New algorithm for graph with graphs vertices

EL-Zohny.H, Salam. R and EL-Morsy.H
Department of Mathematics, Faculty of Science Al-Azahar University, Cairo, Egypt.

ARTICLE INFO

Article history:

Received: 29 July 2011;
Received in revised form:
22 September 2011;
Accepted: 29 September 2011;

Keywords

Algorithm ,
Graphs vertices.

Introduction

Definition and Background

Definition 1:
Abstract graphs: An abstract graphs G is a diagram consisting of a finite non empty set of the elements, called "vertices" denoted by $\mathrm{V}(\mathrm{G})$ together with a set of unordered pairs of these elements, called "edges" denoted by $E(G)$. The set of vertices of the graph G is called "the vertex .set of G" and the list of edges is called "the edge .list of G " $[2,3]$.

Definition 2:

Consider a geometric graph $G(V, E)$ where $G(V)=\left\{\left\{\mathrm{v}_{0}, \mathrm{e}_{0}\right\},\left\{\mathrm{v}_{1}, \mathrm{e}_{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{e}_{2}\right\}, \ldots \ldots . .\left\{\mathrm{v}_{\mathrm{n}}, \mathrm{e}_{\mathrm{n}}\right\}\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{e}^{1}\right\}$, we are called this graph (graph with complex vertices).

To represent these graphs we must show that there are three types of these graphs:
1- Null graphs which their vertices are graphs.
2- Graphs which their vertices are similar. [1].

Definition 3:

Null graphs which their vertices are graphs:
We know that a null graph is a graph containing no edges and every vertex is isolated. By definition(1) we can define a new null graphs (which their vertex are graphs), consider the graph $\mathrm{G}_{\mathrm{n}}(\mathrm{V} \square)$ such that $\mathrm{V} \square(\mathrm{G})=\left\{\left\{\mathrm{v}_{0}, \mathrm{e}_{0}\right\},\left\{\mathrm{v}_{1}, \mathrm{e}_{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{e}_{2}\right\}\right.$
,$\left.\ldots \ldots \ldots \ldots . .\left\{\mathrm{v}_{\mathrm{n}}, \mathrm{e}_{\mathrm{n}}\right\}\right\}$ and $\mathrm{E}(\mathrm{G})=\Phi$. See Fig.(1) [1].

Definition 4:

Graphs which their vertices are similar: Consider the geometric graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ where $\mathrm{V}(\mathrm{G})=\left\{\mathrm{V}^{0}, \mathrm{~V}^{1}\right\}$
where $\mathrm{V} \square^{0}=\left\{\left\{\mathrm{v}_{0}, \mathrm{e}_{0}\right\},\left\{\mathrm{v}_{1}, \mathrm{e}_{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{e}_{2}\right\}, \ldots \ldots \ldots \ldots . .\left\{\mathrm{v}_{\mathrm{n}}, \mathrm{e}_{\mathrm{n}}\right.\right.$ $\}\}$ and $\mathrm{V}^{1}==\left\{\left\{\mathrm{v}_{0}, \mathrm{e}_{0}\right\},\left\{\mathrm{v}_{1}, \mathrm{e}_{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{e}_{2}\right\}, \ldots \ldots \ldots \ldots . .\left\{\mathrm{v}_{\mathrm{n}}, \mathrm{e}_{\mathrm{n}}\right.\right.$ \}\}
where $\mathrm{V}^{0}{ }^{\square \square}$ is the same as V^{1} to represent this graph we will take the smallest cir-cle which contains vertices of V^{0} and the smallest circle which contains vertices of $\mathrm{V}^{\square \mathrm{D}}$ and connected between them this connecte is $\mathrm{E}(\mathrm{G})=\left\{\mathrm{e}^{1}\right\}$.[1].

Definition 5:

Spanning tree for a graph Gis a subgraph of G that contains every vertex of G and is a tree[4].

Main results:

We will discuss two new algorithms for graph with graphs vertices.

ABS TRACT
In this paper we will compute a new algorithm for new graph which its vertex is a graph.

I. algorithm for null graph which vertices is a graph:

Tele:

E-mail addresses: elzohny_7@yahoo.com, randa_salam@yahoo.com, he ndelmorsy@yahoo.com uter
© 2011 Elixir All rights reserved
Create a subgraph that visit each outer vertices $\mathrm{V}^{\text {u }}$ then its internal vertices $\mathrm{Vnm}_{\mathrm{i}}$

Proceeding from vertex to vertex but moving along internal spanning tree T of that graph.

1. initialized T to have all vertices of G "which have outer vertices".
2. select the smallest superscript k for, $1 \leq \mathrm{k} \leq \mathrm{i}, 0 \leq \mathrm{n} \leq \mathrm{j}$.
$\mathrm{V}^{\mathrm{n}} \mathrm{mk}$ has not already been visited.
If no superscript is found, then,
Go to step 3 , otherwise,
Perform the following:
2a. attach the internal edge $\left\{\mathrm{V}^{1 \mathrm{ml}}, \mathrm{V}^{\mathrm{n} 2 \mathrm{~m} 2}\right\}$ to T , and visit $\mathrm{V}^{1 \mathrm{mk}}$.
2 b . assign $\mathrm{V}^{1 \mathrm{mk}}$ to $\mathrm{V}^{\mathrm{nmk}}$ and,
2c. return to step 2.
End while.
3. output T.
end algorithm.

Example 1:

For a null graph shown in fig(1) we can compute its algorithm as follows:

Input:

Null graph with graphs vertices $\mathrm{V}^{\mathrm{nm}}, 0 \leq \mathrm{n} \leq 3,0 \leq \mathrm{m} \leq 5$.

Algorithm body:

Create a subgraph that visit each outer vertices V^{n} then its internal vertices $\mathrm{V}^{\mathrm{nm}}{ }_{\mathrm{i}}$
Proceeding from vertex to vertex but moving along internal spanning tree of that graph.

1. initialized T to have all vertices of G "which have outer vertices".
2. select V^{0} and visit all internal vertices V^{01} to V^{03}.

2a. attach the internal edges $\left\{\mathrm{V}^{01}, \mathrm{~V}^{02}\right\} \ldots \ldots . .\left\{\mathrm{V}^{04}, \mathrm{~V}^{01}\right\}$ to T .
2 b . go to step 2 for the other vertices V^{2} to V^{4}.
End while.
3. output T.
end algorithm.
Algorithm for graph which vertices is graph:

Input:

Connected graph $G(V, E), V(G)=\left\{V^{0}, V^{1}\right\}, V^{0}=$ $\left\{\left\{\mathrm{V}^{0}, \mathrm{e}^{0}\right\}, \ldots \ldots\left\{\mathrm{v}^{\mathrm{n}}, \mathrm{e}^{\mathrm{n}}\right\}\right\}, \mathrm{V}^{1}=\left\{\left\{\mathrm{v}^{0}, \mathrm{e}^{0}\right\},\left\{\mathrm{v}^{1}, \mathrm{e}^{1}\right\}, \ldots . .\left\{\mathrm{v}^{\mathrm{n}}, \mathrm{e}^{\mathrm{n}}\right\}\right\}$.

Algorithm body:

Create a subgraph that visit each outer vertices V^{n} then its internal vertices $V^{n m}{ }_{i}$

Proceeding from vertex to vertex but moving along internal spanning tree T of that graph, then along it's outer spanning tree T'.

1. initialized T to have all the vertices of G and no edge.
2. let E the set of all edges of $G, m=0$.
3. while ($m \leq n-1$)

3a. visit outer vertices V^{n}, then visit internal vertices $V^{n m i}$.
3b. attach the internal edge $\left\{V^{l m 1}, V^{n 2 m 2}\right\}$ to T, and visit $\dot{V}^{1 m \mathrm{k}}$.
3c. attach the outer edge $\left\{V^{\prime}, V^{2}\right\}$ to T^{\prime} and visit $V^{n m k}$,
3d. return to step 3.
End while.
4. output T, T^{\prime}.
end algorithm.

Example 2:

Consider a graph shown in fig(2).

Fig (2)

Input:

Connected graph $G(V, E), V(G)=\left\{V^{0}, V^{1}\right\}, V^{0}=\left\{\left\{V^{00}, V^{01}\right\}\right\}$, $\mathrm{V}^{1}=\left\{\left\{\mathrm{v}^{10}, \mathrm{~V}^{11}\right\}\right\}$.

Algorithm body:

Create a subgraph that visit each outer vertices V^{n} then its internal vertices $V^{n m}{ }_{i}$

Proceeding from vertex to vertex but moving along internal spanning tree T of that graph, then along it's outer spanning tree T'.

1. initialized T to have vertex v^{0}.
2. let E the set of all edges of $G, m=0$.
3. while ($m \leq 1$).

3a. visit outer vertex V^{0}
then visit V^{00}, V^{01}.
3b. attach the internal edge $\left\{V^{00}, V^{01}\right\}$ to T.
3c. attach the outer edge e^{l} to T^{\prime} and visit V^{l}.
3d. return to step 3.
End while.
4. output T, T^{\prime}.
end algorithm.
Example 3:
For a graph shown in $\operatorname{fig}(3)$.we have:

Fig(3)

Input:

Connected graph $G(V, E), V(G)=\left\{V^{0}, V^{l}, V^{2}\right\}, V^{0}=$ $\left\{\left\{V^{00}, V^{04}\right\},\left\{V^{04}, V^{03}\right\},\left\{V^{04}, V^{02}\right\},\left\{V^{04}, V^{01}\right\}\right\}$, $V^{1}=\left\{\left\{v^{10}, V^{14}\right\},\left\{V^{14}, V^{13}\right\},\left\{V^{14}, V^{12}\right\},\left\{V^{14}, V^{11}\right\}\right\}$. $V^{2}=\left\{\left\{V^{20}, V^{24}\right\},\left\{V^{24}, V^{23}\right\},\left\{V^{24}, V^{22}\right\},\left\{V^{24}, V^{21}\right\}\right\}$.

Algorithm body:

Create a subgraph that visit each outer vertices V^{n} then its internal vertices $V^{n m}{ }_{i}$

Proceeding from vertex to vertex but moving along internal spanning tree T of that graph, then along it's outer spanning tree T'.

1. initialized T to have vertex v^{0}.
2. let E the set of all edges of $G, m=0$.
3. while ($m \leq 2$).

3a. visit outer vertex V^{0}
then visit $V^{00}, V^{04}, V^{03}, V^{01}$.
3b. attach internal vertices $\left\{V^{00}, V^{04}\right\},\left\{V^{04}, V^{03}\right\},\left\{V^{04}, V^{02}\right\},\left\{V^{04}, V^{01}\right\}$

3c. attach the outer edge e^{l} to T and visit V^{l}.
3d. return to step 3 for the other vertices.
End while.
4. output T, T^{\prime}.
end algorithm.

Example 4:

For a graph shown in fig(4).

Fig(4)

Input:

Connected graph $\mathrm{G}(V, E), \quad V(G)=\left\{V^{0}, V^{l}, V^{2}\right\}, \quad V^{0}=$ $\left\{\left\{V^{00}, V^{01}\right\},\left\{V^{00}, V^{02}\right\},\left\{V^{02}, V^{01}\right\}\right\}$,
$V^{1}=\left\{\left\{v^{10}, V^{11}\right\},\left\{V^{11}, V^{12}\right\},\left\{V^{12}, V^{10}\right\}\right\}$.
$V^{2}=\left\{\left\{V^{20}, V^{21}\right\},\left\{V^{21}, V^{22}\right\},\left\{V^{20}, V^{22}\right\}\right\}$.

Algorithm body:

Create a subgraph that visit each outer vertices V^{n} then its internal vertices $V^{n m}{ }_{i}$

Proceeding from vertex to vertex but moving along internal spanning tree T of that graph, then along it's outer spanning tree T'.

1. initialized T to have vertex v^{0}.
2. let E the set of all edges of $G, m=0$.
3. while ($m \leq 2$).

3a. visit outer vertex V^{0}.
then visit V^{00}, V^{01}, V^{02}.
3b. attach internal vertices $\left\{V^{00}, V^{01}\right\},\left\{V^{01}, V^{02}\right\},\left\{V^{00}, V^{02}\right\}$ to T.
3c. attach the outer edge e^{1} to T^{1} and visit V^{1}.
3d. return to step 3 for the other vertices.
End while.
4. output T, T^{\prime}.
end algorithm.

References:

[1] El-Ghoul,M; El-Zohny,H; Khalil,M,M.: New types of graphs with graphs vertices. Al-Azhar University ,Cairo,Egypt,2011.
[2] Gibbons, A.: Algorithmic graph theory. Cambridge University Press, Cam-bridge, UK, 1995.
[3] Giblin, P.J.: Graphs, surfaces and homology, an introduction to algebraic topology. Chapman and Hall . Ltd, London 1977.
[4] Susanna S.Epp, Discrete Mathematics With Application, Third Edition, Thomson Learning, Inc, 2004.

