
Sekar et al./ Elixir Appl. Math. 40 (2011) 5391-5395 
 

5391 

Introduction  

The problem of optimal control of singular systems has 

invoked immense interest, especially among the researchers in 

the field of computational mathematics to study the existing 

problems in the field of control theory and to compute the value 

of the control vector numerically which controls the state vector. 

Chen and Hsiao [6], Chen and Shih [7], applied Walsh series to 

study the problem of optimal control of time-invariant and time-

varying linear systems. It is to be noted that from the study of 

past literature that Cobb [5] and Pandolfi [11] seems to have 

been the first authors to consider the optimal regulator problem 

of continuous time singular systems. Both of them used state 

feed backs and their results were derived by the aid of Ricatti-

type matrix equations. 

Walsh functions have been widely used to study the 

problem of optimal control of linear systems with quadratic  

performance index [8-10]. Palanisamy [10] has analyzed the 

optimal control of linear systems via STWS approach. 

Balachandran and Murugesan [2] have applied the STWS 

method to optimal control of linear singular systems. 

Runge-Kutta methods have become very popular both as 

computational techniques as well as subject for research, which 

were discussed by Alexander and Coyle [1], Butcher [3,4], 

Shampine [13] and Yaakub and Evans [14-16]. Butcher [4] 

derived the best RK pair along with an error estimate and by all 

statistical measures it appeared as the RK-Butcher algorithms. 

This RK-Butcher algorithm is nominally considered sixth order 

since it requires six function evaluations  (it looks like a sixth 

order method, but it is a fifth order method only), but in actual 

practice the “working order” is closer to five (fifth order) but 

still the accuracy of results (while solving the problems) exceeds 

all the other algorithms examined including RK-Fehlberg, RK-

Merson, RK-Centrodial Mean (RKCeM) and RK-Arithmetic 

Mean. 

Park et al [12] applied the RK-Butcher algorithms to compute 

the numerical solution of an optimal control of time-invariant 

linear singular systems. In this article, we consider the same 

time-invariant optimal control of linear singular systems with 

quadratic performance index (discussed by Park et al [12]) with 

more accuracy using RK methods based on various means . An 

elaborate, well composed comparison has been carried out with 

the aid of the obtained results and graphs. 

Extended Runge - Kutta Method Based on AM 

The general p-stage RK method for solving  x)(t, f    x 


is 
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where b and c are  p-dimensional vectors and the matrix A  = 

(aij) is of order (p x p). 

Hence the fourth order RK method for solving an IVP of the 

form 

 x)(t, f    x 


  with   x (0)   =   x0 

can be formulated as  
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ABS TRACT 

In this article, the problem of optimal control of time-invariant linear singular systems with 
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time-invariant optimal control of linear singular systems. It is observed that the result 

obtained using Runge-Kutta arithmetic mean (RKAM) and RKCeM (Runge-Kutta 
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efficiency of this RKAM and RKCeM. This RKAM and RKCeM can be easily implemented 

in a digital computer and the solution can be obtained for any length of time  for this type of 

optimal control of time-invariant linear singular systems and it is an added advantage of this 

method. 
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Extended Runge - Kutta method based on CEM  

In [14-16], Evans and Yaakub have developed a new RK 

method of order 4 based on Centroidal mean to solve first order 

equation and it is to be noted that the Centroidal Mean of two 

points x1 and x2 is defined as 
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Consider the first order equation (2.1) of the form 

                  y) f(x,         'y          

with                          .y       )x(y 00   

Let h denote the interval between equidistant values of x.  

The fourth order RKAM formula (2.21) can be written as  








 








2

k  k
  

2

k  k
    

2

k  k
 

3

h
    y         y 433221

n1n  








 
 






3

1i

1ii
n1n  

2

k  k
 

3

h
    y         y  

and substituting the arithmetic mean (AM) of ki,  1   i    6 with 

their Centroidal Means we obtain a new formula, similar to the 

above equation, as  
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to obtain the fourth order formula in the form, 
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Extended Runge - Kutta method based on HAM 

In the development of methods  for solving ordinary 

differential equations, it is not clear whether the arithmetic mean 

is always the best choice.  Naturally RK formulae, based on 

arithmetic mean, are the most convenient and flexible to apply.  

But there is no guarantee that they would yield more accurate 

results for all type of problems.  Hence, the use of harmonic 

means in the functional values instead of the usual arithmetic 

mean may result in better accuracy for a certain class of 

problems.  It may be noted that the harmonic mean of two 

quantities x1 and x2 is given by 
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In [14], it has been shown that the use of harmonic means in 

the functional values, instead of the usual arithmetic mean in the 

trapezoidal formula has also produced a formula with an 

accuracy of order -2. 
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 It is possible to establish a 4-stage non-linear RK formula 

based on harmonic mean (RKHM) in the form  
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Optimal Control of Singular Systems 

The linear time-invariant singular system represented in the 

following form 

     tButAxtxK                                    (2) 

with initial condition    00 xx                

where K  is an nn  singular matrix, A  and B  are nn  

and pn  constant matrices respectively.  tx  is an n-state 

vector and  tu is the p-input control vector. This singular 

system has many aspects and applications.  
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Where  01 pnIK   

Now the problem can be stated as follows: Given the initial 

state   00 xx   find a control vector  tu  that generates a 

state  tx  such that  
ff xtx  , where ft is a prescribed time 

and fx  is a fixed vector, and minimizes the cost functional 
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symmetric constant matrices. In case the initial state  0x  is 

not known, the method developed by E1-Tohami et al. [8] may 

be used to reconstruct the state. It has been proved by Lovass -

Nagy et al. [9], which the problem of finding an optimal control 
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following equations (Lovass-Nagy et al. [9]) 
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where  Tppp 21 is the co-state vector corresponding to 

equations (2). From the equations (5)-(8), optimal state and 

optimal control can be calculated. 

The governing equations for determining  tu and  tx for 

the time-invariant and time-varying optimal control problem can 

be obtained using the set of equations (5) to (8), which have 

been mentioned earlier. It is to be noted that the above 

governing equations may not suit all types of time-invariant and 

time-varying optimal control problems. Hence, it is necessary to 

investigate further to derive the governing equations exclusively 

(a generalized form) for the time-invariant. 

Formulation of Optimal Control for Time-Invariant Linear 

Singular Systems 

Rearranging Equations (5)-(8), we have the following system. 
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and  Tpuxxy 121 . Where the matrix K is singular 

so that it is called as “time-invariant singular systems” and it can 

not be written in the standard form. 

Example of the optimal control for time-invariant linear 

singular systems 

The linear singular system [9] is considered 
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the same result as minimization of  uxL ,  with respect to x 

and u. The exact solution of the system (23) is  

   
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1

2

1
z t exp 2t
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                                    (14)      

and the optimal control is     
1

u t exp 2t
2

         (15)                                       

Using RK methods based on various means in the optimal 

control of singular system, the discrete time solutions and the 

exact solutions of  tz  are calculated and is presented in Table 

1 and Table 2 along with the solution obtained by RK method 

based on various means. The corresponding optimal control 

 tu  is calculated by using RK method based on various means 

and the results are presented in Table 3. 

Applying the formula of RKAM, RKCeM and RKHaM 

discussed in 2 - 4, the discrete solutions of (13) have been 

obtained, taking the step-size as h = 0.25, for different values of 

(13). 
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Figure 1 Error graph for the state  tz1  

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

Error

RKAM RKCeM RKHM

z2

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

 
Figure 2 Error graph for the state  tz2  
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Figure 3 Error graph for the control input  tu  

Conclusions 

The obtained results of the time-invariant optimal control of 

linear singular systems with quadratic performance index show 

that the RKAM and RKCeM works well for finding the state 

vector  tx and the control input vector  tu .  From the tables 1 

– 3, it can be observed that for most of the time intervals, the 

absolute error is less (almost no error) in RKAM and RKCeM 

when compared to the RKHM method, which yields a little 

error, along with the exact solutions of the problem.  

From the results shown in the figures 1 - 3, it can be said 

that the error is very less in RKAM and RKCeM when 

compared to the RKHM method. Moreover, the RKAM and 

RKCeM method is highly stable because it is based on the 

Taylor series and hence one can get the results for any length of 

time. 
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 Table 1 Solution of the optimal control (time-invariant) system for )(1 tz  

 
Solution 

Number 

 
 

T ime t 

)(1 tz  

Exact 

Solution 

RKAM 

Solution 

RKCeM 

Solution 

RKHM 

Solution 

1 
2 
3 
4 

5 
6 
7 

8 
9 

0.00 
0.25 
0.50 
0.75 

1.00 
1.25 
1.50 

1.75 
2.00 

-0.70711 
-0.49652 
-0.34865 
-0.24482 

-0.17190 
-0.12071 
-0.08476 

-0.05952 
-0.04179 

-0.70711 
-0.49652 
-0.34864 
-0.24481 

-0.17190 
-0.12070 
-0.08476 

-0.05951 
-0.04179 

-0.70711 
-0.49652 
-0.34865 
-0.24482 

-0.17191 
-0.12071 
-0.08476 

-0.05952 
-0.04179 

-0.70716 
-0.49657 
-0.34870 
-0.24487 

-0.17196 
-0.12076 
-0.08481 

-0.05957 
-0.04184 

 

Table 2 Solution of the optimal control (time-invariant) system for )(2 tz  

 
Solution 

Number 

 
 

T ime t 

)(2 tz  

Exact 

Solution 

RKAM 

Solution 

RKCeM 

Solution 

RKHM 

Solution 

1 
2 
3 
4 

5 
6 
7 

8 
9 

0.00 
0.25 
0.50 
0.75 

1.00 
1.25 
1.50 

1.75 
2.00 

1.00000 
0.70219 
0.49307 
0.34623 

0.24312 
0.17071 
0.11987 

0.08417 
0.05911 

1.00000 
0.70218 
0.49305 
0.34621 

0.24310 
0.17070 
0.11986 

0.08417 
0.05910 

1.00000 
0.70219 
0.49307 
0.34623 

0.24312 
0.17071 
0.11987 

0.08417 
0.05911 

1.00000 
0.70224 
0.49312 
0.34628 

0.24317 
0.17076 
0.11992 

0.08422 
0.05916 

 
Table 3 Solution of the optimal control (time-invariant) system for )(tu  

 
Solution 
Number 

 
 

T ime t 

)(tu  

Exact 
Solution 

RK 
Solution 

STHW 
Solution 

STHW 
Solution 

1 
2 

3 
4 
5 
6 

7 
8 
9 

0.00 
0.25 

0.50 
0.75 
1.00 
1.25 

1.50 
1.75 
2.00 

0.70711 
0.49652 

0.34865 
0.24482 
0.17191 
0.12071 

0.08476 
0.05952 
0.04179 

0.70711 
0.49652 

0.34864 
0.24481 
0.17190 
0.12070 

0.08476 
0.05951 
0.04179 

0.70711 
0.49652 

0.34865 
0.24482 
0.17191 
0.12071 

0.08476 
0.05952 
0.04179 

0.70716 
0.49657 

0.34870 
0.24487 
0.17196 
0.12076 

0.08481 
0.05957 
0.04184 

 


