
EL-Zohny et al./ Elixir Appl. Math. 39 (2011) 4948-4950

4948

Introduction

Definition and Background

Definition 1:

Abstract graphs: An abstract graphs G is a diagram consisting

of a finite non empty set of the elements, called "vertices"

denoted by V(G) together with a set of unordered pairs of these

elements, called "edges" denoted by E(G). The set of vertices of

the graph G is called "the vertex .set of G " and the list of edges

is called "the edge .list of G " [2,3].

Definition 2:

Consider a geometric graph G(V,E) where

G(V)={{v0,e0},{v1,e1},{v2,e2},…….{vn,en}} and E(G) = {e
1
},

we are called this graph(graph with complex vertices).

To represent these graphs we must show that there are three

types of these graphs:

1- Null graphs which their vertices are graphs.

2- Graphs which their vertices are similar. [1].

Definition 3:

Null graphs which their vertices are graphs:

We know that a null graph is a graph containing no edges and

every vertex is isolated. By definition(1) we can define a new

null graphs (which their vertex are graphs), consider the graph

Gn(V 0 , e0 } , {v1 , e1 } , {v2 , e2 }

,………….{vn , en }} and E(G) = Φ . See Fig.(1) [1].

Definition 4:

Graphs which their vertices are similar: Consider the

geometric graph G(V , E) where V(G) =V
0
,V

1


0
 = {{v0 , e0 } , {v1 , e1 } , {v2 , e2 },………….{vn , en

}} and V
1
 == {{v0 , e0 } , {v1 , e1 } , {v2 , e2} ,………….{vn , en

}}

where V is the same as V
1

 to represent this graph we will

take the smallest cir-cle which contains vertices of

V

0
and the

smallest circle which contains vertices of V and connected

between them this connecte is E(G) =e
1
.[1].

Definition 5:

Spanning tree for a graph G is a subgraph of G that contains

every vertex of G and is a tree[4].

Main results:

We will discuss two new algorithms for graph with graphs

vertices.

I. algorithm for null graph which vertices is a graph:

Input:

Null graph with graphs vertices V
n
 , V

nm
 where n is outer

vertices , m is its internal vertices.

Algorithm body:

Create a subgraph that visit each outer vertices V
n
 then its

internal vertices V
nm

i

Proceeding from vertex to vertex but moving along internal

spanning tree T of that graph.

1. initialized T to have all vertices of G "which have outer

vertices".

2. select the smallest superscript k for , 1  k  i , 0  n  j.

V
n mk

 has not already been visited.

If no superscript is found , then,

Go to step 3 , otherwise,

Perform the following:

2a. attach the internal edge {V
1m1

,V
n2m2

} to T, and visit V
1mk

.

2b. assign V
1mk

 to V
nmk

 and ,

2c. return to step 2.

End while.

3. output T .

end algorithm.

Example 1:

For a null graph shown in fig(1) we can compute its algorithm as

follows:

Tele:
E-mail addresses: elzohny_7@yahoo.com,
randa_salam@yahoo.com, hendelmorsy@yahoo.com

 © 2011 Elixir All rights reserved

New algorithm for graph with graphs vertices
EL-Zohny.H, Salam. R and EL-Morsy.H

Department of Mathematics, Faculty of Science Al-Azahar University, Cairo, Egypt.

ABS TRACT

In this paper we will compute a new algorithm for new graph which its vertex is a graph.

 © 2011 Elixir All rights reserved.

ARTICLE INFO

Article his tory:

Received: 29 July 2011;

Received in revised form:

22 September 2011;

Accepted: 29 September 2011;

Keywor ds

Algorithm ,

Graphs vertices.

Elixir Appl. Math. 39 (2011) 4948-4950

Applied Mathematics

Available online at www.elixirpublishers.com (Elixir International Journal)

EL-Zohny et al./ Elixir Appl. Math. 39 (2011) 4948-4950

4949

Fig(1)

Input:

Null graph with graphs vertices V
nm

 , 0 n  3 , 0 m  5.

Algorithm body:

Create a subgraph that visit each outer vertices V
n
 then its

internal vertices V
nm

i

Proceeding from vertex to vertex but moving along internal

spanning tree of that graph.

1. initialized T to have all vertices of G "which have outer

vertices".

2. select V
0
 and visit all internal vertices V

01
 to V

03
.

2a. attach the internal edges { V
01

,V
02

}……..{V
04

,V
01

} to T.

2b . go to step 2 for the other vertices V
2
 to V

4
.

End while.

3. output T.

end algorithm.

Algorithm for graph which vertices is graph:

Input:

Connected graph G(V , E), V(G) = {V
0
,V

1
}, V

0
=

{{V
0
,e

0
},……{v

n
,e

n
}}, V

1
={{v

0
,e

0
},{v

1
,e

1
},…..{v

n
,e

n
}}.

Algorithm body:

Create a subgraph that visit each outer vertices V
n
 then its

internal vertices V
nm

i

Proceeding from vertex to vertex but moving along internal

spanning tree T of that graph , then along it's outer spanning tree

T'.

1. initialized T to have all the vertices of G and no edge.

2. let E the set of all edges of G , m = 0.

3. while (m  n-1)

3a. visit outer vertices V
n
 , then visit internal vertices V

nmi
.

3b. attach the internal edge { V
1m1

, V
n2m2

} to T, and visit V
1mk

.

3c. attach the outer edge{ V
1
,V

2
}to T' and visit V

nmk
,

3d. return to step 3.

End while.

4. output T,T'.

end algorithm.

Example 2:

Consider a graph shown in fig(2).

Fig (2)

Input:

Connected graph G(V , E), V(G) = {V
0
,V

1
}, V

0
= {{V

00
,V

01
}},

V
1
={{v

10
,V

11
}}.

Algorithm body:

Create a subgraph that visit each outer vertices V
n
 then its

internal vertices V
nm

i

Proceeding from vertex to vertex but moving along internal

spanning tree T of that graph, then along it's outer spanning tree

T'.

1. initialized T to have vertex v
0
.

2. let E the set of all edges of G , m = 0.

3. while (m  1).

3a. visit outer vertex V
0

 then visit V
00

,V
01

.

3b. attach the internal edge {V
00

,V
01

} to T.

3c. attach the outer edge e
1
 to T' and visit V

1
.

3d. return to step 3.

End while.

4. output T,T'.

end algorithm.

Example 3:

For a graph shown in fig(3).we have:

Fig(3)

Input:

Connected graph G(V , E), V(G) = {V
0
,V

1
,V

2
}, V

0
=

{{V
00

,V
04

},{V
04

,V
03

},{V
04

,V
02

},{V
04

,V
01

}},

V
1
={{v

10
,V

14
},{V

14
,V

13
},{V

14
,V

12
},{V

14
,V

11
}}.

V
2
 = {{V

20
,V

24
},{V

24
,V

23
},{V

24
,V

22
},{V

24
,V

21
}}.

Algorithm body:

Create a subgraph that visit each outer vertices V
n
 then its

internal vertices V
nm

i

Proceeding from vertex to vertex but moving along internal

spanning tree T of that graph, then along it's outer spanning tree

T'.

1. initialized T to have vertex v
0
.

2. let E the set of all edges of G , m = 0.

3. while (m  2).

3a. visit outer vertex V
0

 then visit V
00

,V
04

,V
03

,V
01

.

3b. attach internal vertices {V
00

,V
04

},{V
04

,V
03

},{V
04

,V
02

},{V
04

,V
01

}

to T.

EL-Zohny et al./ Elixir Appl. Math. 39 (2011) 4948-4950

4950

3c. attach the outer edge e
1
 to T' and visit V

1
.

3d. return to step 3 for the other vertices.

End while.

4. output T,T'.

end algorithm.

Example 4:

For a graph shown in fig(4).

Fig(4)

Input:

Connected graph G(V , E), V(G) = {V
0
,V

1
,V

2
}, V

0
=

{{V
00

,V
01

},{V
00

,V
02

},{V
02

,V
01

}},

V
1
={{v

10
,V

11
},{V

11
,V

12
},{V

12
,V

10
}}.

V
2
 = {{V

20
,V

21
},{V

21
,V

22
},{V

20
,V

22
}}.

Algorithm body:

Create a subgraph that visit each outer vertices V
n
 then its

internal vertices V
nm

i

Proceeding from vertex to vertex but moving along internal

spanning tree T of that graph, then along it's outer spanning tree

T'.

1. initialized T to have vertex v
0
.

2. let E the set of all edges of G , m = 0.

3. while (m  2).

3a. visit outer vertex V
0

.

 then visit V
00

,V
01

,V
02

.

3b. attach internal vertices {V
00

,V
01

},{V
01

,V
02

},{V
00

,V
02

 } to T.

3c. attach the outer edge e
1
 to T' and visit V

1
.

3d. return to step 3 for the other vertices.

End while.

4. output T,T'.

end algorithm.

References:

[1] El-Ghoul,M; El-Zohny,H; Khalil,M,M.: New types of graphs

with graphs vertices. Al-Azhar University ,Cairo,Egypt,2011.

[2] Gibbons, A.: Algorithmic graph theory. Cambridge

University Press, Cam-bridge, UK,1995.

[3] Giblin, P.J.: Graphs, surfaces and homology, an introduction

to algebraic topology. Chapman and Hall . Ltd, London 1977.

[4] Susanna S.Epp, Discrete Mathematics With Application,

Third Edition, Thomson Learning, Inc, 2004.

