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ABSTRACT

In this article, the problem of optimal control of time-invariant linear singular systems with
quadratic performance index has been studied using Runge-Kutta (RK) method based on
various means. The obtained discrete solutions are compared with the exact solutions of the
time-invariant optimal control of linear singular systems. It is observed that the result
obtained using Runge-Kutta arithmetic mean (RKAM) and RKCeM (Runge-Kutta
Centroidal Mean) are closer to the true solutions of the problem. Error graphs for the
simulated results and exact solutions are presented in a graphical form to highlight the
efficiency of this RKAM and RKCeM. This RKAM and RKCeM can be easily implemented
in a digital computer and the solution can be obtained for any length of time for this type of
optimal control of time-invariant linear singular systems and it is an added advantage of this
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Introduction

The problem of optimal control of singular systems has
invoked immense interest, especially among the researchers in
the field of computational mathematics to study the existing
problems in the field of control theory and to compute the value
of the control vector numerically which controls the state vector.
Chen and Hsiao [6], Chen and Shih [7], applied Walsh series to
study the problem of optimal control of time-invariant and time-
varying linear systems. It is to be noted that from the study of
past literature that Cobb [5] and Pandolfi [11] seems to have
been the first authors to consider the optimal regulator problem
of continuous time singular systems. Both of them used state
feed backs and their results were derived by the aid of Ricatti-
type matrix equations.

Walsh functions have been widely used to study the
problem of optimal control of linear systems with quadratic
performance index [8-10]. Palanisamy [10] has analyzed the
optimal control of linear systems via STWS approach.
Balachandran and Murugesan [2] have applied the STWS
method to optimal control of linear singular systems.

Runge-Kutta methods have become very popular both as
computational techniques as well as subject for research, which
were discussed by Alexander and Coyle [1], Butcher [3/4],
Shampine [13] and Yaakub and Evans [14-16]. Butcher [4]
derived the best RK pair along with an error estimate and by all
statistical measures it appeared as the RK-Butcher algorithms.
This RK-Butcher algorithm is nominally considered sixth order
since it requires six function evaluations (it looks like a sixth
order method, but it is a fifth order method only), but in actual
practice the “working order” is closer to five (fifth order) but
still the accuracy of results (while solving the problems) exceeds
all the other algorithms examined including RK-Fehlberg, RK-
Merson, RK-Centrodial Mean (RKCeM) and RK-Arithmetic
Mean.
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Park et al [12] applied the RK-Butcher algorithms to compute
the numerical solution of an optimal control of time-invariant
linear singular systems. In this article, we consider the same
time-invariant optimal control of linear singular systems with
quadratic performance index (discussed by Park et al [12]) with
more accuracy using RK methods based on various means. An
elaborate, well composed comparison has been carried out with
the aid of the obtained results and graphs.

Extended Runge - Kutta Method Based on AM

The general p-stage RK method for solving X = f (t,X) is
defined by

b.k.
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where b and ¢ are p-dimensional vectors and the matrix A =
(ajj) is of order (p x p).

Hence the fourth order RK method for solving an IVP of the
form

x =f (X with x©0 = %
can be formulated as



« = x +D Kk, +k, +k2+k3+k3+k4
n+1 n 3 2 2 2

X=X, + % [k, + 2k, + 2k, + k,]

In the initial iteration, we get
x(1) = x(0) + Ax

where
AX = % (k, + 2k, + 2k, + k,)
k, = f(t(0), x0))
k, = (t(0)+ —, x(0) + gklj
k, = (t(0)+ g x(0) + hkzj
k, = f(t() + h, x0) + hk,)

Extended Runge - Kutta method based on CEM

In [14-16], Evans and Yaakub have developed a new RK
method of order 4 based on Centroidal mean to solve first order
equation and it is to be noted that the Centroidal Mean of two
points x and x, is defined as

2 (X2 + XX, + X
3 X, + X,
Consider the first order equation (2.1) of the form

y' = fixy)
with y(Xo) = Yo

Let h denote the interval between equidistant values of x
The fourth order RKAM formula (2.21) can be written as

hik +k, k,+k; k;+Kk,
= + = + +
yn+1 yn 3( 2 2 2

h(&k +k,
n+1 n 3 ; 2
and substituting the arithmetic mean (AM) of kj, 1< i < 6 with
their Centroidal Means we obtain a new formula, similar to the

above equation, as
h [Z 2(k? + Kk, + k,ﬂl)}

Yoa = Yo * 2
m "3lE 3k +kiy)
to obtain the fourth order formula in the form,
k1 = f(Xn, Yn)

f(x,+a,h,y, +hak,)
( (a2+a3)h’ yn +ha2k1+ha3k2)
f(x, +(a, +a;+a, ), y, +ha,k, +ha.k, +hak,)

z(k1 +kk, + k) .
3(k1+k2)

2(k5 + ok + k§)+
3k, +k,)

2 (K + ik, + kj)]

h
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B UPPER
that iS yn+1 - yn + LOWER
where,

UPPER =

a [(k2 ok, +K2) (kg kg (kg 4k, )+ (K 4 Koks +K3) (K, 4k, ) (ks +k, )

+ (k§ kK, +K2)(k, + K, XK, K, )]

and,

LoWeR = (k, + k,)(k, + k;)(k, + k,),

while the Taylor series expansion of y(x,+1) may be given as,
TAYLOR =

W i 1
Y+ B+ (ffy2+f2fw)ah“(f3fyw+ ff +4f )+

UPPER
Hence ERROR = TAYLOR -

or, (TAYLOR x LOWER) - UPPER = (LOWER x
ERROR).

Extended Runge - Kutta method based on HAM

In the development of methods for solving ordinary
differential equations, it is not clear whether the arithmetic mean
is always the best choice. Naturally RK formulae, based on
arithmetic mean, are the most convenient and flexible to apply.
But there is no guarantee that they would yield more accurate
results for all type of problems. Hence, the use of harmonic
means in the functional values instead of the usual arithmetic
mean may result in better accuracy for a certain class of

problems. It may be noted that the harmonic mean of two
quantities XL and X2 is given by

2X,X,

X+ X,

In [14], it has been shown that the use of harmonic means in
the functional values, instead of the usual arithmetic mean in the
trapezoidal formula has also produced a formula with an
accuracy of order -2.

ie, X, = X, +h 20Ty (€
fn + fn+1
The local truncation error (LTE) for the eq. (1) is given by
LTE = [T &) omy
12 4%

It is possible to establish a 4-stage non-linear RK formula
based on harmonic mean (RKHM) in the form

2k, k
o = _z(k+k j

ie,
X, = xn+h 2k, k, N 2k, k, N 2k, k,
3 (k, +Kk, k, +K, Kk, +k,
as a direct extension of eq. (20), where
kl = f(xn)

k, = f(x, + hak,)
k, = f(x, +h(ak, +ask,))
k, = f(x, + h(ak, +ask, +a.k,))
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Optimal Control of Singular Systems
The linear time-invariant singular system represented in the
following form

Kfit) = Ax(t)+ Bu(t) )
with initial condition X(0)= X,
where K is an NxnN singular matrix, A and B are Nnxn
and Nx p constant matrices respectively. X(t) is an n-state

vector and u(t)is the p-input control vector. This singular
systemhas many aspects and applications.

Assuming that det(sK — A)# 0, g — [Io } K = [Kl}
KZ

p
@
Where K, :|_|nfp OJ
Now the problem can be stated as follows: Given the initial
state X(O —) =X, find a control vector u(t) that generates a
state X(t) such that X(tf )= X; , where t is a prescribed time

and X; is afixed vector, and minimizes the cost functional
t

J = [L(xu)t C)

0
where L:%(XTQX+UT Ru), Q and R denote given real

symmetric constant matrices. In case the initial state X(O —) is

not known, the method developed by E1-Tohami et al. [8] may
be used to reconstruct the state. It has been proved by Lovass-
Nagy et al. [9], which the problem of finding an optimal control
reduces to the solution of a two-point boundary value problem.

X, is (n—p)xl and X, is pxI, KZ:[K ” Kzz],
px(n—p) and K,yis

A:m’ A=[A, A A=A Al
AnAp Ay, e

where K, s pxp and

Where
(n—p)x(n-p).(n—p)xp, px(n—p) pxp.
Further take Q = [Ql QZ]T where Q; and Q,are

(n—p)xn and pPxn respectively. Then we have the
following equations (Lovass-Nagy et al. [9])

respectively

%o A+ A e
KZl%-F Kzz%—Aﬂxl—Azzx2 =u (6)
% =-Ap, + KleRz—l: + AlLRU—Q,X )
AL, = K§2R3—$+A§2RU—QZX ®)
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where p = [pl P, ]T is the co-state vector corresponding to

equations (2). From the equations (5)-(8), optimal state and
optimal control can be calculated.

The governing equations for determining u(t)and X(t)for

the time-invariant and time-varying optimal control problem can
be obtained using the set of equations (5) to (8), which have
been mentioned earlier. It is to be noted that the above
governing equations may not suit all types of time-invariant and
time-varying optimal control problems. Hence, it is necessary to
investigate further to derive the governing equations exclusively
(a generalized form) for the time-invariant.

Formulation of Optimal Control for Time-Invariant Linear
Singular Systems

Rearranging Equations (5)-(8), we have the following system.

1 0 0 O[&][A, A, 0 07
K21 Kzz 0 0 )gf _ A21 Azz 1 0 X,
0 0 Kzz 0| & Q1Tz sz -A 2 R A1Tz u

0 0 —Kj 1 - - Al ©
i B Q —Qp 2

which can be written in the form

Kyt ) = My(t) (10)

_A1T1 P,

1 0 0 O
K = Ky Ky 0 0
T
Where 0 0 Ky 0 ,
0 0 -Kj, 1

A, A, 0 0
A, A, 1 0
Qsz sz _Azz R Asz
_Qu _le A-Zrl _AlTl

andy=[x, X, u p,]'. Where the matrix K is singular

so that it is called as “time-invariant singular systems” and it can
not be written in the standard form.

Example of the optimal control for time-invariant linear
singular systems

The linear singular system[9] is considered

oolsllo sl

with initial condition X(0) = {}Iﬁ}

M:

t
.1

The performance index j = EI(XT X+ uz):it (12)
0

o
Let Z= X
10
0 1)|&| [1 0z] |0
Then we obtain {0 O}LJ{O JLZ}{JU 13)

is obtained, since %(XTX+U2)=%(ZTZ+UZ) minimization

of L(Z,u):%(ZTZJrUZ) with respect to z and u will yield
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the same result as minimization of L(x,u) with respect to x
and u. The exact solution of the system (23) is

z,(t)= —%exp(—\/ﬁt)

z,(t)= exp(—ﬁt) (14)
and the optimal controlis  U(t) :iexlo(—\ﬁt) (15)

NG

Using RK methods based on various means in the optimal
control of singular system, the discrete time solutions and the
exact solutions of Z(t) are calculated and is presented in Table

1 and Table 2 along with the solution obtained by RK method
based on various means. The corresponding optimal control
u(t) is calculated by using RK method based on various means
and the results are presented in Table 3.

Applying the formula of RKAM, RKCeM and RKHaM
discussed in 2 - 4, the discrete solutions of (13) have been
obtained, taking the step-size as h = 0.25, for different values of
(13).

z1
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mO0.
0.00006 0.25
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Error o125
0.00003
m15
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Yo e & & 4
RKAM RKCeM RKHM

Figure 1 Error graph for the state Zl(l')
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o om 5o 4 B175
2
RKAM RKCeM RKHM

Figure 2 Error graph for the state Zz(t)
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Figure 3 Error graph for the control input u(t)

Conclusions

The obtained results of the time-invariant optimal control of
linear singular systems with quadratic performance index show
that the RKAM and RKCeM works well for finding the state
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vector X(t)and the control input vectoru(t). Fromthe tables 1

— 3, it can be observed that for most of the time intervals, the
absolute error is less (almost no error) in RKAM and RKCeM
when compared to the RKHM method, which yields a little
error, along with the exact solutions of the problem.

From the results shown in the figures 1 - 3, it can be said
that the error is very less in RKAM and RKCeM when
compared to the RKHM method. Moreover, the RKAM and
RKCeM method is highly stable because it is based on the
Taylor series and hence one can get the results for any length of
time.
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Table 1 Solution of the optimal control (time-invariant) system for z, (t)

Solution Z (t)

Number | Timet [EXact RKAM | RKCeM | RKAM
Solution | Solution | Solution | Solution
0.00 -0.70711 | -0.70711 | -0.70711 | -0.70716
0.25 -0.49652 | -0.49652 | -0.49652 | -0.49657
0.50 -0.34865 | -0.34864 | -0.34865 | -0.34870
0.75 -0.24482 | -0.24481 | -0.24482 | -0.24487
1.00 -0.17190 | -0.17190 | -0.17191 | -0.17196
1.25 -0.12071 | -0.12070 | -0.12071 | -0.12076
1.50 -0.08476 | -0.08476 | -0.08476 | -0.08481
1.75 -0.05952 | -0.05951 | -0.05952 | -0.05957
2.00 -0.04179 | -0.04179 | -0.04179 | -0.04184

OO ~NOUIWN -

Table 2 Solution of the optimal control (time-invariant) system for z, (t)

Solution Z2 (t)

Number | Timet | EXxact RKAM RKCeM [ RKHM
Solution | Solution | Solution | Solution
0.00 1.00000 [ 1.00000 | 1.00000 | 1.00000
0.25 0.70219 | 0.70218 | 0.70219 | 0.70224
0.50 0.49307 | 0.49305 | 0.49307 | 0.49312
0.75 0.34623 | 0.34621 | 0.34623 | 0.34628
1.00 0.24312 | 0.24310 | 0.24312 | 0.24317
1.25 0.17071 | 0.17070 | 0.17071 | 0.17076
1.50 0.11987 | 0.11986 | 0.11987 | 0.11992
1.75 0.08417 | 0.08417 | 0.08417 | 0.08422
2.00 0.05911 | 0.05910 | 0.05911 | 0.05916

OO ~NOOBWN

Table 3 Solution of the optimal control (time-invariant) system for u(t)

Solution U(t)

Number | Timet | Exact RK STHW STHW
Solution | Solution | Solution | Solution
0.00 0.70711 | 0.70711 | 0.70711 | 0.70716
0.25 0.49652 | 0.49652 | 0.49652 | 0.49657
0.50 0.34865 | 0.34864 | 0.34865 | 0.34870
0.75 0.24482 | 0.24481 | 0.24482 | 0.24487
1.00 0.17191 | 0.17190 | 0.17191 | 0.17196
1.25 0.12071 | 0.12070 | 0.12071 | 0.12076
1.50 0.08476 | 0.08476 | 0.08476 | 0.08481
1.75 0.05952 | 0.05951 | 0.05952 | 0.05957
2.00 0.04179 | 0.04179 | 0.04179 | 0.04184
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