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Introduction  

The projected differential transform method (PDTM) is one 

of the approximate methods which can be easily applied to many  

linear and nonlinear system and is capable of reducing the size 

of computational work .  The concept of the projected  

differential transform method has been introduced to solve  

linear and nonlinear system  in electric circuit analysis and 

mechanics  [ 5,8,9 ]. 

Projected differential transform method is a semi-numerical 

analytic technique that formalizes the Taylor series in a totally 

different manner. With this method, the given system of partial 

differential equations and related initial conditions are 

transformed into a recurrence equation that finally transforms 

the system of partial differential equations to algebraic equations 

which can easily be solved. In this method no need for 

linearization or perturbations, much computational work and 

round- off errors are avoided. In resent years many researchers 

apply the PDTM for solving system of partial differential 

equations  1,2 .  

This method constructs, for a system of partial differential 

equations an analytical solution in the form of a polynomial. Not 

like   the traditional high order Taylor series method that 

requires symbolic computations. Another important advantage is 

that this method reduces the size of computational work while 

the Taylor series method is computationally taking long time for 

higher orders. This method is well addressed in  4,6 . 

Projected differential transform: 

The basic definitions and fundamental theorems of 

projected differential transform method are defined in  3 and 

will be stated briefly in this paper. 

Projected differential transform of function 

 1 2, ,...., ny x x x  is defined as follows: 
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Where  1 2, ,...., ny x x x the original is function and    

 1 2 1, ,...., ,ny x x x k is the transformed function.  

The inverse differential transform of  1 2 1, ,...., ,ny x x x k is 

defined as. 
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Combining eqs (1) and (2) we have  
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It is worth noting that the projected differential transform 

method is close to the one dimensional differential transform 

method because the PDTM is considered as the standard of 

DTM  1 2, ,...., ny x x x  with respect to variable nx  

The fundamental theorems of the projected differential 

transform are:  

Theorems:  
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Note that c  is Constant and n  is a nonnegative integer. 

Example :( 1) 

We consider the following linear system 

2

2

t x

t x

u u v

v v u

 


  

                                                      (4) 

With the initial conditions  

      ,0 sin , ,0 cosu x x v x x                                                    (5)  

By taking the projected differential transform method of 

equation (4) we obtain  
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Substituting eq (5) into eq (6) yields 

sin cos
( ,1) cos , ( ,2) , ( ,3)
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 Substituting    , , ,u x h v x h in to equation (2) yields  
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Example :-( 2) 

Consider the nonlinear system 

1

1
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With the initial conditions 

( ,0) , ( ,0)
x x
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Taking the projected differential transform method of eq (4.33) 

we get 
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Substituting eq (4.34) into eq (4.35) we have 
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( ,1) , ( ,2) , ( ,3)
2! 3!
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And so on in general  
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Substituting    , , ,u x h v x h into eq (2) we have 
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Example :-( 3) 

  The following example deal with a system of three 

nonlinear partial differential equations in three unknown 

functions     tyxvtyxu ,,,,,  and   tyxw ,,  this problem 

can easily is solved by using projected differential transform 

which overcomes the difficulties of traditional methods [5]. 
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With the initial conditions  

( , ,0) , ( , ,0) , ( , ,0)
x y x y x y
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                         (11) 

By using the projected differential transform method of eq (10) 

we 
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Substituting eq (11) into eq (12) we get  
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And so on in general  
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Substituting    , , , , ,u x y h v x y h and  , ,w x y h into eq (2) 

yields 
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Conclusion:- 

Projected differential transform have been applied to linear 

and nonlienear partial differential equations .The results   for all 

examples can be obtained in Tayler's series form, all the 

calculations in the method are very easy. In summary, using 

projected differential transformation to solve PDE consists of 

three main steps. First, transforming PDE into algebraic 

equation, second, solving the equations, finally inverting the 

solution of algebraic equations to obtain a closed form series 

solution. 
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