
EL-Zohny et al./ Elixir Appl. Math. 39 (2011) 4948-4950 
 

4948 

Introduction  

Definition and Background 

Definition 1: 

Abstract graphs: An abstract graphs G is a diagram consisting 

of a finite non empty set of the elements, called "vertices" 

denoted by V(G) together with a set of unordered pairs of these 

elements, called "edges" denoted by E(G). The set of vertices of 

the graph G is called "the vertex .set of G "  and the list of edges 

is called "the edge .list of G " [2,3]. 

Definition 2: 

Consider a geometric graph G(V,E) where 

G(V)={{v0,e0},{v1,e1},{v2,e2},…….{vn,en}} and E(G) = {e
1
}, 

we are called this graph( graph with complex vertices). 

To represent these graphs we must show that there are three 

types of these graphs: 

1- Null graphs which their vertices are graphs. 

2- Graphs which their vertices are similar. [1]. 

Definition 3: 

Null graphs which their vertices are graphs: 

We know that a null graph is a graph containing no edges and 

every vertex is isolated. By definition(1) we can define a new 

null graphs (which their vertex are graphs), consider the graph  

Gn(V 0 , e0 } , {v1 , e1 } , {v2 , e2 } 

,………….{vn  , en }} and  E(G) = Φ . See Fig.(1) [1]. 

Definition 4: 

Graphs which their vertices are similar: Consider the 

geometric graph  G(V , E) where  V(G) =V
0
,V

1
  

0
 = {{v0 , e0 } , {v1 , e1 } , {v2 , e2 },………….{vn  , en 

}} and V
1
 == {{v0 , e0 } , {v1 , e1 } , {v2 , e2} ,………….{vn  , en 

}} 

where V is the same as V
1 

 to represent this graph we will 

take the smallest cir-cle which contains vertices of 
 
V 

0 
and the 

smallest circle which contains vertices of V and connected 

between them this connecte is E(G) =e
1
.[1]. 

Definition 5: 

Spanning tree for a graph G is a subgraph of G that contains 

every vertex of G and is a tree[4]. 

Main results: 

We will discuss two new algorithms for graph with graphs 

vertices. 

I. algorithm for null graph which vertices is a graph: 

 

Input: 

Null graph with graphs vertices V
n
 ,  V

nm
  where n is outer 

vertices , m is its internal vertices. 

Algorithm body: 

Create a subgraph that visit each outer vertices V
n
 then its 

internal vertices V
nm

i
 

Proceeding from vertex to vertex but moving along internal 

spanning tree T of that graph. 

1. initialized T to have all vertices of G "which have outer 

vertices". 

2. select the smallest superscript   k  for ,  1  k  i , 0  n  j. 

V
n mk

 has not already been visited. 

If no superscript is found , then, 

Go to step 3 , otherwise, 

Perform the following:  

2a. attach the internal edge {V
1m1

,V
n2m2

} to T, and visit V
1mk

. 

2b. assign V
1mk

 to V 
nmk

 and , 

2c. return to step 2. 

End while. 

3. output T . 

end algorithm.  

Example 1: 

For a null graph shown in fig(1) we can compute its algorithm as 

follows: 
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Fig(1) 

Input:  

Null graph with graphs vertices V
nm

 ,  0 n  3 , 0 m  5. 

Algorithm body: 

Create a subgraph that visit each outer vertices  V
n
 then its 

internal vertices V
nm

i
 

Proceeding from vertex to vertex but moving along internal 

spanning tree of that graph. 

1. initialized T to have all vertices of G "which have outer 

vertices". 

2. select V
0
 and visit all internal vertices V

01
 to V

03
. 

2a.  attach the internal edges { V
01

,V
02

}……..{V
04

,V
01

} to T. 

2b . go to step 2 for the other vertices V
2
 to V

4
. 

End while. 

3. output T. 

end algorithm. 

Algorithm for graph which vertices is graph: 

Input: 

Connected graph G(V , E ), V(G) = {V
0
,V

1
}, V

0 
= 

{{V
0
,e

0
},……{v

n
,e

n
}}, V

1
={{v

0
,e

0
},{v

1
,e

1
},…..{v

n
,e

n
}}. 

Algorithm body: 

Create a subgraph that visit each outer vertices V
n
 then its 

internal vertices V
nm

i
 

Proceeding from vertex to vertex but moving along internal 

spanning tree T of that graph , then along it's outer spanning tree 

T'. 

1. initialized T to have all the vertices of G and no edge. 

2. let E the set of all edges of G , m = 0. 

3. while (m  n-1) 

3a. visit outer vertices V
n
 , then visit internal vertices V

nmi
. 

3b. attach the internal edge { V
1m1

, V
n2m2

} to T, and visit V
1mk

. 

3c. attach the outer edge{ V
1
,V

2
}to T' and visit V

nmk
, 

3d. return to step 3. 

End while. 

4. output T,T'. 

end algorithm. 

Example 2: 

Consider a graph shown in fig(2). 

 
Fig (2) 

Input:  

Connected graph G(V , E ), V(G) = {V
0
,V

1
}, V

0 
= {{V

00
,V

01
}}, 

V
1
={{v

10
,V

11
}}. 

Algorithm body: 

Create a subgraph that visit each outer vertices V
n
 then its 

internal vertices V
nm

i
 

Proceeding from vertex to vertex but moving along internal 

spanning tree T of that graph, then along it's outer spanning tree 

T'. 

1. initialized T to have vertex v
0
. 

2. let E the set of all edges of G , m = 0. 

3. while (m  1). 

3a. visit outer vertex V
0 

 

      then visit V
00

,V
01

. 

3b. attach the internal edge {V
00

,V
01

} to  T. 

3c. attach the outer edge e
1
 to T' and visit V

1
. 

3d. return to step 3. 

End while. 

4. output T,T'. 

end algorithm. 

Example 3: 

For a graph shown in fig(3).we have: 

 
Fig(3) 

Input:  

Connected graph G(V , E ), V(G) = {V
0
,V

1
,V

2
}, V

0 
= 

{{V
00

,V
04

},{V
04

,V
03

},{V
04

,V
02

},{V
04

,V
01

}},  

V
1
={{v

10
,V

14
},{V

14
,V

13
},{V

14
,V

12
},{V

14
,V

11
}}. 

V
2
 = {{V

20
,V

24
},{V

24
,V

23
},{V

24
,V

22
},{V

24
,V

21
}}. 

Algorithm body: 

Create a subgraph that visit each outer vertices V
n
 then its 

internal vertices V
nm

i
 

Proceeding from vertex to vertex but moving along internal 

spanning tree T of that graph, then along it's outer spanning tree 

T'. 

1. initialized T to have vertex v
0
. 

2. let E the set of all edges of G , m = 0. 

3. while (m  2). 

3a. visit outer vertex V
0 

 

      then visit V
00

,V
04

,V
03

,V
01

. 

3b. attach internal vertices {V
00

,V
04

},{V
04

,V
03

},{V
04

,V
02

},{V
04

,V
01

} 

to T.
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3c. attach the outer edge e
1
 to T' and visit V

1
. 

3d. return to step 3 for the other vertices. 

End while. 

4. output T,T'. 

end algorithm. 

Example 4: 

For a graph shown in fig(4). 

 
Fig(4) 

Input:  

Connected graph G(V , E ), V(G) = {V
0
,V

1
,V

2
}, V

0 
= 

{{V
00

,V
01

},{V
00

,V
02

},{V
02

,V
01

}},  

V
1
={{v

10
,V

11
},{V

11
,V

12
},{V

12
,V

10
}}. 

V
2
 = {{V

20
,V

21
},{V

21
,V

22
},{V

20
,V

22
}}. 

Algorithm body: 

Create a subgraph that visit each outer vertices V
n
 then its 

internal vertices V
nm

i
 

Proceeding from vertex to vertex but moving along internal 

spanning tree T of that graph, then along it's outer spanning tree 

T'. 

1. initialized T to have vertex v
0
. 

2. let E the set of all edges of G , m = 0. 

3. while (m  2). 

3a. visit outer vertex V
0 

. 

    then visit V
00

,V
01

,V
02

. 

3b. attach internal vertices {V
00

,V
01

},{V
01

,V
02

},{V
00

,V
02

 } to T. 

3c. attach the outer edge e
1
 to T' and visit V

1
. 

3d. return to step 3 for the other vertices. 

End while. 

4. output T,T'. 

end algorithm. 
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