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Introduction  

The study of heat and mass transfer with chemical reaction 

is of great practical importance to engineers and scientists 

because of its almost universal occurrence in many braches of 

science and engineering. Das et al. [1] have studied the effects of 

mass transfer on the flow past an impulsively started infinite 

vertical plate with constant heat flux and chemical reaction. 

Diffusion of chemically reactive species from a stretching sheet 

is studied by Anderson et al. [2]. Anjalidevi and Kandaswamy 

[3, 4] have analysed the effects of chemical reaction, heat and 

mass transfer on laminar flow without or with along a semi-

infinite horizontal plate. The effects of the chemical reaction and 

mass transfer on MHD unsteady free convection flow past a 

semi infinite vertical plate with constant/variable suction and 

heat sink was analyzed by [5-7]. Ghaly and Seddek [8] have 

discussed the Chebyshev finite difference method for the effects 

of chemical reaction, heat and mass transfer on the laminar flow 

along a semi-infinite horizontal plate with temperature 

dependent viscosity.  

A new stage in the evaluation of fluid dynamic theory is in 

progress because of the increasing in the processing industries 

and elsewhere of materials whose flow shear behavior cannot  be 

characterized by Newton relationships. The theory of micropolar 

fluids was first introduced and formulated by Eringen [9]. This 

theory displays the effects of local rotary inertia and couple 

stress. The theory is expected to a mathematical model for the 

non-Newtonian fluid behavior observed in certain fluid such as 

exotic lubricants, colloidal fluids, liquid crystals etc., which is 

more realistic and important from a technological point of view. 

The theory of thermomicropolar fluids was developed by 

Eringen [10] by extending his theory of micropolar fluid. The 

flow characteristics of the boundary layer of micropolar fluid 

over a semi-infinite plate in different situations have been 

studied by many authors in Refs. [11, 12]. We know that the 

radiation effect is important under many non-isothermal 

situations. If the entire system involving the polymer extrusion 

process is placed in a thermally controlled environment, then 

radiation could become important. The radiative flows of an 

electrically conducting fluid with high temperature in the 

presence of a magnetic field are encountered in electrical power 

generation, astrophysical flows, solar power technology, space 

vehicle re-entry, nuclear engineering applications and other 

industrial areas [13-16]. In the above authors studied the 

radiation on Newtonian and non-Newtonian fluids with and 

without magnetic field has been considered by many authors.  

In all the studies mentioned above, viscous dissipation is 

neglected. But the viscous dissipation in the natural convective 

flow is important, when the flow field of extreme size or in high 

gravitational field. Gebhart [17] show the importance of viscous 

dissipative heat in free convection flow in the case of isothermal 

and constant heat flux at the plate. Gebhart and Mollendorf [18] 

considered the effects of viscous dissipation for the external 

natural convection flow over a surface. Soundalgekar [19] 

analyzed viscous dissipative heat on the two dimensional 

unsteady free convection flow past an infinite vertical porous 

plate when the temperature oscillates in time and there is 

constant suction at the plate. 

However, the interaction of radiation with mass transfer in a 

chemically reacting and dissipative fluid has received little 

attention. So the objective of this paper is to study the effects of 

chemical reaction and thermal radiation on MHD convective 

flow of micro polar fluid past a semi infinite vertical plate with 

viscous dissipation. 

Mathematical analysis: 

Consider the steady, laminar, two-dimensional, free 

convection flow of a viscous incompressible, electrically 

conducting, and polar fluid occupying a semi-infinite region of 

the space bounded by an infinite vertical porous plate in the 
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presence of viscous dissipation and subjected to thermal 

radiation. The 
*x -axis is taken along the vertical plate in an 

upward and 
*y -axis is taken normal to the plate. The 

transversely applied magnetic field and magnetic Reynolds 

number are assumed to be very small so that the induced 

magnetic field is negligible [20]. The governing equations for 

this physical situation are based on the usual balance laws of 

mass, laminar momentum, angular momentum, energy and mass 

diffusion modified to account for the physical effects mentioned 

above.  

The equations are given by                 

continuity: 
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diffusion: 
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where
*x and

*y are the dimensional distances along and 

perpendicular to the plate, respectively. 
** ,vu are the 

components of dimensional velocities along
*x and 

*y directions, respectively,  is the density,   is the kinematic 

viscosity, r  is the kinematic rotational viscosity, g  is the 

acceleration of gravity, f  and c is the coefficients of 

volumetric thermal and concentration expansion of the fluid , 

c   is the fluid electrical conductivity, 0  is the magnetic 

induction, 
*j  is the micro inertia density, 

*  is the component 

of the angular velocity vector normal to the 
** yx -plane,   is 

the spin gradient viscosity,   is the effective thermal 

diffusivity of the fluid, k is the effective thermal conductivity, 

pC  is the specific heat at pressure, rq  is the radiative heat flux, 

*T  is the dimensional temperature,
*C is the dimensional 

concentration of the fluid, lK  is the chemical reaction 

parameter and 
*D  is the chemical molecular diffusivity. The 

second and third terms on the right hand side of the momentum 

equation (2.2) denotes thermal and concentration buoyancy 

effects and the forth is the MHD term. Also, the second term on 

the right hand side of the energy equation (2.4) represents the 

radiative heat flux. 

Using the Rosseland approximation [21], the radiative heat 

flux in the
*y  direction is given by            
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where  and 
ek are the Stefan-Boltzman constant and the mean 

absorption coefficient, respectively.  

We assume that the temperature differences with within the 

flow are sufficiently small such that 
4T  may be expressed as a 

linear function of the temperature. This is accomplished by 

expanding 
4T into the Taylor series about T and neglecting 

higher terms, then 
444 34   TTTT                                                       (2.7) 

By substitution from equations (2.6) and (2.7) in equation (2.4), 

so  
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The appropriate boundary conditions for the velocity, 

microrotation, temperature and concentration fields are 
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The integration of the continuity equation (1) yields  

,0

* Vv                                                                     (2.10)                                               

where 0V   is the scale of suction velocity which is a non-zero 

positive constant. The negative sign indicates that the suction is 

directed towards the plate. 

It is convenient to employ the following non-dimensional 

variables:  
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In view of Equations (2.10) and (2.11) the governing 

Equations (2.2), (2.3), (2.5) and (2.8) reduce to the following 

non-dimensional form:    
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and Gr , Gc, M, K, Pr, R, Ec, Sc and   are the thermal Grashof 

number, solutal Grashof number, magnetic field parameter, 

permeability parameter, Prandtl number, radiation parameter, 

Eckert umber,   Schmidt number and the chemical reaction 

parameter, respectively.  

The boundary conditions (2.9) are then given by the following 

non-dimensional equations: 
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The mathematical statement of the problem is now complete and 

embodies the solution of Eqs. (2.12)-(2.5) and subject to 

boundary conditions (2.16). 

Solution of the problem 

The solution of Equation (2.15) subject to the boundary 

conditions (2.16).    
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eyC 3)(                                                        (2.17) 

where 






 


Sc

Sc
R

4
11

2
3

 . 

the problem posed in Eqs. (2.12)-(2.14) subjected to the 

boundary conditions presented in Equation (2.16) are highly 

non-linear, coupled equations and generally will involve a step 

by step numerical integration of the explicit finite difference 

scheme. However, analytical solutions are possible. Since 

viscous dissipation parameter is very small in most of the 

practical problems and therefore, we can advance an asymptotic 

expansion with as perturbation parameter for the velocity, 

microrotation and temperature as follows.  
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Substituting Eqs. (2.18) into Eqs. (2.12)-(2.14), equating the 

coefficients of the same power of E and neglecting terms in E
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and higher order, we get  
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where a prime denotes differentiation with respect to y .  

With the corresponding boundary conditions  
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Without going into details, the solutions of Eqs. (2.19)-(2.24) 

subject to Equation (2.25) can be shown to be  
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and the remaining mathematical expressions involved in the 

above equations are given in appendix. 

In view of the above solutions, the streamwise velocity, 

microrotation, temperature and concentration in the boundary 

layer become 
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The skin-friction, the couple stress coefficient, the Nusselt 

number and the Sherwood number are important physical 

quantities for this type of boundary-layer flow. These parameters 

can be defined and determined as follows: 
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Results and discussion  

In order to study the behavior of velocity u , 

microrotation , temperature  and concentration C fields, a 

comprehensive numerical computation is carried out for various 

values of the parameters that describe the flow characteristics 

viz., viscosity ratio  , plate velocity 
pU , the thermal Grashof 

number Gr, the solutal Grashof number Gc, Prandtl number Pr, 

the radiation parameter R, Eckert number Ec, Schmidt number 

Sc  and chemical reaction parameter Kr and results reported in 

in terms of graghs. The effect of dimensionless viscosity 

ratio  , on the velocity and microrotation past a porous plate is 

presented in Fig. 1.    
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Fig 1 Velocity and Microrotation profiles for different values 

of   

0 1 2 3 4 5 6 7 8
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Space coordinate, y

V
el

o
ci

ty
, 

u

Up=0.0, 0.2, 0.5, 0.8 

Gr=2.0, Gc=2.0,=1.0, =0.1        

M=2.0, Pr=1.0, Sc=0.22                    

R=1.0, Kr=1.0, Ec= 0.05                   

                                          

(a) 

 
0 1 2 3 4 5

-3

-2.5

-2

-1.5

-1

-0.5

0

Space coordinate, y

M
ic

ro
ro

ta
ti

o
n

, 


Up= 0.8, 0.5, 0.2, 0.0 

Gr=2.0, Gc=2.0,=1.0, =0.1               

M=1.0, Pr=1.0, Sc=0.22, K=1.0                    

R=1.0, Kr=1.0, Ec= 0.05                          

                                                 

(b) 

 
Fig. 2. Velocity and Microrotation profiles for different 

values of Up  

The numerical results show that the peak value of the 

velocity distribution across the boundary layer is smaller for a 

Newtonian fluid )0(   with the fixed flow and material 

parameters, as compared with a micropolar fluid. In addition, the 

value of the angular velocity on the porous plate increases as the 

viscosity ratio  increases.  

Fig. 2 illustrates the variation of velocity and microrotation 

distribution across the boundary layer for the various values of 

the plate velocity pU . It is observed that the values of 

translational velocity and microrotation on the porous plate 

increase, as the plate moving velocity pU increases. 
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Fig 3 Velocity and Microrotation profiles for different values 

of Gr , Gc and Sc  

The translational velocity and the microrotation profiles 

against spanwise coordinate y for different values of Grashof 

numberGr , Solutal Grashof numberGc  and Schmidt number 

Sc are described in Fig. 3. It is observed that the velocity 

increases as Gr , Gc  increase while it decreases as Sc increase, 

but opposite behavior is found to microrotation. Here the 

positive values ofGr  corresponds to a cooling of the surface by 

natural convection.  

Fig. 4 shows the translational velocity and the microrotation 

profiles across the boundary layer for different values of Pr  and 

R.  We observe that the effect of increasing values Pr or R in a 

decreasing the velocity and magnitude of microrotation.  
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Fig. 4. Velocity and Microrotation profiles for different 

values of Pr and R  

For different values of the Schmidt number Sc and 

chemical reaction parameter Kr translational velocity and the 

microrotation profiles are plotted in Fig. 5. It is obvious that the 

effect of increasing values of Sc or Kr results in a decreasing 

velocity distribution across the boundary layer. Furthermore, the 

results show that the magnitude of microrotation on the porous 

plate is decreased as Sc or Kr increases. 
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Fig. 5. Velocity and Microrotation profiles for different 

values of Sc andKr  

The effects of the viscous dissipation parameter i.e., Eckert 

number on the velocity and microrotation are shown in Fig. 6.  It 

is clear that from these results an increase in the values of Eckert 

number Ec leads to rise in the velocity and magnitude of 

microrotation.  
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(b) 

 
Fig. 6 Velocity and Microrotation profiles for different 

values of Ec  

Fig. 7 illustrates the influence of Eckert number Ec on the 

dimensionless temperature . It is observed that an increase in 

Ec leads to a fall in the velocity. 
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Fig 7 Temperature profiles for different values of Ec  

For different values of Prandtl number Pr  and radiation 

parameter R, the temperature profiles are plotted in Fig. 8. These 

results show that an increase in Pr or R results in a decrease 

thermal boundary layer thickness. 
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Fig. 8. Temperature profiles for different values of 

Pr and R  

Fig .9 shows typical variations in the concentration profiles 

for different values of the Schmidt number Sc and the chemical 

reaction parameter Kr. It is clear from Fig. 9 that the 

concentration boundary layer thickness decreases as the Schmidt 

number Sc and the chemical reaction parameter Kr.    
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Fig. 9. Concentration profiles for different values of 

Sc and Kr  
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