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Introduction  

 In this paper the group is always finite. For some notions 

and notations, please refer to Huppert [9] and Robinson [17]. 

Ore [16] gave the conception of quasinormality, which is a 

generalization of normality. A subgroup H is said to be 

quasinormal in G , if for every subgroup K of G , 

then HK KH . A subgroup H of a group G is said to be s -

quasinormal ( -quasinormal) in G if H permutes with every 

Sylow subgroup of G . This concept was introduced by Kegel 

in [12], and is extensively studied by Deskins [7]. Ballester-

Bolinches and Pedraza-Aguilera [6] introduced the conception 

of s - quasinormally embedded in G , if for each prime divisor p 

of H , a Sylow p -subgroup of H  is also a Sylow p -

subgroup of some s -quasinormal subgroup of G . Wei and 

Wang [21] introduced the notion of 
*c -normality, a 

subgroup H of G is said to be 
*c -normal in G  if there exists a 

subgroup GK   such that G HK  and KH   is s -

quasinormally embedded in G .  

A class of finite group F  is said to be a formation if every 

image of an F -group is an F -group and if 

1 2/G N N belongs to F whenever 1/G N  

and 2/G N belong to F . Finite supersoluble groups are all 

formations. A formation F  is said to be saturated if a finite 

group GF whenever  /G G F  (see [17, p277]). The 

class of supersoluble group is a saturated formation (see [17, 

9.4.5]). Let A  denote the class of supersoluble groups. 

In this paper, we give some results by the conception of weakly 
*c -normality. 

 Some definitions and preliminary results  

Definition 2.1 ([14]) A subgroup H  is said to be weakly 
*c -

normal in G  if there exists a subnormal subgroup T of G  such 

that G HT  and sGH T H  , where sGH  is s -

quasinormally embedded subgroup of G  contained in H . 

Remark 2.1 Weakly c-normality and s -quasinormally 

embedded implies weakly 
*c -normality. 

Example 2.1 Every Sylow subgroup of any simple non-abelian 

group is s - quasinormally embedded but not weakly c -normal. 

Example 2.2 Let 4G S , the symmetric group of degree 4. Let 

 34a  , then 4G a A . Denote a  by 0P . If 1P  be a 

Sylow 2-subgroup of 4A , 1P  is weakly c -normal but not s -

quasinormally embedded in G . If 1P  is a Sylow 2-subgroup of 

some s -quasinormal subgroup K  of G , then 1PQ  is a 

subgroup of G , where Q  be a Sylow 3-subgroup of G . Since 

0P G< , 0 1 0P PQ QP P P QP   , where 0 1P P P  is a 

Sylow 2-subgroup. Namely, Q is s-quasinormal in G . By [12, 

Hilfssatz 7], Q  is normal in G  and so G  is 2-nilpotent, a 

contradiction. 

Lemma 2.1 ([6, Lemma 1]) Suppose that A  is s -

quasinormally embedded in a group G , and that H G  and 

K G< . 

(1)If U H , then U is s -quasinormally embedded in H  

(2)If UK is s -quasinormally embedded in G , then /UK K  

is s -quasiormally embedded in /G K . 

(3)If K H  and /H K  is s -quasinormally embedded in 

/G K , then H  is s -quasinormally embedded in G . 

Lemma 2.2 ([14, Lemma 2.2]) Let G  be a group. Then the 

following statements hold. 

(1)Let H  is weakly 
*c -normal in G  and H M K  . Then 

H  is weakly 
*c -normal in M . 

(2)Let N G<  and N H . Then H  is weakly 
*c -normal in 
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G  if and only if /H N  is weakly 
*c -normal in /G N . 

(3)Let   be a set of primes. H  is a  -subgroup of G  and 

N  a normal   -subgroup of G , if H  is weakly 
*c -normal in 

G , then /HN N  is weakly 
*c -normal in /G N . 

(4)Let L G and  H L .If H  is weakly 
*c -normal in 

G , then H  is s -quasinormally embedded in G . 

(5)Let H  is 
*c -normal in G. Then H  is weakly 

*c -normal in 

G . 

Lemma 2.3 Let M  be a maximal subgroup of G  and P a 

normal Sylow p -subgroup of G such that G PM , 

where p is a prime. Then P M is a normal subgroup of G . 

Lemma 2.4 ([21, Lemma 2.5]) Let G  be a group, K an s -

quasinormal subgroup of G , P  a Sylow p -subgroup of K , 

where p is a prime divisor of G . If either  pP O G  

or 1GK  , then P is s -quasinormal in G . 

Lemma 2.5 ([15, Lemma 2.2] Let G  be a group and P a s-

quasinormal p -subgroup of G , where p is a prime. Then 

   p

GO G N P . 

Lemma 2.6 ([21, Lemma 2.8]) Let G  be a group and p a prime 

dividing G  with  , 1 1G p   . 

(1)If N is normal in G  of order p, then N is in  Z G . 

(2)If G  has cyclic Sylow p -subgroups, then G  is p -

nilpotent. 

(3)If M G and :G M p , then M G< . 

Lemma 2.7 ([8, Satz 1]) Suppose that G  is a group which is 

not supersolvable but whose proper subgroups are all 

supersolvable. Then  

(1) G  has a normal Sylow p -subgroup P for some prime p . 

(2)  /P P  is a minimal normal subgroup of  /G P . 

(3)If 2p  , then exp( )P p . 

(4)If P  is non-abelian and 2p  , then exp( ) 4P  . 

(5)If P  is abelian, then exp( )P p . 

Lemma 2.8 Let G be a group and p  a prime number. 

(1)If P is a minimal normal p-subgroup of G , and x P is 

weakly 
*c -normal in G , then P x . 

(2)Let P  be a normal p-subgroup of G  and x be an element 

of  P P . If  /P P  is a minimal normal subgroup 

of  /G P  and x is weakly 
*c -normal in G , 

then P x . 

Proof. (1) Since x is weakly 
*c -normal in G , there exists a 

subnormal subgroup K  such that G x K  and x K  is 

s -quasinormally embedded in G  and G PK . 

Let 1P P K  . Since P is a minimal normal subgroup of G , 

then 
1P  is either trivial or P . If 

1 1P  , then 

 P P G x P K x     . Otherwise 
1P P  and 

hence P K , 
sG

x x P x k x     . So x is a 

normal subgroup of G and hence P x . 

(2) Since x  is weakly 
*c -normal in G , then there exists a 

subnormal subgroup K  such that G x K and 

sG
x K x  , where 

sG
x  is an s -quasinormally 

embedded subgroup of G . Let 
1P P K  , 

Hence
1P G< and    1 /P P P   is normal in  /G P . 

Since  /P P  is a minimal normal subgroup of  /G P , 

   1 /P P P  is either trivial or  /P P . If the former, 

then  1P P , 

and    P P G x P K x P x       . 

Otherwise 
1P P and P K , G PK K  . Hence 

sG
x x P x K x     , So x is a normal 

subgroup of G  and hence P x . 

The Lemma is proved. ⃞  

Lemma 2.9 Let H  be a subgroup of G . Then H  is weakly 
*c -normal in G  if and only if there exists a subgroup K such 

that G HK and sGH K H  . 

Proof.  It is clear. 

By Definition 2.1, there exists a subnormal subgroup L of 

G such that G HL and sGH L H  . If sGH L H  , 

note that sGK LH ,then sGHK HLH HL G   and 

hence  sG sG sGH K H LH H H L H      . ⃞  

Main results and their applications 

Theorem 3.1 Suppose that G  is a group with a normal 

subgroup H such that /G H  is supersolvable. If all maximal 

subgroups of any Sylow subgroups of H  are weakly 
*c -normal 

in G , then G  is supersolvable. 

Proof. Suppose that the theorem is false, we chose a minimal 

order group G  as a counterexample. We will prove the theorem 

by the following steps: 

Step 1. Every proper subgroup of G  containing H  is 

supersolvable and G  is solvable. 

Let N is a proper subgroup of G  containing H . Then 

/N H is supersolvable since /G H is supersolvable. By 

hypothesis, all maximal subgroups of any Sylow subgroups of 

H are weakly normal in G , then all maximal subgroups of any 

Sylow subgroups of H are weakly 
*c - normal in M by 

Lemma 2.2(1). So N , H satisfies the hypotheses of the 

theorem, the minimal choice of G  implies that N is 

supersolvable. Since every maximal subgroup of G  is 

supersolvable, then by [8, Hilfssatz C]G is solvable. 
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The following. Let L be a minimal normal subgroup of G  

contained in H . Then, by Step 1 and [11, Lemma 8. 6, p102] L 

is an elementary abellian p-group for some prime divisor p of 

G . 

Step 2. /G L is supersolvable and L is unique. 

Since    / / / /G L H L G H is supersolvable, and, 

by hypotheses, all maximal subgroups of any Sylow subgroups 

of H  are weakly 
*c -normal in G , then all maximal subgroups 

of any Sylow subgroups of /H L  are weakly 
*c -normal in 

/G L by Lemma 2.2(2). Then /G L , /H L satisfies the 

hypotheses of the theorem. So the minimal choice of G  implies 

that G=L is supersolvable. Since the class of supersolvable 

groups is a saturated formation by [10, Satz 10], then L is a 

unique minimal normal subgroup of G . 

Step 3.   1G  . 

If   1G  , then there exists a Sylow p -subgroup P of 

 G , where p is a prime divisor of  G , 

P char  G and so P is normal in G . By Step 2, /G P is 

supersolvable, then  /G G is supersolvable and so is G , a 

contradiction. Thus   1G  . 

Step 4. H G . 

If H G , then H  is supersolvable by Step 1. Let 2P be a 

Sylow p -subgroup of H , where p is the largest prime divisor 

of H . Then by [9, VI-9.1], 2P H< . Let 1P be a maximal 

subgroup of 2P . Then, by hypothesis, 1P  is weakly 
*c -normal 

in G and so there exists a subnormal subgroup T of G such 

that 1G PT and 1P T is s -quasinormally embedded in G . 

Let S be a Sylow p -subgroup of 1P T . Then S is also a 

Sylow p -subgroup of some s -quasinormal subgroup K of G . 

Let Q be a Sylow q -subgroup of G , where q p is a prime 

divisor of G . Then Q is also a Sylow q -subgroup of T . 

If 1GS  , then by [13, Lemma 2.1(3)], then S is -

quasinormal in G . and so SQ QS T  . QS is supersolvable 

by Step 1 and S QS< . Thus we have for every q p , the 

Sylow q -subgroups commutes with S , then S is s -quasinormal 

in G . Then by Lemma 2.5, we have    p

GO G N P and 

so S is normal in G . 

If 1GS  , then GS S< , then GS is  -quasinormal. And 

so G GQS S Q T  . Obviously, T G , then by Step 1, 

GQS  is supersoluble, and G GS QS< . Then by Lemma 2.5, we 

have    p

G GO G N S  and so GS  is normal in G . 

Thus 
GS L S  is a minimal normal subgroup of G  by Step 

2. By Step 3,  F H is the direct product of minimal normal 

subgrroup of G  contained in H  by [15, Lemma 2.6], then 

 F H  GS L C L    since L is the minimally unique 

normal subgroup of G  and G is solvable. By Lemma 2.7, 

exp( )P p or 4 (if 2p  ), then L  is a cyclic subgroup of 

order p or 4. So G  is supersolvable by [19, 2.16]. So we 

assume that QS H . If H T , then 

1 1G PT PH H   is supersolvable, and so H T . By 

Step 1, T is a supersolvable group. Let R be a Hall p -

subgroup of T  which is also a Hall p -subgroup of G . 

Then :T R p , so R T< . So we have S p  or 1S  . 

In the two cases, G is supersolvable, a contradiction. 

Step 5. The final conclusion. 

By Step 4, we have  F H  F G . By Step 1 and [15, 

Lemma 2.6],  F H is the direct products of minimal normal 

subgroups of G . Then  F H    HF H L C L    as 

L  is abelian and L  is the unique minimal normal subgroup of 

G . Then we have  F H 1 2, , , nx x x L , where 

ix char L and  \ 1ix L , and so  F H ix L   by 

Lemma 2.8. By Step 2, /G L is supersolvable and by Step 1 

and Lemma 2.7, exp( )L p  or 4 (when 2p  ), ix is a 

cyclic subgroup of order p or 4 (when 2p  ), and so by [19, 

2.16], G is supersolvable. The final contradiction.  

This completes the proof.  

Remark 3.1 The condition of the theorem /G H is 

supersoluble can't be replaced by “ /G H is soluble”. 

Let 2 4G C A  , where 2C is a cyclic group of order 2 and 

4A is the alternating group of degree 4. Obviously 2 4/G C A  

is soluble. Since every maximal subgroup of 4A  is weakly 
*c -

normal in G  the hypotheses of the theorem is satisfied, but G  

is not supersoluble. 

Corollary 3.1 ([2, Theorem 3.1])Let L be a complete set of 

Sylow subgroups of a group G . If the maximal subgroups of 

pG are L -permuatble subgroups of G , for all pG L , then 

G  is supersoluble. 

Corollary 3.2 ([3, Theorem 4.1 ]) If /G H is supersoluble and 

all maximal subgroups of any Sylow subgroup of H  are  -

quasinormal in G , then G  is supersoluble. 

Corollary 3.3 ([21, Theorem 4.1]) Suppose that G  is a group 

with a normal subgroup H  such that /G H  is supersolvable. 

If all maximal subgroup of any Sylow subgroup of H  is 
*c -

normal in G , then G  is supersolvable. 

Theorem 3.2 Suppose that G  is a group with a normal 

subgroup H such that /G H  is supersolvable. If all cyclic 
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subgroups of H  with order p or 4 (if 2p  ) are weakly 
*c -

normal in G , then G  is supersolvable. 

Proof. Suppose that the theorem is false, we chose a minimal 

order group G  as a counterexample. We will prove the theorem 

by the following steps: 

Step 1. Every proper subgroup of G  containing H  is 

supersolvable and G  is solvable. 

Let M  be a proper subgroup of G  containing H . 

/M H is supersolvable Since /G H  is supersolvable. By 

hypothesis, all cyclic subgroups of H  of order p or 4 (if 

2p  ) are weakly 
*c -normal in G , then by Lemma 2.2(1), 

all cyclic subgroups of H  of order p or 4 (if 2p  ) are 

weakly 
*c -normal in M. Thus (M, H ) satisfies the hypotheses 

of the theorem. 

The minimal choice of G  implies that M is supersolvable. 

Then G  is not supersolvable but all proper subgroups are 

supersolvable, so by Lemma 2.7, we have G  has a unique 

normal Sylow p -subgroup P  of G  for some prime divisor 

p  of G . And also G  is solvable by [8, Hilfssatz C ]. 

The following. Let L  be a minimal normal subgroup of G  

contained in H . Then, by Step 1 and [11, Lemma 8.6, p102] L 

is an elementary abellian p -group for some prime divisor p  of 

G . 

Step 2. /G L  is supersolvable and )(GL  . 

By hypothesis, all cyclic subgroups of H  of order p or 4 (if 

2p  ) are weakly 
*c -normal in G , then by Lemma 2.2(2), 

all cyclic subgroups of /H L  of order p  or 4 (if 2p  ) are 

weakly 
*c -normal in /G L . And since 

   / / / /G L H L G H  is supersolvable, then /G L , 

/H L satisfies the hypotheses of the theorem. Thus the 

minimality of G  implies that /G L  is supersolvable. Since the 

class of supersolvable groups is a saturated formation by [10, 

Satz 10], then L is unique. If )(GL  , then )(/ GG   is 

supersolvable. Thus G  is supersolvable, a contradiction. 

Step 3. H G  and so    F H F G . 

If H G , then H  is supersolvable by Step 1. Let Q  be a 

Sylow q-subgroup of H , where q  is the largest prime divisor 

of H . Then by [9, VI-9.1], Q  char H  and H G< , so 

Q G< . If q p , then /1 / /G G P G Q  is 

supersolvable, and so G  is supersolvable, a contradiction. So 

p q  and P Q  or P L  by Step 1. If the latter, then by 

Lemma 2.8, we have L  is cyclic of order p  or 4 (if 2p  ). 

Thus G  is supersolvable since /G L  is supersolvable by [19, 

2.16]. Then we assume that P Q . By hypothesis, all cyclic 

subgroups C  of P  of order p  or (if 2p  ) is weakly 
*c -

normal in G . Then there exists a subnormal T such that 

G CT  and 
sGC T C  . We will deal with this from the 

following cases: 

Case 1: 1sGC  . 

Obviously T H , for otherwise, HT  , then if 1T H  , 

C H  and so G CT HT  , 1C T H T    , and 

C H  is a normal cyclic subgroup of G . 

Thus G  is supersolvable,a contradiction. If T H ,then 

G CT CH  . Obviously C H , then G CH H  , a 

contradiction. 

Then we have H T . Then by Step 1, T  is supersolvable. 

But G CT  is supersolvable by [4], a contradiction. 

Case 2: 
sGC T C C   , where P  is abelian or p  is an 

odd prime. 

In this case, C T , then G CT T   is supersolvable by 

Step 1, a contradiction. 

Case 3: 1 sGC T C C    , where P  is non-abelian and 

2p  . 

By hypothesis and Lemma 2.7(4) 4C  , then 2sGC  . 

Since C  is s -quasinormally embedded in G , then there exists 

a s-quasinormal subgroup K of G  such that C is a Sylow 2-

subgroup of K . Since for any Sylow q -subgroup Q  of G , 

where 2q  , such that KQ QK  is a subgroup of G . If 

KQ H , then by Step 1, KQ  is supersolvable, then K  is 

normal in KQ  and C  is a Sylow 2-subgroup of KQ , and so 

sGC KQ< . We have sG sGC Q QC  and so sGC  is s -

quasinormal in G. By Lemma 2.5,    p

G sGO G N C . Thus 

sGC G<  so sGL C  and LQ Q L  . Then 

 sGQ C L L  , by [8, Hilfssatz C], G  is solvable, a 

contradiction. 

Step 4.   1H G  . 

If not, then there exists a prime divisor r  of  G , and Let 

R  be a Sylow r -subgroup of  G , then R  is normal in 

G . By Step 2, /G R is supersolvable and so  /G G  is 

supersolvable. Thus G  is supersolvable, a contradiction. 

Step 5. Conclusion. 

By Step 4 and [15, Lemma 2.6], then  F H  is the direct 

products of minimal normal subgroups of G  containing in H . 

By Step 2,  F H L . By Step 1 and Lemma 2.7, 

 exp L p  or 4. By hypothesis, cyclic of L of order p or 4 

(if 2p  ) are weakly 
*c -normal in G . Thus by Lemma 2.8, 

L x , for some  \ 1x L , is a cyclic normal minimal 

subgroup of G . Then by [19, 2.16], G  is supersolvable since 

/G L is supersolvable by Step 2. 

The final contradiction completes the proof. ⃞  



Deqin Chen et al./ Elixir Appl. Math. 40 (2011) 5351-5356 
 

5355 

Corollary 3.4 ( [1, Theorem B])Let G  be a finite group. If 

there exists a normal subgroup H  such that G=H is 

supersoluble,  , 2 1H  , and every minimal subgroup 

/G H of H  is pronormal in G , then G  is supersoluble. 

Corollary 3.5 ([18, Theorem 3.1]) Let H  be a normal p -

subgroup of G  such that /G H  is supersolvable. Suppose that 

every cyclic subgroup of H  of order p  or 4 (if 2p  ) is  -

quasinormal in G , then G  is supersolvable. 

As a generalization of Theorem 1.1 and 1.2, we get: 

Theorem 3.3 Suppose that G  is a group with a normal 

subgroup H  such that /G H  is supersolvable. then G  is 

supersolvable if one of the followings contains  

(1)all maximal subgroups of any Sylow subgroups of H  are 

weakly 
*c -normal in G ; 

(2)all cyclic subgroups of H  with order p or 4 (if p = 2) are 

weakly 
*c -normal in G . 

Theorem 3.4 Let F  be a saturated formation containing A . 

Suppose that G  is a group with a normal subgroup H  such 

that /G H F . If every maximal subgroup of all Sylow 

subgroups of H  is weakly
*c -normal in G , then GF . 

Proof. Suppose that the theorem is false, we chose a minimal 

order group G  as a counterexample. Then G  is not 

supersoluble but all proper subgroups are supersoluble. Thus by 

Lemma 2.7, G  has a normal Sylow p-subgroup for some prime 

p dividing G , and /G PF  by induction. By hypotheses, 

all maximal subgroups of P  are weakly 
*c -normal in G , then 

by Theorem 1.1, GF , a contradiction. 

This completes the proof. ⃞  

Corollary 3.6 [20] Let F be a saturated formation containing A  

and let H  be a normal subgroup of a group G  such that 

/G H F . Suppose that every member of  HM  is 
*c -

normal in G . Then G  is in F . 

Theorem 3.5 Let F  be a saturated formation containing A . 

Suppose that G  is a group with a normal subgroup H  such 

that /G H F . If every subgroup of H  of order p or 4 

(when 2p  ) is weakly 
*c -normal in G , then GF . 

Proof. Suppose that the theorem is false, we chose a minimal 

order group G  as a counterexample. Then G  is not 

supersoluble but all proper subgroups are supersoluble. 

Thus by Lemma 2.7, G has a normal Sylow p -subgroup for 

some prime p  dividing G , and /G PF  by induction. By 

hypotheses, all subgroups of order p  or 4 (when 2p  ) of P  

are weakly 
*c -normal in G , then by Theorem 1.2, GF , a 

contradiction. 

This completes the proof. ⃞  

Remark 3.2 The condition of Theorem2 3.4 and 3.5  “ A ” can't 

be replaced by “ N ”, the class of nilpotent groups. For example 

3G S , the symmetric group of degree 3. Let P  be the Sylow 

3-subgroup. Obviously, G ; P  satisfies the hypotheses, but G  

is not in F . 

Corollary 3.7 ([5, Theorem 5])Let F  be a saturated formation 

containing A . Let G  be a group with abelian Sylow 2-

subgroups. If H  is a normal subgroup of G  such that 

/G H F  and every minimal subgroup of H  is permutable 

in G , then GF . 

Corollary 3.8 ([5, Theorem 2]) Let F be a saturated formation 

containing A , the class of all supersoluble groups. Assume that 

G  is a group with a normal subgroup H  such that 

/G H F . If every generator of  H  is permutable in G , 

then GF . 

By Theorems 3.4 and 3.5, we have 

Theorem 3.6 Let F  be a saturated formation containing A . 

Suppose that G  is a group with a normal subgroup H  such 

that /G H F ,. then GF  if one of the followings contains 

(1)all maximal subgroups of any Sylow subgroups of H  are 

weakly 
*c -normal in G ; 

(2)all cyclic subgroups of H  with order p or 4 (if 2p  ) are 

weakly 
*c -normal in G . 
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