
Shrutakeerti Behura et al./ Elixir Adv. Engg. Info. 40 (2011) 5183-5185

5183

Introduction

Test Suite is a collection of written test cases and

Regression testing requires large amounts of test cases to test

any new or modified functionality within the program [1]. The

components of a test suite is shown below.

Fig1. Components of a Test Suite

Re-running all existing test cases together with the new

ones is often costly and even infeasible due to time and resource

constraints. To address this problem, the researchers proposed

techniques to optimize regression testing [2], [3], [4], [5], [6],

[7], [8]. Re-running test cases that do not exercise any changed

or affected parts of the program makes extra cost and gives no

benefit. An effective technique is to permanently discard such

redundant or obsolete test cases and retain the most effective

ones to reduce the excessive cost of regression testing [6]. Such

technique attempts to find a minimal subset of test cases which

satisfy all the testing requirements as the original set does [9].

This subset could be found during the test case generation or

after creating the test suite. Apparently the less the number of

test cases the less time it takes to test the program. This

consequently improves the effectiveness of the test process. This

technique is commonly known as test suite reduction or test

suite minimization in the literature and the resulting suite is

called representative set [3].

Test suite reduction problem

The first formal definition of test suite reduction problem

introduced in 1993 by Harrold et al. [3] as follows:

Given. {t1, t2,…, tm} is test suite T from m test cases and

{r1, r2,…, rrn} is set of test requirements that must be satisfied

in order to provide desirable coverage of the program entities

and each subsets {T1, T2,…, Tn} from T are related to one of

requirements such that each test case tj belonging to Ti satisfies

ri Problem. Find minimal test suite T' from T which satisfies all

ris covered by original suite T.

Generally the problem of finding the minimal subset T', T’

belongs to T which satisfies all requirements of T, is NP-

complete [10], because we can reduce the minimum set-cover

problem to the problem of test suite minimization in polynomial

time.

Related Work

The classical greedy heuristic for solving the set-cover

problem was presented by Chvatal [6]. The approach greedily

selects the next set (test case) that maximizes the ratio of

additional requirement coverage to cost, until no sets provide

any additional requirement coverage. Another heuristic

presented by Harrold et al. [3] (the HGS algorithm) greedily

selects the next test case exercising the most additional

requirements that are satisfied by the fewest number of tests.

Chen and Lau [5] described two strategies for dividing a test

suite into k smaller sub problems (sub suites) such that if

optimal solutions can be found for each of the k sub problems,

then these solutions can be combined to form an optimally

reduced suite. However, these two dividing strategies cannot be

applied to every suite. Agrawal [7] developed a technique using

global dominator graphs to derive implications among testing

requirements such that satisfying one requirement implies

satisfying one or more of the other requirements. These

implications can be used to achieve higher coverage with

smaller suites by targeting those requirements implying the most

coverage of the other requirements. Tallam and Gupta [1]

developed another heuristic called Delayed-greedy that exploits

both the implications among test cases and the implications

among the requirements to remove the implied rows and

columns in the table mapping test cases to the requirements

covered by them. It delays the application of the greedy heuristic

until after the table cannot be reduced any further and after the

Tele:
E-mail addresses: shrutakeerti.behura@gmail.com

 © 2011 Elixir All rights reserved

Test suite minimization with a greedy approach
Shrutakeerti Behura and Ajit Kumar Nayak

Department Computer Science and Engineering, SOA University Institute of Technical Education & Research, Bhubaneswar, India.

ABS TRACT

Regression testing leads to running many tests many times. Hence it requires more cost. The

most robust and straight forward technique for regression testing is to accumulate all

integration tests and rerun them whenever new components are integrated into the system.

This requires developers to keep all tests up-to-date, to evolve them as the subsystem

interfaces changes and to add new integration tests as new services or new subsystems are

added. As regression testing can become time consuming, test suite minimization (also

known as Test Suite Reduction) technique is best suited to tackle it . In this paper we have

explained the heuristic approach to solve this optimization problem.

 © 2011 Elixir All rights reserved.

ARTICLE INFO

Article his tory:

Received: 25 August 2011;

Received in revised form:

17 October 2011;

Accepted: 27 October 2011;

Keywor ds

Regression Testing,

Test Suite Minimization,

Heuristics,

Greedy.

Elixir Adv. Engg. Info. 40 (2011) 5183-5185

Advanced Engineering Informatics

Available online at www.elixirpublishers.com (Elixir International Journal)

Shrutakeerti Behura et al./ Elixir Adv. Engg. Info. 40 (2011) 5183-5185

5184

essential tests are selected. Selecting a test case using the

greedy heuristic and removing the corresponding row and the

columns from the table exposes new implications among test

cases and the implications among the requirements, which

enables further reduction of the table. All the above heuristics to

generate a minimal suite have polynomial time worst-case

runtime complexity.

An Empirical Study

Given a test suite TS ={t1,t2…tn} consisting of the test

case and the sequence of blocks of a tested program. R={r1,

r2,…, rrn}，we have a positive cost, cj assigned to each test

case measuring the amount of resources its execution needs. A

positive weight, wi is assigned to each requirement, which

represents the relative importance of ri with respect to the

correct behavior of program or to the regression testing. For

example, we can assign bigger weight to the recently modified

requirement.

Let T be an arbitrary set of the test cases, T⊂TS. The cost

of this test set is defined as the sum of the costs of the test cases

that belong to T: c(T)=Σt_T C(t).

Let cov(T) denote the coverage of the test set T,

cov(T)=Σt_T wt.Cov(t).

Here the lower bound (K) is the coverage of the original

test-suite. In fact, the coverage of the reduced test suite is

impossible to be larger than K.

Modified Greedy Algorithm

The greedy algorithm takes the change in the coverage

when choosing a test case to add to the reduced test-suite. We

calculate the marginal coverage of each test case, i.e., the

change in the coverage as a consequence of the change in

reduced test-suite. We then compare it with the change in cost,

and choose the test case that proves to be the best.

Modified Greedy Algorithm (MGrA):

Step1: Let T={};

Step2: For each ti ∈TS-T, calculate the increase in

coverage and cost if it is added to T:

 Cov(ti)= Cov(T∪ { ti })- Cov(T),

 Cost(ti)= Cost(T∪ { ti })- Cost(T)

Step3: Find a test cast ti in TS-T for whic h Cov(ti)/

Ccost(ti) is minimal. If there are more, then choose

the one with the lowest index. Let T=T∪{ ti };

Step4: If Cov(T)≥K, then STOP, otherwise go to Step 2.

The above algorithm is being implemented using

MATLAB. The resulted graph is shown in the following figure.

The graph has been plotted by taking original test suite size

along X axis and reduced suite size along Y axis. We have also

implemented genetic algorithm (GA) to minimize the test suite.

We /have found that greedy is giving better result than that of

genetic algorithm.

Fig 2: Comparison between Genetic Algorithm and Greedy

implementation

Another experiment have also been done to verify time taken

by genetic algorithm and greedy algorithm. The result is shown

below.

Fig 3: Original test suite size Vs Time Elapsed

Greedy algorithm is also showing better result in case of

time elapsed during the reduction of test suite size.

Conclusion

The tests which have been performed to verify the

performance of genetic algorithm and greedy algorithm further

need to be minutely examined. A question also comes about

fault detection effectiveness, which should be revealed and

should also be same as original one. More experiments need to

be done to verify the same. The above minimal cost problem is

a single objective one. We are aiming at a multi objective

problem which will consist of minimal cost problem and

maximal fault detection effectiveness problem.

Future work

Future work includes performing the experiments on

different sets of well known test suites as well as with more

applications and larger test sets. We are also investigating a

solution to the maximal fault detection effectiveness problem

for more accuracy.

Reference

[1]G. Rothermel, M.J. Harrold, J. von Ronne, C. Hong,

“Empirical Studies of Test-Suite Reduction”,Journal of

Software Testing, Verification, and Reliability, 12(4), 2002, pp.

219-249.

[2]G.Rothermel, M.J. Harrold, J. Ostrin, C. Hong, “An

Empirical Study of the Effects of Minimization onthe Fault

Detection Capabilities of Test Suites”, Proceedings of the

International Conference on Software Maintenance, IEEE

Computer Society, 1998.

[3]M.J. Harrold, R. Gupta, M.L. Soffa, “A Methodology for

Controlling the Size of a Test Suite”, ACM Transactions on

Software Engineering Methodologies 2, 1993, pp. 270-285.

[4]T.Y. Chen, M. F. Lau, “Heuristics toward the Optimization

of the Size of a Test Suite” Proc. 3rd Int’l Conf. on Softw.

Quality Management. Vol. 2, Seville, Spain, April 1995, pp.

415-424.

[5]J.A. Jones, M.J. Harrold, “Test-Suite Reduction and

Prioritization for Modified Condition/Decision Coverage”,

IEEE Trans. Softw. Eng. 29, 2003, pp. 195-209.

[6]S. McMaster, A. Memon, “Call-Stack Coverage for GUI

Test Suite Reduction”, IEEE Trans. Softw.Eng. 34, 2008, pp.

99-115.

[7]S.Tallam, N. Gupta, “A concept analysis inspired g reedy

algorithm for test suite minimization”,Proceedings of the 6th

ACM SIGPLAN-SIGSOFT workshop on Program analysis for

software tools and engineering. ACM, Lisbon, Portugal, 2005.

[8]D. Leon, A. Podgurski, “A Comparison of Coverage-Based

and Distribution-Based Techniques for Filtering and Prioritizing

Shrutakeerti Behura et al./ Elixir Adv. Engg. Info. 40 (2011) 5183-5185

5185

Test Cases”, Proceedings of the 14th International Symposium

on Software

[9]G. Rothermel and M.J. Harrold, A Safe, Efficient Regression

Test Selection Techinique. ACM Trans. Software Eng. And

Methods, vol. 6, no. 2, pp. 173-210, Apr. 1997.

[10]G. Rothermel, M.J. Harrold, J. Ostria, and C. Hong, An

Empirical Study of the Effects of Minimization on the Fault

Detection Capabilities of Test Suites. Proc. Int’l Conf. Software

Maintenance, PP. 34-43, Nov. 1998.

