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Introduction  

Repair maintenance, inspection and replacement are the 

some important means for increasing the availability of the 

system. Under these tools, a number of authors including (2-5) 

have carried out the stochastic analysis of various redundant 

systems. Most of these studies are concentrated at the stochastic 

analysis of two unit redundant systems.  A very few authors 

including (1) have analysed the multi-component redundant 

systems by using supplementary variable technique. 

In the literature of reliability commonly, perfect pre repair 

inspection is considered.  But there are some situations where 

pre repair inspection may be imperfect. In case of imperfect 

inspection the failed unit should be replaced. 

Under the above facts in view, the purpose of present study 

is to analyse a two multicomponent unit parallel system with 

imperfect failure detection, repair/replacement and common 

cause failure. 

2. Model Description and Assumptions 

In the present model we assume: 

(i)The system consists of two identical units arranged in parallel 

configuration. Each unit consists of „c‟, (c > 1) repairable 

independent components arranged in series network. 

(ii)Each unit of the system has two modes normal (N) and total 

failure (F). 

(iii)Upon failure of a unit it goes for the detection to determine 

which component failure is the cause of unit failure. For this 

purpose a detector is always available with the system. But the 

detector is not always successful in detection. 

(iv)If detection is successful, then the failed component goes for 

repair otherwise the failed unit goes for replacement. 

(v)A single repair facility as well as a single replacement facility 

is always available with the system. 

(vi)During the repair the detector is busy in monitoring of the 

repair process. 

(vii)Unit/component fails either due to its normal failure or due 

to common cause failure.  Common cause failure is defined as 

any instance where multiple units or components fail due to a 

single cause.  A common cause failure may occur due to voltage 

fluctuation, temperature, fire, operational and maintenance error, 

etc. 

(viii)The repaired discipline is FCFS and the repaired unit is as 

good as new. 

(ix)Detection time and failure time distributions are taken as 

negative exponential where as repair time dis tributions are taken 

as general. 

 Using regenerative point technique, the following economic 

measures of interest to system designers and managers have 

been obtained. 

(1)Reliability of the system and mean time to system failure 

(MTSF) 

(2)Expected up time of the system during (o, t) and in steady 

state. 

(3)Expected busy period of the repairman during (o, t) and in 

steady state. 

(4)The cost benefit analysis of the system is carried out by using 

the above characteristics. 

3. Notations and symbols for the system states 

E : set of regenerative states, i.e., E = {So – S9} 

 : failure rate of the operative unit 

 : detection rate of the failed unit 

 : rate of replacement of the failed component 

p/q : probability of success/failure of detection 

pc : probability with which the cth component found failed 

 : common cause failure rat 

cG ( ) : c.d.f. of repair time of the failed cth component 

H( )  : c.d.f. of repair time due to common cause 

*, ~ : symbols for Laplace and Laplace Stieltjes 

transform i.e., 

  ijQ (s) = %  -st
ij e d  Q (t),              

 
* -st
ij ijq (s) =   e q (t)dt  

© : symbol for ordinary convolution i.e., 

 A(t) B(t) = 
t

0
B(t u) A(u) du  
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Symbols for the states of the system 

No. : unit is operative 

FD/FWD : unit in failure mode and under 

detection/waiting for detection 

Fcr : unit in failure mode and under repair due to 

the failure of cth component. 

FR/FWR : unit in failure mode and under 

replacement/waiting for replacement 

 Using the above notations and symbols the possible states 

and the possible transitions among the states are shown in fig. 1. 

4. Transition probabilities and sojourn times  

 The non-zero elements pij of the transition probability 

matrix (tpm) for the considered system model are as follows: 
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It can easily be verified that 

01 09p +  p  1,   1,0p + 
1

1,2c 13 19p  p  +  p  1,    
(4c)

2c,0 2c,92c,1
p p  +  p 1,    

30 35 39p +  p  + p  1, 51 5,7c 58p  p  p   1,     6,4c 65p  p   1,     

7c,2c 7c,3p +  p 1.  

 Using the formula i iP(T t)dt    for the mean 

sojourn time in state Si  E, its values for various states are: 
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5. Reliability analysis 

 The reliability of the system when it starts operation from Si 

 E is given by 

 Ri (t) = P [ Ti > t] 

By probabilistic arguments, we have the following recursion 

relations: 

0 0 01 1R (t)  Z (t)  q   R (t)      

1 1 1,2c 2c 13 3R (t) = Z (t)  q (t)  R (t) q (t) R (t)      

2c 2c 2c,0 0R (t)  Z (t)  q (t)  R (t)    

3 3 30 0R (t)  Z (t)  q   R (t)       (1-4) 

where, 

 
(2 )t

oZ (t) = e 
,  

 
( )t

1Z (t) = e 
 

 
( )t

2cZ (t) = G(t) e , 
 

 
( )t

3Z (t) =  e . 
 

 Taking Laplace transform of relations (1-4) and simplifying 

for 
*
oR (s),  we obtain, 

* * * * * * * *
0 01 1 01 1,2c 2c 01 30 3*

o * * * * * *
01 20 1.2c 01 13 30

Z q Z q q Z q q Z
R (s)

1 q q q q q q

   


  

 (5) 

                                 
1
 The  is extended from o to c, whenever used. 
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For brevity, the argument „s‟ is omitted from 
*
isq (s)  and 

*
iZ (s).  

 By taking inverse Laplace transform of (5), we can obtain 

the expression for R(t). Using the usual formula, the MTSF is 

given by  

0 01 1 01 1,2c 2c 01 30 3*
o o

s 0 01 20 12c 01 13 30

p p p p p
E(T )   lim  R (s)   

1 p p p p p p

       
 

  

                                                                                (6) 

6. Availability analysis  

 From the theory of regenerative process, the pointwise 

availabilities A i(t) (i = 0

following recursion relations  

A0(t) = Z0(t) + q01 (t)  A1(t) + q09 (t) © A9 (t) 

A1(t) = Z1(t) + q1,2c(t)  A2c(t) + q13(t)  A3(t) + q16 (t)  A6(t) 

+ q19 (t) © A9(t) 

A2c(t) = Z2c(t) + q2c,0(t)  A0(t) + 
(4c)
2c,1

q  (t) A1(t) + q2c,9 (t) © 

A9 (t) 

A3(t) = Z3(t) + q30(t) © A0 (t) + q35 (t) © A5 (t) + q39 (t) © A9 (t) 

A4c(t) = q4c,1(t)  A1(t)  

A5(t) =  q51(t) © A1(t) + q5,7c (t) A7c(t) + q58(t)  A8(t) 

A6(t) = q6,4c(t) ©  A4c (t) + q65 (t)  A5(t)   

A7c(t) = q7c,2c (t) ©  A2c +q7c,3 (t)  A3(t) 

A8(t) = q83(t)  A3(t) 

A9(t) = q90 (t) © A0 (t)                        (7-16)  Taking Laplace transform of equations (7-16) and solving for 
*
0A (s),  we have 

  
*
0 2 2A (s)   N  (s) D  (s)       (17) 

where,          

*(4c)* * * * * * *
2 1,2c 35 5,7c 7c,3 58 83 352c,1

N (s) [(1 q q ) (1 q q q q q q )       

*(4c)* * * * * * * * * *
16 65 13 35 51 5,7c 7c,2c 16 6,4c 4c,12c,1

* * * * * * * * * * * * *
35 58 83 5,7c 7c,3 0 01 35 58 83 5 7c 7c,3 1

* * * * * *
01 5,7c 7c,2c 16 65 13 3

    (q q q q )  (q q q q )  q q q

     {1-q (q q q q )}]Z  +q  [1-q (q q + q , q )] Z

     q q q (q q +q q

     

  

  * * * * * * *
5 2c 65 01 16 58 83] Z q q q (q q      

     
* * *
5,7c 7c,3 3 q q )Z                       (18)  (18) 

* * * * * * * * * * * *
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   
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*(4c)* * * * * * * * * * * * *
5,7c 7c,2c 01 30 39 90 13 16 65 58 83 5,7c 7c,32c,1

q q q )] q (q  + q q ) [q +q q (q q q q )]     

*(4c)* * * * * * * * * *
90 09+ 01 19 09 90 1,2c 16 6,4c 4c,12c,1

 q (q q q ) (1 q q ) [(1 q q ) q q q ]     

* * * * * * * * * *
01 1,2c 2c,0 2c,9 90 35 58 83 5,7c 7c,3q q  (q q q ) [1 q (q q q q )]    

                                                        (19) 

 For brevity, the argument„s‟ is omitted from 

* *
ij iq (s) and  Z (s). Now, the steady state availability is given 

by 

 0 2 2A N D        (20) 

where,                      

(4c)
2 1,2c 35 5,7c 7c,3 58 35 58 5,7c 7c,3 02c,1

N [(1 p p ){1 p ( p p p )}{1 p (p p p )}]         

(4c)
51 5,7c 7c,2c 16 6,4c 35 58 5,7c 7c,3 02c,1

(p p p p ) p p  {1 p (p p p )}]        

01 35 58 5,7c 7c,3 1 01 5,7c 7c,2c 16 65 13 35 2c p [1 p (p p p ] p p p  (p p p p )]       

 65 01 16 58 5,7c 7c,3 3 p p p (p p p )        (21) 

           

(4c) (4c)
2 1,2c 35 1,2c 58 5,7c 1,2c 7c,3 13 7c,2c2c,1 2c,1

D [(1 p p ) p p { p p p ( p p p p )}        

(4c)
16 65 5,7c 7c,2c 16 6,4c 35 58 5,7c 7c,32c,1

 p p (1 p p p ) p p {1 p (p p p )}       

35 58 5,7c 7c,3 13 51 0 01 01 35 58 5,7c 7c,3 1 p (p p p p p )]  + [p -p p (p + p p )]     

01 1,2c 35 58 5,7c 7c,3 01 5,7c 7c,2c 13 35 [p p {1 p (p p p )}  + p p p (p p  +      16 65 2c 01 13 01 16 65 58 5,7c 7c,3 3 01 16 6,4cp p )]  [p p p p p (p p p )] p p p        

35 58 5,7c 7c,3 4c 01 13 35 16 65 5 01 16 35 [1 p (p + p p )] + [p (p p p p )] p p   [1  p        

58 5,7c 7c,3 6 01 5,7c 13 35 16 65 7(p  + p p )]   [p p  (p p  p p )]         

(4c)
01 58 13 35 16 65 8 01 1,2c 09  1,2c 5,7c 7c,2c2c,1

[p p (p p  + p p )]  [(p p  p p ) { p p p         

(4c)
13 35 16 65 58 5c,7c 7c,3  35 09 1,2c 16 6,4c2c,1

(p p p p )}  (p p p ) {p p  ( p p  + p p )       

 01 16 39 65 35 09 19 1,2c 2c,9 35 01 p p p p   p p   (p  + p p )p p }      

09 51 13 35 16 65 01 19 13 39 09 9 p p  (p p  + p p ) + p  (p  + p p ) + p ]    (22) 

7. Busy period analysis 

 Let 
r cc
i i

B (t) B (t)/  be the respected probabilities that the 

repairman is busy in  repair of the failed cth component/failed 

components due to common cause respectively at time „t‟.  

Similarly, 
R DB (t) B (t)/  be the respected probabilities that 

the replacement facility/detector cum inspection person is busy 

in replacement/detection or inspection of the failed unit or 

component respectively at time „t‟.  When system initially starts 

from state Si  E. Using simple probabilistic arguments as in 

availability analysis,  the system of integral equations for 

cc r R D
i i ii

B (t),B (t),B (t)   and  B (t)  in terms of L.T. can be 

found. 

  The steady state probabilities 

cc r R D
o o o oB ,B ,   B    and  B are given respectively as follows: 

cc r R D
o 3 2 o 4 2 o 5 2 o 6 2B N D ,        B N D ,            B N D     and  B   N D     

where,  

3 N =
(4c)

13 35 16 65 01 2c,9 09 512c,1
[p p + p  p ) { p5,7cp7c,2c (p p  + p  )  p p }  

58 5,7c 7c,3 35 09 16 6,4c 01 16 65 39 09 01 19(p p p ) {p p  (p p 1) p p p p (p  + p p )       

(4c)
09 1,2c 58 35 01 1,2 2c,4 13 39 92c,1

 p p p  (1 p p ) + p  ( p p + p p )]       

4 N = 01 1,2c 35 58 5,7c 7c,3 01 5,7c 7c,2c 13 35[p p {1 p  (p   +  p p ) } p p p  (p p       

16 65 2c 01 5,7c 7c,2c 2c,4 13 35 16 65 01 1,2c 2c,4+ p p )]  + [p p p p (p p  + p p ) + p p p      

01 1,2c 2c,4 35 58 5,7c 7c,3 01 16 6,4c 35 58+ p p p  {1 - p  (p  +  p p )} + p p p (1  p p )      

35 01 16 5,7c 7c,3 6,4c 4c 01 5,7c 13 35 16 65 7c p p p p p p ]   + p p  (p p  + p p )     
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5 01 13 5,7c 7c,3 13 35 16 65 16 65 58 5,7 7c,3 3N  =  p  [p  + p p (p p  + p p ) + p p  (p + p p )]   

01 13 35 16 65 5 01 5,7c 13 35 16 65 7c p  (p p  + p p )  + p p  (p p  + p p )      

   01 58 13 35 16 65 8 p p  (p p  + p p )     

6 01 35 58 5,7c 7c,3 1 5,7c 7c,2c 13 35 16 65N  =  p  [1 p (p  +  p p )]  [ p p  (p p  + p p )    

1,2c 35 58 5,7c 7c,3 2c 01 13 35 16 65 5 p  {1 + p  (p  + p p )}]  + p  (p p  + p p )     

01 16 35 58 5,7c 7c,3 6 01 5,7c 13 35 16 65 7 p p  [1  p  (p  + p p ]  + p p  (p p  + p p ) c     

and D2 is the same as in availability analysis. 

8. Profit function analysis  

 The net expected profit incurred during (o, t) is given by  

P (t)  = Expected total revenue during (o, t) – Expected total 

expenditure during (o, t) 

= 
cc r R D

o up 1 2 ub 3 b 4 bb
K  (t) K (t)  K  (t)  K  (t)  K  (t)           

where Ko be the revenue per unit up time by the system and 

K1/K2 be the amount spent per unit of time in repair of the 

components failed due to common cause/ cth component and 

K3/K4 respectively be the amount spent per unit of time in 

replacement/detection or inspection of failed components. 

Also,  
* *t

up o up oo(t) A (u)du  s.t.     (s)   A (s) / s     

In the similar way, 
c.c r R D
b b b b(t),   (t),  (t) and  (t)      can be 

defined.  Now the expected profit per unit time in steady state is 

given by 

P
2 *

t s 0
Lim P(t) / t Lim   s  P  (s)
 

   

cc r R D
0 0 1 0 2 0 3 0 4 0K A K B K B K B  K B      

9. Particular case 

 When the repair time distributions for common cause failure 

and failed cth component are taken as exponential with 

respectively, the changes are as follows: 

(4c)2 2
2c,0 2c,92c,1

2 2 2

p ,                   p ,                     p  
( ) ( ) ( )

  
  

           

2
7c,2c 7c,3,

2 2

p ,                       p                  
( ) ( )


 

     

 

10.  Graphical analysis 

 For study of the system behaviour graphically, we plot 

curves for two important measures of system effectiveness of 

MTSF and profit function w.r.t. failure rate of the operative unit 

(). 

 

 Figure 2 shows the variation in MTSF w.r.t.  for different 

values of 1 0.01, 0.02, 0.03 when other parameters are kept 

fixed as  = 0.01,  = 0.02,  = 0.001, c = 0.025  and p =  .  

From graph, it is obvious that the MTSF rapidly decreases, 

initially and uniformity decreases for large values of .  It is 

further observed that the values of MTSF increase as the value 

of repair rate 1 increases. 

 
 Fig. 3 represents the change in profit function w.r.t.  for 

different values of  and 1 when the other parameters are kept 

fixed as C0= 5000, C1= 600, C2 = 350 C3 = 400 and C4 = 250 

while other parameters take some values as in graphical study of 

MTSF except the values of  and 1.  It is clear from the graph 

that the profit function decreases as the value of failure rate  

increases while the value of profit function increases as the 

value of  and 1 increase.   
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