Awakening to reality

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

New algorithm for graph with graphs vertices

EL-Zohny.H, Salam. R and EL-Morsy.H

Department of Mathematics, Faculty of Science Al-Azahar University, Cairo, Egypt.

ABSTRACT

ARTICLE INFO

Article history: Received: 29 July 2011; Received in revised form: 22 September 2011; Accepted: 29 September 2011;

In this paper we will compute a new algorithm for new graph which its vertex is a graph. © 2011 Elixir All rights reserved.

Keywor ds

Algorithm , Graphs vertices.

Introduction Definition and Background Definition 1:

Abstract graphs: An abstract graphs G is a diagram consisting of a finite non empty set of the elements, called "vertices" denoted by V(G) together with a set of unordered pairs of these elements, called "edges" denoted by E(G). The set of vertices of the graph G is called "the vertex .set of G" and the list of edges is called "the edge .list of G" [2,3].

Definition 2:

To represent these graphs we must show that there are three types of these graphs:

1- Null graphs which their vertices are graphs.

2- Graphs which their vertices are similar. [1].

Definition 3:

Null graphs which their vertices are graphs:

We know that a null graph is a graph containing no edges and every vertex is isolated. By definition(1) we can define a new null graphs (which their vertex are graphs), consider the graph $G_n(V\Box)$ such that $V\Box(G) = \{\{v_0, e_0\}, \{v_1, e_1\}, \{v_2, e_2\}$

,..... $\{v_n , e_n\}$ and $E(G) = \Phi$. See Fig.(1) [1]. **Definition 4:**

Graphs which their vertices are similar: Consider the geometric graph G(V, E) where $V(G) = \{V^0, V^1\}$

where $V\Box^{0} = \{\{v_{0}, e_{0}\}, \{v_{1}, e_{1}\}, \{v_{2}, e_{2}\}, \dots, \{v_{n}, e_{n}\}\}$ and $V^{1} = \{\{v_{0}, e_{0}\}, \{v_{1}, e_{1}\}, \{v_{2}, e_{2}\}, \dots, \{v_{n}, e_{n}\}\}$

where $V^0 \square$ is the same as V^1 to represent this graph we will take the smallest cir-cle which contains vertices of V^0 and the smallest circle which contains vertices of V^{\square} and connected between them this connecte is $E(G) = \{e^1\}.[1].$

Definition 5:

Spanning tree for a graph G is a subgraph of G that contains every vertex of G and is a tree[4].

Main results:

We will discuss two new algorithms for graph with graphs vertices.

I. algorithm for null graph which vertices is a graph:

Tele: E-mail addresses: elzohny_7@yahoo.com, randa_salam@yahoo.com, hendelmorsy@yahoo.com	uter
© 2011 Elixir All rights reserved	

Proceeding from vertex to vertex but moving along internal spanning tree T of that graph.

1. initialized T to have all vertices of G "which have outer vertices".

2. select the smallest superscript k for , $1 \le k \le i$, $0 \le n \le j.$ $V^{n \ mk}$ has not already been visited.

If no superscript is found, then,

Go to step 3, otherwise,

Perform the following:

2a. attach the internal edge $\{V^{1m1}, V^{n2m2}\}$ to T, and visit V^{1mk} .

2b. assign V^{1mk} to V^{nmk} and,

2c. return to step 2.

End while.

3. output T.

end algorithm.

Example 1:

For a null graph shown in fig(1) we can compute its algorithm as follows:

12

Fig(1)

Input:

Null graph with graphs vertices V^{nm} , $0\!\!\le n\le 3$, $0\!\!\le m\le 5.$ Algorithm body:

Create a subgraph that visit each outer vertices V^n then its internal vertices $V^{nm}_{\ i}$

Proceeding from vertex to vertex but moving along internal spanning tree of that graph.

1. initialized T to have all vertices of G "which have outer vertices".

2. select V^0 and visit all internal vertices V^{01} to V^{03} .

2a. attach the internal edges { V^{01}, V^{02} }......{ V^{04}, V^{01} } to T. 2b. go to step 2 for the other vertices V^2 to V^4 .

End while.

3. output T.

end algorithm.

Algorithm for graph which vertices is graph: Input:

Connected graph G(V, E), V(G) = $\{V^0, V^1\}$, $V^0 = \{\{V^0, e^0\}, \dots, \{v^n, e^n\}\}$, $V^1 = \{\{v^0, e^0\}, \{v^1, e^1\}, \dots, \{v^n, e^n\}\}$. Algorithm body:

Create a subgraph that visit each outer vertices V^n then its internal vertices V^{nm}_{i}

Proceeding from vertex to vertex but moving along internal spanning tree T of that graph , then along it's outer spanning tree T'.

1. initialized T to have all the vertices of G and no edge.

2. let *E* the set of all edges of *G*, m = 0.

3. while $(m \leq n-1)$

3a. visit outer vertices V^n , then visit internal vertices V^{nmi} .

3b. attach the internal edge {
$$V^{lml}$$
, V^{n2m2} } to T, and visit V^{lmk}

3c. attach the outer edge $\{V^{I}, V^{2}\}$ to T' and visit V^{nmk} ,

3d. return to step 3.

End while.

4. output *T*,*T*'.

end algorithm.

Example 2:

Consider a graph shown in fig(2).

Fig (2)

Connected graph G(V , E), V(G) = $\{V^0, V^1\}, V^0 = \{\{V^{00}, V^{01}\}\}, V^1 = \{\{v^{10}, V^{11}\}\}.$

Algorithm body:

Input:

Create a subgraph that visit each outer vertices V^n then its internal vertices V^{nm}_{i}

Proceeding from vertex to vertex but moving along internal spanning tree T of that graph, then along it's outer spanning tree T'.

1. initialized T to have vertex v^0 .

2. let *E* the set of all edges of *G*, m = 0.

3. while $(m \leq 1)$.

3a. visit outer vertex V^0

then visit V^{00}, V^{01} .

3b. attach the internal edge $\{V^{00}, V^{01}\}$ to T.

3c. attach the outer edge e^{I} to T' and visit V^{I} .

3d. return to step 3.

End while.

4. output *T*,*T*'.

end algorithm.

Example 3:

For a graph shown in fig(3).we have:

Fig(3)

Input:

Algorithm body:

Create a subgraph that visit each outer vertices V^n then its internal vertices V^{nm}_{i}

Proceeding from vertex to vertex but moving along internal spanning tree T of that graph, then along it's outer spanning tree T'.

1. initialized T to have vertex v^0 .

2. let *E* the set of all edges of *G*, m = 0.

3. while $(m \leq 2)$.

3a. visit outer vertex V^0

- then visit $V^{00}, V^{04}, V^{03}, V^{01}$.
- 3b. attach internal vertices $\{V^{00}, V^{04}\}, \{V^{04}, V^{03}\}, \{V^{04}, V^{02}\}, \{V^{04}, V^{01}\}$ to *T*.

3c. attach the outer edge e^{I} to T and visit V^{I} . 3d. return to step 3 for the other vertices. End while. 4. output *T*,*T*'.

end algorithm.

Example 4:

For a graph shown in fig(4).

Input:

Connected graph G(V, E), $V(G) = \{V^0, V^1, V^2\}, V^0 = \{\{V^{00}, V^{01}\}, \{V^{00}, V^{02}\}, \{V^{02}, V^{01}\}\}, V^1 = \{\{v^{10}, V^{11}\}, \{V^{11}, V^{12}\}, \{V^{12}, V^{10}\}\}, V^2 = \{\{V^{20}, V^{21}\}, \{V^{21}, V^{22}\}, \{V^{20}, V^{22}\}\}.$

Algorithm body:

Create a subgraph that visit each outer vertices V^n then its internal vertices V^{nm}_{i}

Proceeding from vertex to vertex but moving along internal spanning tree T of that graph, then along it's outer spanning tree Τ'.

1. initialized T to have vertex v^0 .

2. let *E* the set of all edges of *G*, m = 0.

3. while $(m \leq 2)$.

3a. visit outer vertex V^0 .

then visit V^{00}, V^{01}, V^{02} .

3b. attach internal vertices $\{V^{00}, V^{01}\}, \{V^{01}, V^{02}\}, \{V^{00}, V^{02}\}$ to *T*. 3c. attach the outer edge e¹ to T' and visit V¹.

3d. return to step 3 for the other vertices.

End while.

4. output *T*,*T*'.

end algorithm.

References:

[1] El-Ghoul,M; El-Zohny,H; Khalil,M,M.: New types of graphs with graphs vertices. Al-Azhar University ,Cairo,Egypt,2011.

[2] Gibbons, A.: Algorithmic graph theory. Cambridge University Press, Cam-bridge, UK,1995.

[3] Giblin, P.J.: Graphs, surfaces and homology, an introduction to algebraic topology. Chapman and Hall . Ltd, London 1977.

[4] Susanna S.Epp, Discrete Mathematics With Application, Third Edition, Thomson Learning, Inc, 2004.