tan"t [(bz/a2 )2/‘tan H,*H forg >z/2  (40a)

for the outer surface and
R /by =(a1/b,)/ | cos” 6+ (a/b,)"sin” 9}]/2

7 =ml2-tan|(b/a)" /taney | ford < /2
n=n/2,6 =x/2

n=rf2etan | (b/a,) fland] | forg > /2

for the inner surface, where @, and a, are the length of inner

(40b)

and outer semi major axis, and b1 and b2 are the length of semi
minor axis of an elliptic cross section. Also & = (4 +¢9|_1)/2

and R, is the coordinate r at the boundary I, , 7, is the angle

between the reference axis and the normal to the segment.

The Eq. given in Eqg. ( ) are used directly for the frequency
analysis, and three kinds of basic independent modes of wave
propagation are studied. In case of the longitudinal mode of
elliptical cross section, the cross section vibrates along the axis
of the cylinder, so that the vibration and displacements in the
cross section is symmetrical about both major and minor axes.
Hence, the frequency equation is obtained by choosing both

terms of N and M as 0,2,4,6,... in (36) for the numerical

calculations. In this method, the boundary in the range & =0

and @ =7 is divided into 20 segments, such that the distance
between any two segments is negligible and integration is
performed for each segment numerically by using the five point
Gaussian  quadrature.  The  nondimensional  complex
wavenumbers are computed for 0<Q<1.0, for different
aspect ratios by fixing the frequency (2, using the secant
method applicable for the complex roots.

In the case of flexural mode of elliptical cross section, the
vibration and displacements are antisymmetrical about the major
axis and symmetrical about the minor axis. Hence, the frequency
equations may be obtained from (37) by choosing
n,m=135,... Two kinds of flexural (symmetric and

antisymmetric) modes are considered in the case of elliptic
hollow cylinder immersed in a fluid.
Dispersion curves

The results of longitudinal and flexural (symmetric and
antisymmetric) modes are plotted in figures. The notations Lm,
Fs and Fa represents the longitudinal mode, flexural (symmetric
and antisymmetric) modes respectively. Similarly Re and Im
represent the real and imaginary modes in the order. The 1, 2, 3
and 4 refers to the first, second, third and forth modes
respectively. Fig.1, shows, the dispersion curve drawn between

non-dimensional 5/7[ versus Q/?Z' for a longitudinal modes of
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transversely isotropic fluid-loaded cylinder. From the Fig.1, it is
observed that, the behaviour of present method coincides with
the graph obtained by Berlinear and Solecki (1996). Similar
comparison is made also with fluid-loaded transversely isotropic
and isotropic circular cylinders. It is observed that both cases the
dispersion behaviors are same.

Fresent Metbhod Flad- Gled and srmersed
1 =bad

ed 2 Dl
|
64

n

) ( 4 B/ 0 3 1 |
Fig. 1 Comparision of author’s method with M. J. Berliner
and R. Solecki (1996). Dispersion curwes for dimensionless

versus dimensionless
A graph is drawn between non-dimensional frequency
versus dimensionless wave number |g| for an elliptic cylinder
for the longitudinal and flexural (symmetric and antisymmetric)
modes of vibrations for the aspect ratios a /b =a,/b, =15
with thickness b, /b, =0.5 is shown in Fig.2. From the Fig.2, it
is observed that as the non-dimensional frequency € increases,

the dimensionless wave number |g| are also increases.

- — ==l
ot

2.5
<. v
[ — = = i

ook

o 06 o8 1

Fig.2 Non-dimensional frequency Q2 wersus dimensionless
wavenumber |¢| for a /b =a,/b, =1.5 with thickness

b /b, =05

The energy displacement is more in the first two modes of
vibrations Lml, Lm2 as compared to the other modes of
vibrations Lm3 and Lm4. This is the proper physical behavior of
a cylinder immersed in fluid.

A comparison made between the real and imaginary modes
of vibration for longitudinal modes of elliptic cross-sectional
cylinders for the aspect ratios a /b, =a,/b, =1.5 with thickness

b, /b, =0.5 is shown in Fig.3.

—e—Rel — o Re2
o Re3 ——Iml
Ien2 In 3

Re () and i)

Q :
Fig.3 Non-dimensional frequency 2 wersus dimensionless
real (¢) and imaginary (g) of wavenumber for

a,/b =a,/b, =1.5 with thickness b /b, =0.5
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From the Fig.3, it is observed that as the frequency
increases, the wave number increases for the real part, while it
decreases for the imaginary part. The Fig. 4, shows the non-
dimensional frequency ) versus dimensionless wave number

|g| for an elliptic cylinder for the flexural (symmetric and
antisymmetric) modes of vibrations for the aspect ratios
a,/b =a,/b, =15 with thicknessb, /b, =0.5. From the

Fig. 4, it is observed that, the first modes of flexural (symmetric
and antisymmetric) modes, the energy transfer from solid into
fluid is very high in comparing with the second and third modes
of vibrations. This shows that at the point of contact between
solid and the fluid, the displacement of particles is more than the
second and third mode of vibrations.

P

Lz
+ —‘.-.n-—"'

i} =

o oA 4

Fig.4 Non-dimensional frequency () \ersus dimensionless
wavenumber |g|for a,/b, =a,/b, =1.5with thickness

b, /b, =0.5 for flexural (symmetric and antisymmetric)

modes of an elliptic cross-section.
A dispersion curve is drawn between the non-dimensional

frequencies €2 versus dimensionless wave number |g| for the
longitudinal modes of elliptic cross-sectional cylinder for

different thickness b, /b, =0.3,0.5,0.7,0.9, 1.5 and 2.0 is

shown in Fig.5. It is observed that as the thickness of the
cylinder is increased, with increasing the dimensionless
frequency, the non-dimensional wave number is decreased. This
is the proper physical behavior of a cylinder with increasing
thickness.

-
-

-

b - - . -

Fig.5 Non -dimensional frequency Q wersus dimensionless
wavenumber |¢| for the longitudinal mode of vibration for

different thickness of elliptic cylinder for the aspect ratio
a,/b =a,/b, =15

Conclusions

In this paper, the wave propagation in a cylinder of both
inner and outer elliptic cross section immersed in fluid is
analyzed by satisfying the boundary condition on the irregular
boundary using the Fourier expansion collocation method and
the frequency equation for the longitudinal and flexural
vibrations are obtained. Numerically the frequency equations are
analyzed for elliptic cross sectional cylinder immersed in fluid.
The computed non-dimensional wave numbers are plotted for
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the material Zinc. The results of circular section are compared
with exact results and they show very good agreement. The
method proposed in this paper can be used to analyze the
vibration of a cylinder of any cross section with appropriate
geometric relation.
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Appendix A

e = 2w {n(n-1)J, (ax
—{(aia) [CuCOS (6- }/I)+C123|n2(9 7, }mggd{ +(ezax)]cosng (A1)

ax)J,., (eax)}cos2(6-7,)

+200s {(n-1)J, (¢,2) (0,2
8 = 20t {(n-1)J, (ot

a)J,,, (cax)}sin2(6-7)sinng, =12
)—(aaa)JM(asax)}cosz(e—yi)cosn9

+Ci {2(0:331)Jm(ocsax)—{(o;aa)Z ~2n(n-1)J, (aaax)”sin ndsin2(6-7,)
el = 2w[{n(n-1)Y, (X + (@)Y, ()} 05 2(0- )

—[(aia) |:C11COS (6- }’I)+0123|n2 9- }/I):|+C13gd} (erax)]cosnd (A3)

(
) ()Y

aa)Y,,, (aax)|cos2(0-7, )cosn

(A2)

+2nce {(n-1)Y, (ct
€ = 2nCes {(n-1)Y, (e, ) -

a,ax)}sin2(0-7)sinng, =56

+Eae{2(a7a)YM(a7ax)—{(a7a) —2n(n—1)Yn(a7ax)”sinn95in2(9—yi) (A9
+ =0 pJ, (S,ax)cosné (A5)
8 = 0% p,H (5,ax)cosnd (A6)
i {z(aa) o 0@x) - :((ala)z 2n(n- 1)) (aax)”st(e 7 )cosnd A7
+20{(n-1)J, (@ax)+(e;a)J,., (a;ax) cos(6-; )sinnd) i =1,2
£ =2n{(n-1)J ( ax)-(ea)J,., (a,ax)}sin2(0- 7, Jcosng
[{ n(n- 1]Jn(a3ax )-2(a Ml(asax)}cosZ((?—Vi)sinne A9
i { a@)Y, {( @ (iax)”sinZ(e—yi)cosne 9
+2n(n-1)y, (aiax)+(aia)Yﬂ+1(a.ax)}cos(e—yi)sin ng,i=56
7 =2n{(n-1)Y, (aax) (o), . (a,ax)}sin2(6- 1 )cosne 10
/{8 20 (0, ()2t ) cos2(- o
f'=0 (A1)
f8=0 (A12)
0, =Cu(g+ {ncos(n 119+}/|)J” a J aax)cos(e—yi)cosne},i:u (A13)
0= g{ (n 19+;/|) n(agaX)( a)J,(a )sin(e—yi)sinms'} (A14)

gin:Eu(g+d‘){ncos(n71€+;/i)Jn(aiax)—(aia)JM( ax)cos(0- y,)cosn€}| 5,6
9 :g{ncos(nflmyi)Jn(a7ax)—(a7a)3n+l(a7ax
g =0

9, =0

The quantities éln : an are obtained by replacing COSNé by
sinn@ and Sinn@ by coSNA in the relevant equations.

)sin(6-y; )sin ne} (A15)
(A16)
(A17)



