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The objective of the present investigation is to analyze the radiation and mass transfer
effects on an unsteady two-dimensional laminar convective boundary layer flow of a
viscous, incompressible, chemically reacting and dissipative fluid along a semi-infinite
vertical plate with suction. The equations of continuity, linear momentum, energy and
diffusion, which govern the flow field are solved by using a regular perturbation method.

The behavior of the velocity, temperature, concentration has been discussed numerically and
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Introduction

The study of heat and mass transfer with chemical reaction
is of great practical importance to engineers and scientists
because of its almost universal occurrence in many braches of
science and engineering. Das et al. [1] have studied the effects of
mass transfer on the flow past an impulsively started infinite
vertical plate with constant heat flux and chemical reaction.
Diffusion of chemically reactive species from a stretching sheet
is studied by Anderson et al. [2]. Anjalidevi and Kandaswamy
[3, 4] have analysed the effects of chemical reaction, heat and
mass transfer on laminar flow without or with along a semi-
infinite horizontal plate. The effects of the chemical reaction and
mass transfer on MHD unsteady free convection flow past a
semi infinite vertical plate with constant/variable suction and
heat sink was analyzed by [5-7]. Ghaly and Seddek [8] have
discussed the Chebyshev finite difference method for the effects
of chemical reaction, heat and mass transfer on the laminar flow
along a semi-infinite horizontal plate with temperature
dependent viscosity.

A new stage in the evaluation of fluid dynamic theory is in
progress because of the increasing in the processing industries
and elsewhere of materials whose flow shear behavior cannot be
characterized by Newton relationships. The theory of micropolar
fluids was first introduced and formulated by Eringen [9]. This
theory displays the effects of local rotary inertia and couple
stress. The theory is expected to a mathematical model for the
non-Newtonian fluid behavior observed in certain fluid such as
exotic lubricants, colloidal fluids, liquid crystals etc., which is
more realistic and important from a technological point of view.
The theory of thermomicropolar fluids was developed by
Eringen [10] by extending his theory of micropolar fluid. The
flow characteristics of the boundary layer of micropolar fluid
over a semi-infinite plate in different situations have been
studied by many authors in Refs. [11, 12]. We know that the
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radiation effect is important under many non-isothermal
situations. If the entire system involving the polymer extrusion
process is placed in a thermally controlled environment, then
radiation could become important. The radiative flows of an
electrically conducting fluid with high temperature in the
presence of a magnetic field are encountered in electrical power
generation, astrophysical flows, solar power technology, space
vehicle re-entry, nuclear engineering applications and other
industrial areas [13-16]. In the above authors studied the
radiation on Newtonian and non-Newtonian fluids with and
without magnetic field has been considered by many authors.

In all the studies mentioned above, viscous dissipation is
neglected. But the viscous dissipation in the natural convective
flow is important, when the flow field of extreme size or in high
gravitational field. Gebhart [17] show the importance of viscous
dissipative heat in free convection flow in the case of isothermal
and constant heat flux at the plate. Gebhart and Mollendorf [18]
considered the effects of viscous dissipation for the external
natural convection flow over a surface. Soundalgekar [19]
analyzed viscous dissipative heat on the two dimensional
unsteady free convection flow past an infinite vertical porous
plate when the temperature oscillates in time and there is
constant suction at the plate.

However, the interaction of radiation with mass transfer in a
chemically reacting and dissipative fluid has received little
attention. So the objective of this paper is to study the effects of
chemical reaction and thermal radiation on MHD convective
flow of micro polar fluid past a semi infinite vertical plate with
viscous dissipation.

Mathematical analysis:

Consider the steady, laminar, two-dimensional, free
convection flow of a viscous incompressible, -electrically
conducting, and polar fluid occupying a semi-infinite region of
the space bounded by an infinite vertical porous plate in the
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presence of viscous dissipation and subjected to thermal
radiation. The X -axis is taken along the vertical plate in an
upward and y*-axis is taken normal to the plate. The

transversely applied magnetic field and magnetic Reynolds
number are assumed to be very small so that the induced
magnetic field is negligible [20]. The governing equations for
this physical situation are based on the usual balance laws of
mass, laminar momentum, angular momentum, energy and mass
diffusion modified to account for the physical effects mentioned
above.

The equations are given by

continuity:
av*

=0, 2.1)
oy
linear momentum:

. ) x 2 *
v*a—u*:(vwr)a—u*ﬁgﬂf(T—Tw)+gﬂc(C*—Ci) [UB+V)U*+2vraw*, (2.2)

oy 0] p K oy

angular momentum:
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energy:
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diffusion:

. 0C” NGRT «
Vo =D 5 -K,C", (25)
where X~ and y*are the dimensional distances along and

perpendicular to the plate, respectively. u*,v*are the

components  of  dimensional  velocities  along X and

y*directions, respectively, pis the density, v is the kinematic

viscosity, v, is the kinematic rotational viscosity, g is the

acceleration of gravity, S and f_is the coefficients of

volumetric thermal and concentration expansion of the fluid |,

o, is the fluid electrical conductivity, B, is the magnetic

induction, j* is the micro inertia density, " is the component

of the angular velocity vector normal to the X*y*-plane, y s

the spin gradient viscosity, « is the effective thermal
diffusivity of the fluid, k is the effective thermal conductivity,

Cp is the specific heat at pressure, Q, is the radiative heat flux,

T" is the dimensional temperature,C*is the dimensional

concentration of the fluid, K, is the chemical reaction

parameter and D" is the chemical molecular diffusivity. The
second and third terms on the right hand side of the momentum
equation (2.2) denotes thermal and concentration buoyancy
effects and the forth is the MHD term. Also, the second termon
the right hand side of the energy equation (2.4) represents the
radiative heat flux

Using the Rosseland approximation [21], the radiative heat

flux in the y* direction is given by
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q*r __ 4o 0T 26)

3k, oy’
where o and ke are the Stefan-Boltzman constant and the mean

absorption coefficient, respectively.
We assume that the temperature differences with within the

flow are sufficiently small such that T! may be expressed as a
linear function of the temperature. This is accomplished by

expanding T%into the Taylor series about T and neglecting
higher terms, then

T* =41, *T-31,° 27)
By substitution from equations (2.6) and (2.7) in equation (2.4),
so

STk ST 160T! 5T (au*Jz 28
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The appropriate boundary conditions for the velocity,

microrotation, temperature and concentration fields are

u'=uy, a)*z—ai*,TzTW,c*=cjv aty =0

u -0, @ 50,T—>T, C"5C ay 5o
(2.9

The integration of the continuity equation (1) yields
Vo=V,

where V,

(2.10)

is the scale of suction velocity which is a non-zero

positive constant. The negative sign indicates that the suction is
directed towards the plate.

It is convenient to employ the following non-dimensional
variables:

—VOy* ﬁ _T-T. c’ -C,

1V: ,0 ’ :—m,
y v Vv, T, -T, ¢ c,-C.
vo
w= )
VO
v, kk
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Vo /4 \
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VO
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sc=r A=k g Vo
D Vo Cp(Tw_Toc)

In view of Equations (2.10) and (2.11) the governing
Equations (2.2), (2.3), (25) and (2.8) reduce to the following
non-dimensional form:

ou au
(1+B)—+——-Nu=G,0+G C+2ﬁ—
oy oy oy

(2.12)
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where N:|\/|+i, T=|1- 4 Pr
K 3R+4

and Gr, Gc, M, K, Pr, R, Ec, Sc and A are the thermal Grashof
number, solutal Grashof number, magnetic field parameter,
permeability parameter, Prandtl number, radiation parameter,
Eckert umber, Schmidt number and the chemical reaction
parameter, respectively.

The boundary conditions (2.9) are then given by the following
non-dimensional equations:

u:Up,Hzl,a):—a—u,Czlaty:O
oy

u—>0, -0, «—>0, C>0asy—>w (2.16)

The mathematical statement of the problem is now complete and
embodies the solution of Egs. (2.12)-(2.5) and subject to
boundary conditions (2.16).

Solution of the problem

The solution of Equation (2.15) subject to the boundary
conditions (2.16).

C(y)=e®’

where R, =%{l+ 1+1—A} .
C

the problem posed in Egs. (2.12)-(2.14) subjected to the
boundary conditions presented in Equation (2.16) are highly
non-linear, coupled equations and generally will involve a step
by step numerical integration of the explicit finite difference
scheme. However, analytical solutions are possible. Since
viscous dissipation parameter is very small in most of the
practical problems and therefore, we can advance an asymptotic
expansion with as perturbation parameter for the velocity,
microrotation and temperature as follows.

u =u,(y)+Ecu,(y)+0(£?)+..

@.17)

= w,(y)+Ecao,(y)+ 0(82)+

0 =6,(y)+Eco,(y)+O(s?)+..

Substituting Egs. (2.18) into Eqs. (2.12)-(2.14), equating the
coefficients of the same power of E and neglecting terms in E?
and higher order, we get

(2.18)

L+ B)u; +U, —Mu, =-G,0, -G,C - 2pw,  (2.19)
L+ B, +u, —Mu, =-G, 0, - 2w, (2.20)
@, +nw, =0 (2.21)
o, +no, =0 2.22)
0,+T6,=0 (2.23)
0, +T0, = —F(u(’f) (2.24)

where a prime denotes differentiation with respectto Y .
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With the corresponding boundary conditions

Up=U,, U, =0, @, =-Uy, @ =-U, 6, =1, 6,=0,
at y=0

Up=0,u,=0,0,0—>0,0, 50,6, 0,6, -0, as
y — 0 (2.25)

Without going into details, the solutions of Egs. (2.19)-(2.24)
subject to Equation (2.25) can be shown to be

u(y)=ae™ +a,e ™ +ae" +ae”
U(y)=be™ +b,e ™ +be ™ +he ™) +he ) 4be V! +he ®
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+h e e b e e e e
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+61367(R2+r) y +auef(Rl+Rz) y +aﬁe—(r-rz) y

C(y)=e™’

where

RFZ(;M{H 1+(;Mﬁ)}

and the remaining mathematical expressions involved in the
above equations are given in appendix

In view of the above solutions, the streamwise velocity,
microrotation, temperature and concentration in the boundary
layer become

uy)=ae™ +ae™ +ae’ +a "

be™ +he™ +he ™™ the ™™ +he™ +he ™ +he R (2.26)
+b8e*(R1+F)Y +bge*(RruJy +bme*(RﬁT)y +bne*(Rz+n)y +b12e-(r+n)y +b13€_"y
o(y)=C, e + EC{C2 e"”} (2.27)
Ty 2Ry Ry Iy -0y -(RitRy)y
g +ae t+al +af +af " +ap
ﬁ(y):e’ry+EC * arﬁ 7 ; RytT " Rim T (2.28)
+a'l1e’(P'1Jr )Y+aue’(kl+77)y+awe’( 9t )‘/+aﬂe’( yH 2)y+aﬁe’( )Y

The skin-friction, the couple stress coefficient, the Nusselt
number and the Sherwood number are important physical
quantities for this type of boundary-layer flow. These parameters
can be defined and determined as follows:

WO {a%%caﬂ
o LY Hl

w J—

P

=-aR-aR,-al -4y 229
: {blRl+b2F+2b3R1+2b4R2+2b5F+2b6q+b7(R1+R2)+b8(R1+F)}
-Ec
+b9(R1+q)+bm(R2+r)+b11(R2+7])+b12(r+7])+b137].
SUGHR A
Nu, = x———="= Nu, Re;’ _%0 :{Oghoﬂ
T W LY ¥y (2.30)

rer {ash 28R +2a,R, + 28,7+ 24+, (R +R, )+a, (R, +r)}
+ a12(R1 +77>+ a13(R2 +F)+ a14(R2 * ’7)+ 615(F+77)
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Results and discussion

In order to study the behavior of velocityu,
microrotation @, temperature @ and concentration C fields, a
comprehensive numerical computation is carried out for various
values of the parameters that describe the flow characteristics

viz., viscosity ratio 3, plate velocity U b the thermal Grashof

number Gr, the solutal Grashof number Gc, Prandtl number Pr,
the radiation parameter R, Eckert number Ec, Schmidt number
Sc and chemical reaction parameter Kr and results reported in
in terms of graghs. The effect of dimensionless viscosity
ratio £, on the velocity and microrotation past a porous plate is

presented in Fig. 1.

Newtonian fiuid
— Micropolar fluid 04
Up=05, Gr=2.0, Ge=2.0, 110
M=L10, Pr=0.71, R=20, K=10
S0=0.62, Kr=2.0, Ec= 005

g p=05,10,20
Up=05, Gr=2.0, Ge=20, 1=0.1 A

=10, Pre0.71, R=2.0, K10 g

Sc=0.62, Kr=2.0, Ec= 0.05 3 49

Velocity, u

$=0.0,0.5, 1.0, 2.0

o 2 4 6 8
Space coordinate, y

0 05 1 15 2 25 3 35 4 45 5
Space coordinat, y

Fig 1 Velocity and Microrotation profiles for different values

of f
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Up=0.0,0.2,05,08

Up=058,05,02,00

Gr=2.0, Ge=2.0,1=1.0, p=0.1
M=2.0, Pr=L0, Sc=0.22
R=L10, Kr=10, Ec=0.05
=20, Gc=2.0,1=10, p=0.1
M=L0, Pr=L0, 5¢=0.22, K=10
R=10, KI=10, Ec=0.05

0 1 2 3 4 B 6 7 8 o T
Space coordinate, y

2 3 4 5
Space coordinate, y

Fig. 2. Velocity and Microrotation profiles for different
values of Up

The numerical results show that the peak value of the
velocity distribution across the boundary layer is smaller for a

Newtonian fluid (£ =0) with the fixed flow and material

parameters, as compared with a micropolar fluid. In addition, the
value of the angular velocity on the porous plate increases as the

viscosity ratio /3 increases.

Fig. 2 illustrates the variation of velocity and microrotation
distribution across the boundary layer for the various values of

the plate velocityU ,. It is observed that the values of
translational velocity and microrotation on the porous plate
increase, as the plate moving velocity U p Increases.

@ e

3

Gr Ge Sc

G G sc
120 20 022
240 20 02
320 40 02
420 20 062

Up=05, 1=1.0, M=1.0
Pr=1, R=10, S¢=0.22
Kr=1.0, Ec= 0.05, K=1

Velocity, u

0 1 2 3 4 5 6 7 8
Space coordinate, y

Fig 3 Velocity and Microrotation profiles for different values
of Gr, Gcand Sc

The translational velocity and the microrotation profiles
against spanwise coordinate y for different values of Grashof

0 05 1 15 2 25 3 35 4 45 5
Space coordinate, y
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number Gr, Solutal Grashof numberGe and Schmidt number
Sc are described in Fig. 3. It is observed that the velocity
increases as GrI', Gc increase while it decreases as Sc increase,
but opposite behavior is found to microrotation. Here the
positive values of GI' corresponds to a cooling of the surface by
natural convection.

Fig. 4 shows the translational velocity and the microrotation
profiles across the boundary layer for different values of Pr and
R. We observe that the effect of increasing values ProrRina
decreasing the velocity and magnitude of microrotation.

(@

Up=0.5, Gr=2.0, Gc=2.0, M=1.0
K=1.0, S¢=0.22, B=0.01
Kr=1.0, Ec= 0,05, n=1.0 2

Velocity, u

U=05, 6r=20, Ge=20, K=L0
M=L0, Sc202, B=0.01
Kr=10, Ec= 005, 1-L0

0 2 4 B 8 ) T
Space coordinate, y

2 3 @ 5
Space coordinate, y

Fig. 4. Velocity and Microrotation profiles for different
values of Prand R

For different values of the Schmidt number SC and
chemical reaction parameter Kr translational velocity and the
microrotation profiles are plotted in Fig. 5. It is obvious that the
effect of increasing values of SC or Kr results in a decreasing
velocity distribution across the boundary layer. Furthermore, the
results show that the magnitude of microrotation on the porous
plate is decreased as SC or Kr increases.
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Fig. 5. Velocity and Microrotation profiles for different
values of SC andKr
The effects of the viscous dissipation parameter i.e., Eckert
number on the velocity and microrotation are shown in Fig. 6. It
is clear that from these results an increase in the values of Eckert
number Ec leads to rise in the velocity and magnitude of
microrotation.

2 3 4 5
Space coordinate, y

@
0oF &£

Ec=0.0,0.05,0.1, 015

Up=05, Gr=2.0, Ge=2.0, =10
M=10, K=10, S¢=0.22, =001
K=10, Pr=10, R=2.0

Ec=00,0,05,01,0.15

Velocity, u

Up=05, Gr=2.0, Ge=2.0, 11=1.0
M=10, K=10, $¢=0.22, =0.01
Ki=L0, Pr=0.71, R=10

0 2 4 6 8 ) 1 2 3 4 5
Space coordinate, y Space coordinate, y

Fig. 6 Velocity and Microrotation profiles for different
values of EC
Fig. 7 illustrates the influence of Eckert number Ec on the
dimensionless temperature @ . It is observed that an increase in
Ec leads to a fall in the velocity.
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=05, Gr=2.0, Gc=2.0, =1.0
M=1.0, K=1.0, Sc=0.22, p=0.01
Kr=1.0, Pr=1, R=2.0

Temperature,

Ec=0.0, 0.05, 0.1, 0.15

o 1 2 3 4 5
Space coordinate, y

Fig 7 Temperature profiles for different values of EC

For different values of Prandtl number Pr and radiation
parameter R, the temperature profiles are plotted in Fig. 8. These
results show that an increase in Pr or R results in a decrease
thermal boundary layer thickness.

14

12 Up=0.5, Gr=2.0, Gc=2.0, M=1.0,
K=1.0, S¢=0.22, $=0.01
Kr=1.0, Ec= 0.05, n=1.0

Temperature,

Fig. 8. Temperature profiles for different values of
PrandR
Fig .9 shows typical variations in the concentration profiles
for different values of the Schmidt number SC and the chemical
reaction parameter Kr. It is clear from Fig. 9 that the
concentration boundary layer thickness decreases as the Schmidt

number SC and the chemical reaction parameter Kr.

i
P
%

Up=0.5, Gr=2.0, Gc=2.0, M=1.0
M=1.0, K=1.0, Pr=0.71, $=0.1
R=2.0, 1=1.0, Ec= 0.05

Concentration, C

Fig. 9. Concentration profiles for different values of

Sc andKr
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