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Introduction  

Hepatitis B is a potentially life-threatening liver infection 

caused by the hepatitis B virus (HBV). It is a major global health 

problem and the most serious type of viral hepatitis. It is a viral 

infection that attacks the liver and can cause both acute and 

chronic disease (WHO, 2002) [1]. About 2 billion people 

worldwide have been infected with the virus and about 

350million live with chronic infection. An estimated 600 000 

persons die each year due to the acute or chronic consequences 

of hepatitis B (WHO, 2010) [2]. About 25% of adults who 

become chronically infected during childhood later die from 

liver cancer or cirrhosis (scarring of the liver) caused by the 

chronic infection. HBV is 50 to 100 times more infectious than 

HIV (WHO, 2010). HBV is an important occupational hazard 

for health workers, and 50 million new cases are diagnosed 

annually (WHO, 2010). 

The treat of increasing hepatitis B is mainly sexual, 

household or perinatal exposure to infected person. 

Avoidance of perinatal HBV transmission is an important 

step in controlling hepatitis B. Transmission from a HBeAg-

positive to her infant may occur in utero, at the time of birth, or 

after birth. The rate of infection can be as high as 90%. 

However, neonatal vaccination is highly efficacious (95%). It 

efficacy indicates that most infections occur at or shortly before 

birth. On the other hand, caesarean section seems not to be 

vertically transmitted disease like HIV. The risk of transmission 

from mother to infant is related to the HBV replication rate in 

the mother. There seems to be a direct correction between 

maternal HBV DNA levels and the likelihood of transmission. 

In mothers with highly replication HBV, the risk of transmission 

may be up to 85 to 90%, and it continuously lowers with lower 

HBV DNA levels Burk et al. [3]. 

Recently drugs called interferon or lamivudine have been 

used to treat patients with chronic hepatitis B. Considering the 

need for various long-term treatments, it is necessary to 

construct a mathematical model that enables us to study the 

dynamics of HBV (Moskovitz et.al.[4]; Nowak et.al.[5]). In this 

paper, according to clinical symptoms, we first establish the 

ODE model with two infective stages before hepatitis B i.e., the 

asymptomatic phase and the symptomatic phase. By all sorts of 

treatment methods, some individuals with the symptomatic 

phase can be transformed into asymptomatic individuals. One of 

our purpose into investigate the effect of treatment on the long 

term dynamics of the disease. 

The organization of this paper is as follows: In Sec. 2, we 

introduce our mathematical model and boundness of solutions. 

In Sec. 3 and 4, we analyze our model with regard to equilibria 

and their stabilities. Computer simulations are performed to 

illustrate the feasibility of our analytical findings in Sec. 5. In 

Sec. 6, we now study sensitivity analysis of the endemic 

equilibrium to changes in the value of the different parameters 

associated with the system.  In the last Sec. 7, we present the 

conclusion based on our analysis . 

The Mathematical Model 

We propose the following mathematical model to describe 

the viral dynamics of the anti-HBV infection treatment with 

lamivudine. 

During processing the lamivadine therapy, we assume that 

the immune model of HBV infection has the form: 

,bSVdS
dt

dS
   

,)( 1 JIkabSV
dt

dI
  

,)( 21 JkcIk
dt

dJ
                                                (2.1)                                                                      

,32 JkuVJk
dt

dV
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,43 EkJk
dt

dE

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Where the 5 variables- VJIS ,,, and E  represent the numbers 

of uninfected cells, asymptomatic phase, symptomatic phase, 

free virus, and cytotoxic cells, respectively. Here we only 

consider two stages of the infectious period according to clinic 

stages and papers [6-7], i.e., the asymptomatic phase )(I and the 

symptomatic phase ).(J   is the rate of reproduced susceptible 

cells. Uninfected cells die at rate ,dS and become infect at rate 

,bSV  where b is the rate constant describing the infection 

process. Asymptomatic phase are produced at rate bSV and die 

at rate .aI
1k and 

2k are transfer rate constant from the 

asymptomatic phase I to the symptomatic phase J  and from 

the symptomatic phase to the HBV cases, respectively. 

Symptomatic phase die out at rate .cJ   is the treatment rate 

from the symptomatic phase J to the asymptomatic phase 

.I Free virus are produced from symptomatic phase at rate 

Jk2
and removed at rate .uV 3k represent the pharmacological 

effect of the lamivadine to the free virus. Cytotoxic cells are 

produced at rate Jk3 and removed at rate 

.4 Ek uckkkkabd ,,,,,,,,,, 4321  are positive constant 

and will be determined by antiviral immune responses. 

It follows from system (2.1) that 

.2 JkcJaIdS
dt

dJ

dt

dI

dt

dS
   

),()( JISJIS
dt

d
  where 
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JISSup
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From fourth equation of system (2.1), we get 
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Also, from fifth equation of system (2.1), we get 
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Thus the feasible region for system (2.1) is  

 5

m 3 4(S, I, J,V,E) R :  S I J / ,  0 V V ,  0 E k / k ,  S 0, I 0,J 0,V 0,E 0 ,                 

where ),,min( cad  and ,/)( 32 ukkVm     .32 kk   

Let  Int  denote the interior of . It is easy to verify that the 

region   is a positively invariant with respect to system (2.1).  

Analysis of Equilibrium Points  

Now we investigate the existence of equilibria of system (2.1). 

System (2.1) has always a disease-free equilibrium 

)0,0,0,\(0 dE   and unique endemic equilibrium 

),,,( *****

1 EVJISE . 

Existence of disease -free equilibrium )0,0,0,/(0 dE  : 

Here d/  is the solution of the following equation; 

.0dS  

Clearly, .0/  dS   So the equilibrium point 

)0,0,0,/(0 dE  exist. 

Existence of endemic equilibrium ),,,( *****

1 EVJISE : 

The non trivial endemic equilibrium point 

),,,( *****

1 EVJISE  is the positive solution of the 

following algebraic equations; 
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*

3  EkJk                                                               (3.5)                                                              

Now from equation (3.2), (3.3), (3.4) and (3.5) we can write, 
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Where  
 akckaud

kkbk

dS
R










))((

)(

21

321

*0
  is the basic 

reproduction number.  Hence non trivial endemic equilibrium 

point ),,,( *****

1 EVJISE  exists if  .10 R  

Stability Analysis 

In this section, we shall investigate the local geometric 

properties of the equilibria of the system (2.1). 

Linearizing system (2.1) about the disease-free equilibrium 

0E  gives the following Jacobian matrix; 



































43

32

21

1

0

000

0)(00

00)(0

0/)(0

0/00

kk

ukk

kck

dbka

dbd

M 





 

we obtain that two of the eigenvalues of 0M  is d and .4k  

The other three  roots are determined by the following 

characteristic equation about .0M  

.032

2

1

3  ppp                                        (4.1)                                                                                 
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If ,10 R then 
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Thus, from (4.3) we have .03 p Therefore, all roots of 

the equation (4.1) have negative real parts if and only if 

.10 R So, 0E is locally asymptotically stable for .10 R If 

,10 R one eigenvalue of (4.1) is 0 and it is simple. If 

,10 R the characteristic equation (4.1) has positive 

eigenvalue. So, 0E is thus unstable and we first establish the 

following result for .0E  

Theorem (4.4).  If ,10 R the disease-free equilibrium 0E of 

system (2.1) is locally asymptotically stable. If ,10 R 0E is 

locally stable. If ,10 R 0E is a saddle point. 

Also, we linearizing the system (2.1) about the endemic 

equilibrium 1E  gives the following Jacobin matrix; 
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Now we can write characteristic equation about 1E is 
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for each ,0iq  .4,3,2,1i  Now by using Routh-Hurwitz 

Criteria as 
31 , qq and 

4q are always positive we can write, 

.4

2

1

2

3321 qqqqqq   

Hence by this criteria we can say that endemic equilibrium 

1E  is locally asymptotically stable if .10 R
 

Numerical Simulation 

In this section, we present numerically simulation to explain 

the existence of equilibria of the model as well as the feasibility 

of stability conditions numerically for a set of parameter values. 

To study the dynamical behavior of the model, numerical 

simulation of the system (2.1) is carried out by MATLAB 6.1, 

using the following parameter values; 

1 2 3 41.4,b 0.02,d 0.1,a 0.9,k 0.9, 0.04,c 0.2,k 0.9,k 0.2,k 0.03,u 0.06.           
  

      
(5.1)

 
with these values of parameters it can be checked that the 

endemic equilibrium 
1E  exists and is given by,  ,600.9* S  

,2488.0* I ,1964.0* J 2917.2* V and 

.3095.1* E  
The eigenvalues of the variational matrix corresponding to the 

endemic equilibrium of the model are,  

.0202971.0       ,03.0    ,120196.0     ,26799.1     ,73592.1 
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Figure (1) 

The results of numerically simulation are displayed 

graphically in figure (1) variation of VJIS ,,, and E with time 

for the consider parameters set (5.1). In figures (2-3) shows the 

effect of parameters b and 2k on the symptomatic phase. It is 

noted from these figures that as the parameter values increases, 

the symptomatic phase increases. Also, in figure (4) shows the 

effect of parameter 3k  on the symptomatic phase. From this 

figure it is concluded that as the parameter value increases, the 

symptomatic phase decreases. 
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Sensitivity Analysis 

We now study sensitivity of the endemic equilibrium to 

changes in the value of the different parameters associated with 

the system. The results are shown in table 1. The purpose of this 

analysis is to identify the parameters, which are sensitive; 

estimation of these parameters in the field studies is to be done 

with sufficient care. 

Sensitivity of the endemic equilibrium point to changes in the 

parameter values is described in Table 1. Regarding sensitivity 

of the endemic equilibrium level of uninfected cell )(* tS the 

following features are observed:     

1. It is no sensitivity to changes in the value of parameters  

d, and .4k   

2. It is less sensitivity to changes in the value of parameters 

ukka ,,,, 21  and .3k  

3. It is highly sensitivity to changes in the value of parameters 

b  and .c  

The equilibrium level of asymptomatic phase )(* tI exhibits the 

following characteristics: 

1. It is no sensitivity to changes in the value of parameter .4k  

2. It is highly sensitivity to change in the value of parameters 

bkkad ,,,,, 21 and .u  

3. It is less sensitivity to changes in the value of parameters 

c,  and  .3k  

The equilibrium level of symptomatic phase )(* tJ exhibits the 

following characteristics: 

1. It is no sensitivity to changes in the value of parameter .4k  

2. It is highly sensitivity to change in the value of parameters 

21 ,,,,, kkadb and .u  

3. It is less sensitivity to changes in the value of parameters 

c, and .3k  

The equilibrium level of free virus )(* tV exhibits the following 

characteristics: 

1. It is no sensitivity to changes in the value of parameter .4k  

2. It is highly sensitivity to change in the value of parameters 

21 ,,,,, kkadb  and .u  

3. It is less sensitivity to changes in the value of parameters 

,c and .3k  

The equilibrium level of cytotoxic cells  )(* tE exhibits the 

following characteristics: 

1. It is highly sensitivity to change in the value of parameters 

421 ,,,,,, kkkadb and .u  

2. It is less sensitivity to changes in the value of parameters 

c, and .3k
 

Since the spread of epidemic in the population is direct 

outcome of endemic symptomatic phase, determination of the 

equilibrium level of the symptomatic phase is the primary 

problem and more attention needs to be given to the estimation 

of those parameters to which symptomatic phase is more 

sensitive. In this context, more care should be taken to estimate 

the parameters 21 ,,,,, kkadb and .u  

Conclusion 

In this paper, we develop a mathematical model to explore 

the impact of treatment on the transmission dynamics of 

hepatitis B virus. According to papers [6-7], the period of 

infection is divided into the asymptomatic phase and the 

symptomatic phase. By all sorts of treatment methods, 

individuals with the symptomatic phase can be transformed into 

asymptomatic phase individuals. The model exhibits two 

equilibria, namely, the disease-free equilibrium (DFE) and the 

endemic equilibrium. The stability of these two equilibria is 

controlled by the basic reproduction number
 

.0R It is shown that 

if 10 R , the disease-free equilibrium is locally asymptotically 

stable and 10 R , the unique endemic equilibrium is locally 

asymptotically stable. 
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It is concluded from the computer simulation if the growth rate 

of pharmacological effect of the lamivadine to the free virus and 

rate constant describing the infection process increases, the 

symptomatic phase decreases and increases respectively. Also if, 

transfer rate constant from symptomatic phase to the free virus 

increases, the symptomatic phase increases. Sensitivity analysis 

of the endemic equilibrium to changes in the value of the 

different parameters associated with the system is done and it  is 

found that parameters
21 ,,,,, kkadb and u are the most 

sensitive parameters to the infective period. 
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-54.5315 

-218.1771 

72.7233 
36.3616 
-54.5446 

-218.1786 

72.7300 
36.3650 
-54.5475 

-218.1825 

3.  

   1.0d  

+50 

+20 
-20 
-50 

0.00 

0.00 
0.00 
0.00 

-109.0836 

-43.6495 
43.6495 

109.0836 

-109.1140 

-43.6354 
43.6345 

109.1140 

-109.0893 

-43.6357 
43.6357 

109.0893 

-109.0874 

-43.6349 
43.6426 

109.0930 

4.  

   9.0a  

+50 
+20 

-20 
-50 

25.4468 
10.1781 

-10.1781 
-25.4468 

-64.5498 
-29.3810 

36.0530 
108.6012 

-64.5621 
-29.3788 

36.0997 
108.6558 

-64.5416 
-29.3973 

36.0562 
108.5962 

-64.5437 
-29.3928 

36.0595 
108.6063 

5. 

 

   
9.01 k  

+50 
+20 
-20 

-50 

-16.9593 
-8.4822 
12.7260 

50.8927 

10.0080 
7.9180 

-19.8954 

-114.6302 

65.0203 
29.5315 
-35.8961 

-105.7877 

65.0041 
29.4890 
-35.9165 

-107.3177 

65.0095 
29.4921 
-35.9144 

-107.3157 
6.  

 04.0  

+50 

+20 
-20 
-50 

0.8927 

0.3572 
-0.3572 
-0.8927 

-1.1254 

-0.4421 
0.4421 
1.0852 

-2.8004 

-1.12016 
1.1710 
2.9022 

-2.8188 

-1.1345 
1.1388 
2.8668 

-2.8102 

-1.1302 
1.1454 
2.8713 

7.  

2.0c  

+50 
+20 

-20 
-50 

8.9281 
3.5718 

-3.5718 
-8.9281 

-19.5739 
-7.8376 

7.8778 
19.6945 

-26.0692 
-10.9470 

11.8126 
31.2118 

-26.0810 
-10.9743 

11.7816 
31.1908 

-26.0786 
-10.9736 

11.7831 
31.1951 

8.  

9.02 k  

+50 
+20 
-20 

-50 

-14.6739 
-7.6708 
12.9812 

67.500 

31.3504 
16.4389 
-28.0948 

-147.8795 

-5.8044 
0.61099 
-14.5621 

-179.0224 

54.7148 
26.4301 
-36.5580 

-128.2235 

-5.8190 
0.5727 

-14.5933 

-179.0225 

9.  

03.04 k  

+50 
+20 
-20 
-50 

0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 

-33.3333 
-16.6628 
25.0019 
100.00 

10.  

06.0u  

+50 

+20 
-20 
-50 

50.00 

20.00 
-20.00 
-50.00 

-109.0836 

-43.6495 
43.6495 

109.0836 

-109.1140 

-43.6354 
43.6354 

109.1140 

-106.0610 

-53.0305 
79.5435 

318.1742 

-109.0874 

-43.6349 
43.6426 

109.0950 

11.  

2.03 k  

+50 
+20 

-20 
-50 

16.667 
6.0604 

-5.4052 
-12.50 

-36.3745 
-13.2234 

11.8167 
27.2909 

-36.3543 
-13.1873 

11.8126 
27.2912 

-45.4553 
-18.1830 

18.1786 
45.4509 

-4.5437 
4.1313 

-10.5612 
-36.3650 

 


