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Introduction  

The projected differential transform method can be easily 

applied to many linear and nonlinear problems and is capable of 

reducing the size of computational work .some problems in 

science and engineering fields can be described by the initial 

value problems .A variety of numerical and analytical methods 

have been developed to obtain accurate approximate and 

analytic solutions for the initial value problems in the literature. 

[3,5,8,9 ]. 

Projected differential transform method is a semi-numerical 

analytic technique that formalizes the Taylor series in a totally 

different manner. With this method, the given differential 

equation and related initial conditions are transformed into a 

recurrence equation, that finally trans forms partial differential  

equations to algebraic equations which can easily be solved. In 

this method no need for linearization or perturbations, much 

computational work and round- off errors are avoided. In resent 

years many researchers apply the PDTM for solving partial 

differential equations  1,2 .  

This method constructs, for partial differential equations an 

analytical solution in the form of a polynomial. Not like   the 

traditional high order Taylor series method that requires 

symbolic computations. Another important advantage is that this 

method reduces the size of computational work while the Taylor 

series method is computationally taking long time for higher 

orders. This method is well addressed in  4,6 . 

Projected differential transform: 

The basic definitions and fundamental theorems of 

projected differential transform method are defined in  3 and 

will be stated briefly in this paper. 

Projected differential transform of function 

 1 2( , ,...., ),ny x x x t  is defined as follows: 
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Where  1 2( , ,...., ),ny x x x t the original is is function and    

 ,y k is the transformed function.  

The inverse differential transform of  ,y k is defined as. 
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Combining eqs (1) and (2) we 
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The fundamental theorems of the projected differential 

transform are:  

Theorems:  
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Note that c  is Constant , n  is a nonnegative integer 

and 1 2( , ,...., )nx x x   . 

Example:- 

Consider the following linear PDE with boundary conditions  
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With the boundary conditions  

               ,0 0 , 0, 0w x w t                    (5)                                                       

Using the projected differential transform method with respect 

to  t of eq (4) yields . 
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Substituting eq (5) in to eq (6) we have  
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Example:- 

     Consider the following nonlinear P.D.E with initial condition. 
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Using eq (8) and I.C we have 
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Substituting ( , )u x h  into equation (2) we get:  
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Example:- 

Consider the following nonlinear P.D.E 
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With the initial condition 
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By applying the projected differential transform method of eq 
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Using eqs (10) and (11) we get  
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Substituting  ,u x h  into equation (2) we have 
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Example:- 

Consider the Klein – Gordon equation  
2

2 2 2sin
4 2

tt xxu u u u x t
 

                        (12)                                                                        

With initial conditions  

   ,0 0 , ,0
2

tu x u t x


                               (13)                                                                    

Taking the projected differential transform method of equation 
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Using eqs (13)  , (14) and (15) we have  
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Substituting  ,u x h into equation (2) yields 
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Conclusion:- 

Projected differential transform have been applied to linear 

and nonlienear partial differential equations .The results   for all 

examples can be obtained in Tayler's series form, all the 

calculations in the method are very easy. In summary, using 

projected differential transformation to solve PDE consists of 

three main steps. First, transformacting PDE into algebraic 

equation, second, solving the equations, finally inverting the 

solution of algebraic equations to obtain a closed form series 

solution. 
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